- -

Electro-responsive films containing voltage responsive gated mesoporous silica nanoparticles grafted onto PEDOT-based conducting polymer

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Electro-responsive films containing voltage responsive gated mesoporous silica nanoparticles grafted onto PEDOT-based conducting polymer

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García-Fernández, Alba es_ES
dc.contributor.author Lozano-Torres, Beatriz es_ES
dc.contributor.author Blandez, Juan F. es_ES
dc.contributor.author Monreal-Trigo, Javier es_ES
dc.contributor.author Soto Camino, Juan es_ES
dc.contributor.author Collazos-Castro, Jorge E. es_ES
dc.contributor.author Alcañiz Fillol, Miguel es_ES
dc.contributor.author Marcos Martínez, María Dolores es_ES
dc.contributor.author Sancenón Galarza, Félix es_ES
dc.contributor.author Martínez-Máñez, Ramón es_ES
dc.date.accessioned 2021-03-01T08:08:11Z
dc.date.available 2021-03-01T08:08:11Z
dc.date.issued 2020-07-10 es_ES
dc.identifier.issn 0168-3659 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162562
dc.description.abstract [EN] The characteristics and electromechanical properties of conductive polymers together to their biocompatibility have boosted their application as a suitable tool in regenerative medicine and tissue engineering. However, conducting polymers as drug release materials are far from being ideal. A possibility to overcome this drawback is to combine conducting polymers with on-command delivery particles with inherent high-loading capacity. In this scenario, we report here the preparation of conduction polymers containing gated mesoporous silica nanoparticles (MSN) loaded with a cargo that is delivered on command by electro-chemical stimuli increasing the potential use of conducting polymers as controlled delivery systems. MSNs are loaded with Rhodamine B (Rh B), anchored to the conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT) doped with poly[(4-styrenesulfonic acid)-co-(maleic acid)], functionalized with a bipyridinium derivative and pores are capped with heparin (P3) by electrostatic interactions. P3 releases the entrapped cargo after the application of ¿640 mV voltage versus the saturated calomel electrode (SCE). Pore opening in the nanoparticles and dye delivery is ascribed to both (i) the reduction of the grafted bipyridinium derivative and (ii) the polarization of the conducting polymer electrode to negative potentials that induce detachment of positively charged heparin from the surface of the nanoparticles. Biocompatibility and cargo release studies were carried out in HeLa cells cultures. es_ES
dc.description.sponsorship Alba Garcia-Fernandez, Beatriz Lozano-Torres contributed equally to this work. A. Garcia-Fernandez and B. Lozano-Torres are grateful to the "Ministerio de Economia y Competitividad" of the Spanish Government for her PhD fellowships. J. F. Blandez thanks the "Universitat Politecnica de Valencia" for his postdoctoral fellowship (PAID-10-17). The authors thank to the Spanish Government (Projects RTI2018-100910-B-C41 and RTI2018-101599-B-C22 (MCUI/AEI/FEDER, EU)) and the Generalitat Valencia (Project PROMETEO2018-024) for support. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Controlled Release es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Controlled release es_ES
dc.subject Electro-responsive es_ES
dc.subject Voltage-gated MSNs es_ES
dc.subject Conducting polymers es_ES
dc.subject PEDOT es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title Electro-responsive films containing voltage responsive gated mesoporous silica nanoparticles grafted onto PEDOT-based conducting polymer es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jconrel.2020.04.048 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-10-17/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F024/ES/Sistemas avanzados de liberación controlada/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101599-B-C22/ES/DESARROLLO Y APLICACION DE SISTEMAS ANTIMICROBIANOS PARA LA INDUSTRIA ALIMENTARIA BASADOS EN SUPERFICIES FUNCIONALIZADAS Y SISTEMAS DE LIBERACION CONTROLADA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-100910-B-C41/ES/MATERIALES POROSOS INTELIGENTES MULTIFUNCIONALES Y DISPOSITIVOS ELECTRONICOS PARA LA LIBERACION DE FARMACOS, DETECCION DE DROGAS Y BIOMARCADORES Y COMUNICACION A NANOESCALA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation García-Fernández, A.; Lozano-Torres, B.; Blandez, JF.; Monreal-Trigo, J.; Soto Camino, J.; Collazos-Castro, JE.; Alcañiz Fillol, M.... (2020). Electro-responsive films containing voltage responsive gated mesoporous silica nanoparticles grafted onto PEDOT-based conducting polymer. Journal of Controlled Release. 323:421-430. https://doi.org/10.1016/j.jconrel.2020.04.048 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jconrel.2020.04.048 es_ES
dc.description.upvformatpinicio 421 es_ES
dc.description.upvformatpfin 430 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 323 es_ES
dc.identifier.pmid 32371265 es_ES
dc.relation.pasarela S\409575 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456 es_ES
dc.description.references Mura, S., Nicolas, J., & Couvreur, P. (2013). Stimuli-responsive nanocarriers for drug delivery. Nature Materials, 12(11), 991-1003. doi:10.1038/nmat3776 es_ES
dc.description.references Llopis-Lorente, A., Lozano-Torres, B., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2017). Mesoporous silica materials for controlled delivery based on enzymes. Journal of Materials Chemistry B, 5(17), 3069-3083. doi:10.1039/c7tb00348j es_ES
dc.description.references Tarn, D., Ashley, C. E., Xue, M., Carnes, E. C., Zink, J. I., & Brinker, C. J. (2013). Mesoporous Silica Nanoparticle Nanocarriers: Biofunctionality and Biocompatibility. Accounts of Chemical Research, 46(3), 792-801. doi:10.1021/ar3000986 es_ES
dc.description.references Mauriello Jimenez, C., Aggad, D., Croissant, J. G., Tresfield, K., Laurencin, D., Berthomieu, D., … Durand, J.-O. (2018). Porous Porphyrin-Based Organosilica Nanoparticles for NIR Two-Photon Photodynamic Therapy and Gene Delivery in Zebrafish. Advanced Functional Materials, 28(21), 1800235. doi:10.1002/adfm.201800235 es_ES
dc.description.references Alberti, S., Soler-Illia, G. J. A. A., & Azzaroni, O. (2015). Gated supramolecular chemistry in hybrid mesoporous silica nanoarchitectures: controlled delivery and molecular transport in response to chemical, physical and biological stimuli. Chemical Communications, 51(28), 6050-6075. doi:10.1039/c4cc10414e es_ES
dc.description.references Llopis-Lorente, A., de Luis, B., García-Fernández, A., Jimenez-Falcao, S., Orzáez, M., Sancenón, F., … Martínez-Máñez, R. (2018). Hybrid Mesoporous Nanocarriers Act by Processing Logic Tasks: Toward the Design of Nanobots Capable of Reading Information from the Environment. ACS Applied Materials & Interfaces, 10(31), 26494-26500. doi:10.1021/acsami.8b05920 es_ES
dc.description.references Yang, P., Gai, S., & Lin, J. (2012). Functionalized mesoporous silica materials for controlled drug delivery. Chemical Society Reviews, 41(9), 3679. doi:10.1039/c2cs15308d es_ES
dc.description.references Song, N., & Yang, Y.-W. (2015). Molecular and supramolecular switches on mesoporous silica nanoparticles. Chemical Society Reviews, 44(11), 3474-3504. doi:10.1039/c5cs00243e es_ES
dc.description.references Oroval, M., Díez, P., Aznar, E., Coll, C., Marcos, M. D., Sancenón, F., … Martínez-Máñez, R. (2016). Self-Regulated Glucose-Sensitive Neoglycoenzyme-Capped Mesoporous Silica Nanoparticles for Insulin Delivery. Chemistry - A European Journal, 23(6), 1353-1360. doi:10.1002/chem.201604104 es_ES
dc.description.references De la Torre, C., Domínguez-Berrocal, L., Murguía, J. R., Marcos, M. D., Martínez-Máñez, R., Bravo, J., & Sancenón, F. (2018). ϵ -Polylysine-Capped Mesoporous Silica Nanoparticles as Carrier of the C 9h Peptide to Induce Apoptosis in Cancer Cells. Chemistry - A European Journal, 24(8), 1890-1897. doi:10.1002/chem.201704161 es_ES
dc.description.references Llopis-Lorente, A., Díez, P., Sánchez, A., Marcos, M. D., Sancenón, F., Martínez-Ruiz, P., … Martínez-Máñez, R. (2017). Interactive models of communication at the nanoscale using nanoparticles that talk to one another. Nature Communications, 8(1). doi:10.1038/ncomms15511 es_ES
dc.description.references Pascual, L., Baroja, I., Aznar, E., Sancenón, F., Marcos, M. D., Murguía, J. R., … Martínez-Máñez, R. (2015). Oligonucleotide-capped mesoporous silica nanoparticles as DNA-responsive dye delivery systems for genomic DNA detection. Chemical Communications, 51(8), 1414-1416. doi:10.1039/c4cc08306g es_ES
dc.description.references Argyo, C., Weiss, V., Bräuchle, C., & Bein, T. (2013). Multifunctional Mesoporous Silica Nanoparticles as a Universal Platform for Drug Delivery. Chemistry of Materials, 26(1), 435-451. doi:10.1021/cm402592t es_ES
dc.description.references Li, Z., Barnes, J. C., Bosoy, A., Stoddart, J. F., & Zink, J. I. (2012). Mesoporous silica nanoparticles in biomedical applications. Chemical Society Reviews, 41(7), 2590. doi:10.1039/c1cs15246g es_ES
dc.description.references Kumar, P., Tambe, P., Paknikar, K. M., & Gajbhiye, V. (2018). Mesoporous silica nanoparticles as cutting-edge theranostics: Advancement from merely a carrier to tailor-made smart delivery platform. Journal of Controlled Release, 287, 35-57. doi:10.1016/j.jconrel.2018.08.024 es_ES
dc.description.references Lai, C.-Y., Trewyn, B. G., Jeftinija, D. M., Jeftinija, K., Xu, S., Jeftinija, S., & Lin, V. S.-Y. (2003). A Mesoporous Silica Nanosphere-Based Carrier System with Chemically Removable CdS Nanoparticle Caps for Stimuli-Responsive Controlled Release of Neurotransmitters and Drug Molecules. Journal of the American Chemical Society, 125(15), 4451-4459. doi:10.1021/ja028650l es_ES
dc.description.references Liu, R., Zhao, X., Wu, T., & Feng, P. (2008). Tunable Redox-Responsive Hybrid Nanogated Ensembles. Journal of the American Chemical Society, 130(44), 14418-14419. doi:10.1021/ja8060886 es_ES
dc.description.references Qu, H., Yang, L., Yu, J., Dong, T., Rong, M., Zhang, J., … Liu, H. (2017). A redox responsive controlled release system using mesoporous silica nanoparticles capped with Au nanoparticles. RSC Advances, 7(57), 35704-35710. doi:10.1039/c7ra04444e es_ES
dc.description.references Giménez, C., de la Torre, C., Gorbe, M., Aznar, E., Sancenón, F., Murguía, J. R., … Amorós, P. (2015). Gated Mesoporous Silica Nanoparticles for the Controlled Delivery of Drugs in Cancer Cells. Langmuir, 31(12), 3753-3762. doi:10.1021/acs.langmuir.5b00139 es_ES
dc.description.references Luo, Z., Hu, Y., Cai, K., Ding, X., Zhang, Q., Li, M., … Zhao, Y. (2014). Intracellular redox-activated anticancer drug delivery by functionalized hollow mesoporous silica nanoreservoirs with tumor specificity. Biomaterials, 35(27), 7951-7962. doi:10.1016/j.biomaterials.2014.05.058 es_ES
dc.description.references Du, X., Xiong, L., Dai, S., Kleitz, F., & Qiao, S. Z. (2014). Intracellular Microenvironment-Responsive Dendrimer-Like Mesoporous Nanohybrids for Traceable, Effective, and Safe Gene Delivery. Advanced Functional Materials, 24(48), 7627-7637. doi:10.1002/adfm.201402408 es_ES
dc.description.references Raza, A., Hayat, U., Rasheed, T., Bilal, M., & Iqbal, H. M. N. (2018). Redox-responsive nano-carriers as tumor-targeted drug delivery systems. European Journal of Medicinal Chemistry, 157, 705-715. doi:10.1016/j.ejmech.2018.08.034 es_ES
dc.description.references Xiao, Y., Wang, T., Cao, Y., Wang, X., Zhang, Y., Liu, Y., & Huo, Q. (2015). Enzyme and voltage stimuli-responsive controlled release system based on β-cyclodextrin-capped mesoporous silica nanoparticles. Dalton Transactions, 44(9), 4355-4361. doi:10.1039/c4dt03758h es_ES
dc.description.references Wang, T., Sun, G., Wang, M., Zhou, B., & Fu, J. (2015). Voltage/pH-Driven Mechanized Silica Nanoparticles for the Multimodal Controlled Release of Drugs. ACS Applied Materials & Interfaces, 7(38), 21295-21304. doi:10.1021/acsami.5b05619 es_ES
dc.description.references Jiao, X., Sun, R., Cheng, Y., Li, F., Du, X., Wen, Y., … Zhang, X. (2017). A Voltage-Responsive Free-Blockage Controlled-Release System Based on Hydrophobicity Switching. ChemPhysChem, 18(10), 1317-1323. doi:10.1002/cphc.201700117 es_ES
dc.description.references Khashab, N. M., Trabolsi, A., Lau, Y. A., Ambrogio, M. W., Friedman, D. C., Khatib, H. A., … Stoddart, J. F. (2009). Redox- and pH-Controlled Mechanized Nanoparticles. European Journal of Organic Chemistry, 2009(11), 1669-1673. doi:10.1002/ejoc.200801300 es_ES
dc.description.references Guimard, N. K., Gomez, N., & Schmidt, C. E. (2007). Conducting polymers in biomedical engineering. Progress in Polymer Science, 32(8-9), 876-921. doi:10.1016/j.progpolymsci.2007.05.012 es_ES
dc.description.references Wang, X., Zhi, L., & Müllen, K. (2007). Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells. Nano Letters, 8(1), 323-327. doi:10.1021/nl072838r es_ES
dc.description.references Leigh, S. J., Bradley, R. J., Purssell, C. P., Billson, D. R., & Hutchins, D. A. (2012). A Simple, Low-Cost Conductive Composite Material for 3D Printing of Electronic Sensors. PLoS ONE, 7(11), e49365. doi:10.1371/journal.pone.0049365 es_ES
dc.description.references Zhang, D., Ryu, K., Liu, X., Polikarpov, E., Ly, J., Tompson, M. E., & Zhou, C. (2006). Transparent, Conductive, and Flexible Carbon Nanotube Films and Their Application in Organic Light-Emitting Diodes. Nano Letters, 6(9), 1880-1886. doi:10.1021/nl0608543 es_ES
dc.description.references Kenry, & Liu, B. (2018). Recent Advances in Biodegradable Conducting Polymers and Their Biomedical Applications. Biomacromolecules, 19(6), 1783-1803. doi:10.1021/acs.biomac.8b00275 es_ES
dc.description.references Palza, H., Zapata, P., & Angulo-Pineda, C. (2019). Electroactive Smart Polymers for Biomedical Applications. Materials, 12(2), 277. doi:10.3390/ma12020277 es_ES
dc.description.references Naseri, M., Fotouhi, L., & Ehsani, A. (2018). Recent Progress in the Development of Conducting Polymer-Based Nanocomposites for Electrochemical Biosensors Applications: A Mini-Review. The Chemical Record, 18(6), 599-618. doi:10.1002/tcr.201700101 es_ES
dc.description.references Inal, S., Rivnay, J., Suiu, A.-O., Malliaras, G. G., & McCulloch, I. (2018). Conjugated Polymers in Bioelectronics. Accounts of Chemical Research, 51(6), 1368-1376. doi:10.1021/acs.accounts.7b00624 es_ES
dc.description.references Aqrawe, Z., Montgomery, J., Travas-Sejdic, J., & Svirskis, D. (2017). Conducting Polymers as Electrode Coatings for Neuronal Multi-electrode Arrays. Trends in Biotechnology, 35(2), 93-95. doi:10.1016/j.tibtech.2016.06.007 es_ES
dc.description.references Vara, H., & Collazos-Castro, J. E. (2015). Biofunctionalized Conducting Polymer/Carbon Microfiber Electrodes for Ultrasensitive Neural Recordings. ACS Applied Materials & Interfaces, 7(48), 27016-27026. doi:10.1021/acsami.5b09594 es_ES
dc.description.references Green, R., & Abidian, M. R. (2015). Conducting Polymers for Neural Prosthetic and Neural Interface Applications. Advanced Materials, 27(46), 7620-7637. doi:10.1002/adma.201501810 es_ES
dc.description.references Svirskis, D., Travas-Sejdic, J., Rodgers, A., & Garg, S. (2010). Electrochemically controlled drug delivery based on intrinsically conducting polymers. Journal of Controlled Release, 146(1), 6-15. doi:10.1016/j.jconrel.2010.03.023 es_ES
dc.description.references Uppalapati, D., Boyd, B. J., Garg, S., Travas-Sejdic, J., & Svirskis, D. (2016). Conducting polymers with defined micro- or nanostructures for drug delivery. Biomaterials, 111, 149-162. doi:10.1016/j.biomaterials.2016.09.021 es_ES
dc.description.references Alves-Sampaio, A., García-Rama, C., & Collazos-Castro, J. E. (2016). Biofunctionalized PEDOT-coated microfibers for the treatment of spinal cord injury. Biomaterials, 89, 98-113. doi:10.1016/j.biomaterials.2016.02.037 es_ES
dc.description.references Guo, B., & Ma, P. X. (2018). Conducting Polymers for Tissue Engineering. Biomacromolecules, 19(6), 1764-1782. doi:10.1021/acs.biomac.8b00276 es_ES
dc.description.references Wadhwa, R., Lagenaur, C. F., & Cui, X. T. (2006). Electrochemically controlled release of dexamethasone from conducting polymer polypyrrole coated electrode. Journal of Controlled Release, 110(3), 531-541. doi:10.1016/j.jconrel.2005.10.027 es_ES
dc.description.references Shamaeli, E., & Alizadeh, N. (2014). Nanostructured biocompatible thermal/electrical stimuli-responsive biopolymer-doped polypyrrole for controlled release of chlorpromazine: Kinetics studies. International Journal of Pharmaceutics, 472(1-2), 327-338. doi:10.1016/j.ijpharm.2014.06.036 es_ES
dc.description.references Esrafilzadeh, D., Razal, J. M., Moulton, S. E., Stewart, E. M., & Wallace, G. G. (2013). Multifunctional conducting fibres with electrically controlled release of ciprofloxacin. Journal of Controlled Release, 169(3), 313-320. doi:10.1016/j.jconrel.2013.01.022 es_ES
dc.description.references Richardson, R. T., Wise, A. K., Thompson, B. C., Flynn, B. O., Atkinson, P. J., Fretwell, N. J., … Clark, G. M. (2009). Polypyrrole-coated electrodes for the delivery of charge and neurotrophins to cochlear neurons. Biomaterials, 30(13), 2614-2624. doi:10.1016/j.biomaterials.2009.01.015 es_ES
dc.description.references Boehler, C., Kleber, C., Martini, N., Xie, Y., Dryg, I., Stieglitz, T., … Asplund, M. (2017). Actively controlled release of Dexamethasone from neural microelectrodes in a chronic in vivo study. Biomaterials, 129, 176-187. doi:10.1016/j.biomaterials.2017.03.019 es_ES
dc.description.references Collazos-Castro, J. E., Polo, J. L., Hernández-Labrado, G. R., Padial-Cañete, V., & García-Rama, C. (2010). Bioelectrochemical control of neural cell development on conducting polymers. Biomaterials, 31(35), 9244-9255. doi:10.1016/j.biomaterials.2010.08.057 es_ES
dc.description.references Cho, Y., Shi, R., Ivanisevic, A., & Ben Borgens, R. (2009). A mesoporous silica nanosphere-based drug delivery system using an electrically conducting polymer. Nanotechnology, 20(27), 275102. doi:10.1088/0957-4484/20/27/275102 es_ES
dc.description.references García-Fernández, A., García-Laínez, G., Ferrándiz, M. L., Aznar, E., Sancenón, F., Alcaraz, M. J., … Orzáez, M. (2017). Targeting inflammasome by the inhibition of caspase-1 activity using capped mesoporous silica nanoparticles. Journal of Controlled Release, 248, 60-70. doi:10.1016/j.jconrel.2017.01.002 es_ES
dc.description.references Lozano-Torres, B., Pascual, L., Bernardos, A., Marcos, M. D., Jeppesen, J. O., Salinas, Y., … Sancenón, F. (2017). Pseudorotaxane capped mesoporous silica nanoparticles for 3,4-methylenedioxymethamphetamine (MDMA) detection in water. Chemical Communications, 53(25), 3559-3562. doi:10.1039/c7cc00186j es_ES
dc.description.references Collazos-Castro, J. E., Hernández-Labrado, G. R., Polo, J. L., & García-Rama, C. (2013). N-Cadherin- and L1-functionalised conducting polymers for synergistic stimulation and guidance of neural cell growth. Biomaterials, 34(14), 3603-3617. doi:10.1016/j.biomaterials.2013.01.097 es_ES
dc.description.references Garcia-Breijo, E., Peris, R. M., Pinatti, C. O., Fillol, M. A., Civera, J. I., & Prats, R. B. (2013). Low-Cost Electronic Tongue System and Its Application to Explosive Detection. IEEE Transactions on Instrumentation and Measurement, 62(2), 424-431. doi:10.1109/tim.2012.2215156 es_ES
dc.description.references Orgill, J. J., Chen, C., Schirmer, C. R., Anderson, J. L., & Lewis, R. S. (2015). Prediction of methyl viologen redox states for biological applications. Biochemical Engineering Journal, 94, 15-21. doi:10.1016/j.bej.2014.11.005 es_ES
dc.description.references Zhang, L. (2010). Glycosaminoglycan (GAG) Biosynthesis and GAG-Binding Proteins. Glycosaminoglycans in Development, Health and Disease, 1-17. doi:10.1016/s1877-1173(10)93001-9 es_ES
dc.description.references Collazos-Castro, J. E., García-Rama, C., & Alves-Sampaio, A. (2016). Glial progenitor cell migration promotes CNS axon growth on functionalized electroconducting microfibers. Acta Biomaterialia, 35, 42-56. doi:10.1016/j.actbio.2016.02.023 es_ES
dc.description.references Ito, M., & Kuwana, T. (1971). Spectroelectrochemical study of indirect reduction of triphosphopyridine nucleotide. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 32(3), 415-425. doi:10.1016/s0022-0728(71)80144-4 es_ES
dc.description.references Nezakati, T., Seifalian, A., Tan, A., & Seifalian, A. M. (2018). Conductive Polymers: Opportunities and Challenges in Biomedical Applications. Chemical Reviews, 118(14), 6766-6843. doi:10.1021/acs.chemrev.6b00275 es_ES
dc.description.references Vitale, F., Summerson, S. R., Aazhang, B., Kemere, C., & Pasquali, M. (2015). Neural Stimulation and Recording with Bidirectional, Soft Carbon Nanotube Fiber Microelectrodes. ACS Nano, 9(4), 4465-4474. doi:10.1021/acsnano.5b01060 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem