- -

Recent Progress in the Development of Composite Membranes Based on Polybenzimidazole for High Temperature Proton Exchange Membrane (PEM) Fuel Cell Applications

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


Recent Progress in the Development of Composite Membranes Based on Polybenzimidazole for High Temperature Proton Exchange Membrane (PEM) Fuel Cell Applications

Show full item record

Escorihuela, J.; Olvera-Mancilla, J.; Alexandrova, L.; Del Castillo, LF.; Compañ Moreno, V. (2020). Recent Progress in the Development of Composite Membranes Based on Polybenzimidazole for High Temperature Proton Exchange Membrane (PEM) Fuel Cell Applications. Polymers. 12(9):1-41. https://doi.org/10.3390/polym12091861

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162564

Files in this item

Item Metadata

Title: Recent Progress in the Development of Composite Membranes Based on Polybenzimidazole for High Temperature Proton Exchange Membrane (PEM) Fuel Cell Applications
Author: Escorihuela, Jorge Olvera-Mancilla, Jessica Alexandrova, Larissa del Castillo, L. Felipe Compañ Moreno, Vicente
UPV Unit: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Issued date:
[EN] The rapid increasing of the population in combination with the emergence of new energy-consuming technologies has risen worldwide total energy consumption towards unprecedent values. Furthermore, fossil fuel reserves ...[+]
Subjects: Fuel cells , Proton exchange membrane , Polymer , Polybenzimidazole , Composite membranes , Conductivity , Carbon nanotubes , Graphene oxide , Ionic liquids , Metal organic frameworks
Copyrigths: Reconocimiento (by)
Polymers. (eissn: 2073-4360 )
DOI: 10.3390/polym12091861
Publisher version: https://doi.org/10.3390/polym12091861
Project ID:
The authors acknowledge the Spanish Ministerio de Economía y Competitividad (MINECO) for the financial support under the project ENE/2015-69203-R.
Type: Artículo


Kraytsberg, A., & Ein-Eli, Y. (2014). Review of Advanced Materials for Proton Exchange Membrane Fuel Cells. Energy & Fuels, 28(12), 7303-7330. doi:10.1021/ef501977k

Li, Q., Jensen, J. O., Savinell, R. F., & Bjerrum, N. J. (2009). High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Progress in Polymer Science, 34(5), 449-477. doi:10.1016/j.progpolymsci.2008.12.003

CLEGHORN, S. (1997). Pem fuel cells for transportation and stationary power generation applications. International Journal of Hydrogen Energy, 22(12), 1137-1144. doi:10.1016/s0360-3199(97)00016-5 [+]
Kraytsberg, A., & Ein-Eli, Y. (2014). Review of Advanced Materials for Proton Exchange Membrane Fuel Cells. Energy & Fuels, 28(12), 7303-7330. doi:10.1021/ef501977k

Li, Q., Jensen, J. O., Savinell, R. F., & Bjerrum, N. J. (2009). High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Progress in Polymer Science, 34(5), 449-477. doi:10.1016/j.progpolymsci.2008.12.003

CLEGHORN, S. (1997). Pem fuel cells for transportation and stationary power generation applications. International Journal of Hydrogen Energy, 22(12), 1137-1144. doi:10.1016/s0360-3199(97)00016-5

Scott, K., & Shukla, A. K. (2004). Polymer electrolyte membrane fuel cells: Principles and advances. Reviews in Environmental Science and Bio/Technology, 3(3), 273-280. doi:10.1007/s11157-004-6884-z

Zhang, H., & Shen, P. K. (2012). Recent Development of Polymer Electrolyte Membranes for Fuel Cells. Chemical Reviews, 112(5), 2780-2832. doi:10.1021/cr200035s

Cano, Z. P., Banham, D., Ye, S., Hintennach, A., Lu, J., Fowler, M., & Chen, Z. (2018). Batteries and fuel cells for emerging electric vehicle markets. Nature Energy, 3(4), 279-289. doi:10.1038/s41560-018-0108-1

Campanari, S., Manzolini, G., & Garcia de la Iglesia, F. (2009). Energy analysis of electric vehicles using batteries or fuel cells through well-to-wheel driving cycle simulations. Journal of Power Sources, 186(2), 464-477. doi:10.1016/j.jpowsour.2008.09.115

Merle, G., Wessling, M., & Nijmeijer, K. (2011). Anion exchange membranes for alkaline fuel cells: A review. Journal of Membrane Science, 377(1-2), 1-35. doi:10.1016/j.memsci.2011.04.043

Wang, Y., Chen, K. S., Mishler, J., Cho, S. C., & Adroher, X. C. (2011). A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Applied Energy, 88(4), 981-1007. doi:10.1016/j.apenergy.2010.09.030

Ormerod, R. M. (2002). Solid oxide fuel cells. Chemical Society Reviews, 32(1), 17-28. doi:10.1039/b105764m

Dresp, S., Luo, F., Schmack, R., Kühl, S., Gliech, M., & Strasser, P. (2016). An efficient bifunctional two-component catalyst for oxygen reduction and oxygen evolution in reversible fuel cells, electrolyzers and rechargeable air electrodes. Energy & Environmental Science, 9(6), 2020-2024. doi:10.1039/c6ee01046f

Haile, S. M., Boysen, D. A., Chisholm, C. R. I., & Merle, R. B. (2001). Solid acids as fuel cell electrolytes. Nature, 410(6831), 910-913. doi:10.1038/35073536

Pourcelly, G. (2011). Membranes for low and medium temperature fuel cells. State-of-the-art and new trends. Petroleum Chemistry, 51(7), 480-491. doi:10.1134/s0965544111070103

Scott, K., Xu, C., & Wu, X. (2013). Intermediate temperature proton-conducting membrane electrolytes for fuel cells. Wiley Interdisciplinary Reviews: Energy and Environment, 3(1), 24-41. doi:10.1002/wene.64

Dupuis, A.-C. (2011). Proton exchange membranes for fuel cells operated at medium temperatures: Materials and experimental techniques. Progress in Materials Science, 56(3), 289-327. doi:10.1016/j.pmatsci.2010.11.001

Park, C. H., Lee, C. H., Guiver, M. D., & Lee, Y. M. (2011). Sulfonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs). Progress in Polymer Science, 36(11), 1443-1498. doi:10.1016/j.progpolymsci.2011.06.001

Sun, X., Simonsen, S., Norby, T., & Chatzitakis, A. (2019). Composite Membranes for High Temperature PEM Fuel Cells and Electrolysers: A Critical Review. Membranes, 9(7), 83. doi:10.3390/membranes9070083

Lee, K.-S., Maurya, S., Kim, Y. S., Kreller, C. R., Wilson, M. S., Larsen, D., … Mukundan, R. (2018). Intermediate temperature fuel cells via an ion-pair coordinated polymer electrolyte. Energy & Environmental Science, 11(4), 979-987. doi:10.1039/c7ee03595k

Mauritz, K. A., & Moore, R. B. (2004). State of Understanding of Nafion. Chemical Reviews, 104(10), 4535-4586. doi:10.1021/cr0207123

Casciola, M., Alberti, G., Sganappa, M., & Narducci, R. (2006). On the decay of Nafion proton conductivity at high temperature and relative humidity. Journal of Power Sources, 162(1), 141-145. doi:10.1016/j.jpowsour.2006.06.023

Alberti, G., Narducci, R., Di Vona, M. L., & Giancola, S. (2013). More on Nafion Conductivity Decay at Temperatures Higher than 80 °C: Preparation and First Characterization of In-Plane Oriented Layered Morphologies. Industrial & Engineering Chemistry Research, 52(31), 10418-10424. doi:10.1021/ie303628c

Li, Q., He, R., Jensen, J. O., & Bjerrum, N. J. (2003). Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100 °C. Chemistry of Materials, 15(26), 4896-4915. doi:10.1021/cm0310519

Alberti, G., Narducci, R., & Sganappa, M. (2008). Effects of hydrothermal/thermal treatments on the water-uptake of Nafion membranes and relations with changes of conformation, counter-elastic force and tensile modulus of the matrix. Journal of Power Sources, 178(2), 575-583. doi:10.1016/j.jpowsour.2007.09.034

Subianto, S., Choudhury, N., & Dutta, N. (2013). Composite Electrolyte Membranes from Partially Fluorinated Polymer and Hyperbranched, Sulfonated Polysulfone. Nanomaterials, 4(1), 1-18. doi:10.3390/nano4010001

Zhang, J., Xie, Z., Zhang, J., Tang, Y., Song, C., Navessin, T., … Holdcroft, S. (2006). High temperature PEM fuel cells. Journal of Power Sources, 160(2), 872-891. doi:10.1016/j.jpowsour.2006.05.034

Neburchilov, V., Martin, J., Wang, H., & Zhang, J. (2007). A review of polymer electrolyte membranes for direct methanol fuel cells. Journal of Power Sources, 169(2), 221-238. doi:10.1016/j.jpowsour.2007.03.044

Zeis, R. (2015). Materials and characterization techniques for high-temperature polymer electrolyte membrane fuel cells. Beilstein Journal of Nanotechnology, 6, 68-83. doi:10.3762/bjnano.6.8

Abdul Rasheed, R. K., Liao, Q., Caizhi, Z., & Chan, S. H. (2017). A review on modelling of high temperature proton exchange membrane fuel cells (HT-PEMFCs). International Journal of Hydrogen Energy, 42(5), 3142-3165. doi:10.1016/j.ijhydene.2016.10.078

Rikukawa, M., & Sanui, K. (2000). Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Progress in Polymer Science, 25(10), 1463-1502. doi:10.1016/s0079-6700(00)00032-0

Kurdakova, V., Quartarone, E., Mustarelli, P., Magistris, A., Caponetti, E., & Saladino, M. L. (2010). PBI-based composite membranes for polymer fuel cells. Journal of Power Sources, 195(23), 7765-7769. doi:10.1016/j.jpowsour.2009.09.064

Wang, S., Zhang, G., Han, M., Li, H., Zhang, Y., Ni, J., … Na, H. (2011). Novel epoxy-based cross-linked polybenzimidazole for high temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 36(14), 8412-8421. doi:10.1016/j.ijhydene.2011.03.147

Lipman, T. E., Edwards, J. L., & Kammen, D. M. (2004). Fuel cell system economics: comparing the costs of generating power with stationary and motor vehicle PEM fuel cell systems. Energy Policy, 32(1), 101-125. doi:10.1016/s0301-4215(02)00286-0

Savinell, R., Yeager, E., Tryk, D., Landau, U., Wainright, J., Weng, D., … Rogers, C. (1994). A Polymer Electrolyte for Operation at Temperatures up to 200°C. Journal of The Electrochemical Society, 141(4), L46-L48. doi:10.1149/1.2054875

Asensio, J. A., Sánchez, E. M., & Gómez-Romero, P. (2010). Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest. Chemical Society Reviews, 39(8), 3210. doi:10.1039/b922650h

Araya, S. S., Zhou, F., Liso, V., Sahlin, S. L., Vang, J. R., Thomas, S., … Kær, S. K. (2016). A comprehensive review of PBI-based high temperature PEM fuel cells. International Journal of Hydrogen Energy, 41(46), 21310-21344. doi:10.1016/j.ijhydene.2016.09.024

Vogel, H., & Marvel, C. S. (1961). Polybenzimidazoles, new thermally stable polymers. Journal of Polymer Science, 50(154), 511-539. doi:10.1002/pol.1961.1205015419

Mack, F., Klages, M., Scholta, J., Jörissen, L., Morawietz, T., Hiesgen, R., … Zeis, R. (2014). Morphology studies on high-temperature polymer electrolyte membrane fuel cell electrodes. Journal of Power Sources, 255, 431-438. doi:10.1016/j.jpowsour.2014.01.032

A. Perry, K., L. More, K., Andrew Payzant, E., Meisner, R. A., Sumpter, B. G., & Benicewicz, B. C. (2013). A comparative study of phosphoric acid-dopedm-PBI membranes. Journal of Polymer Science Part B: Polymer Physics, 52(1), 26-35. doi:10.1002/polb.23403

Quartarone, E., Angioni, S., & Mustarelli, P. (2017). Polymer and Composite Membranes for Proton-Conducting, High-Temperature Fuel Cells: A Critical Review. Materials, 10(7), 687. doi:10.3390/ma10070687

Kirubakaran, A., Jain, S., & Nema, R. K. (2009). A review on fuel cell technologies and power electronic interface. Renewable and Sustainable Energy Reviews, 13(9), 2430-2440. doi:10.1016/j.rser.2009.04.004

Ponomarev, I. I., Goryunov, E. I., Petrovskii, P. V., Ponomarev, I. I., Volkova, Y. A., Razorenov, D. Y., & Khokhlov, A. R. (2009). Synthesis of new monomer 3,3′-diamino-4,4′-bis{p-[(diethoxyphosphoryl)methyl]phenylamino}diphenyl sulfone and polybenzimidazoles on its basis. Doklady Chemistry, 429(2), 315-320. doi:10.1134/s0012500809120040

Ng, F., Péron, J., Jones, D. J., & Rozière, J. (2011). Synthesis of novel proton‐conducting highly sulfonated polybenzimidazoles for PEMFC and the effect of the type of bisphenyl bridge on polymer and membrane properties. Journal of Polymer Science Part A: Polymer Chemistry, 49(10), 2107-2117. doi:10.1002/pola.24630

Carollo, A., Quartarone, E., Tomasi, C., Mustarelli, P., Belotti, F., Magistris, A., … Righetti, P. P. (2006). Developments of new proton conducting membranes based on different polybenzimidazole structures for fuel cells applications. Journal of Power Sources, 160(1), 175-180. doi:10.1016/j.jpowsour.2006.01.081

Mustarelli, P., Quartarone, E., Grandi, S., Angioni, S., & Magistris, A. (2012). Increasing the permanent conductivity of PBI membranes for HT-PEMs. Solid State Ionics, 225, 228-231. doi:10.1016/j.ssi.2012.04.007

Conti, F., Majerus, A., Di Noto, V., Korte, C., Lehnert, W., & Stolten, D. (2012). Raman study of the polybenzimidazole–phosphoric acid interactions in membranes for fuel cells. Physical Chemistry Chemical Physics, 14(28), 10022. doi:10.1039/c2cp40553a

Wippermann, K., Wannek, C., Oetjen, H.-F., Mergel, J., & Lehnert, W. (2010). Cell resistances of poly(2,5-benzimidazole)-based high temperature polymer membrane fuel cell membrane electrode assemblies: Time dependence and influence of operating parameters. Journal of Power Sources, 195(9), 2806-2809. doi:10.1016/j.jpowsour.2009.10.100

Mack, F., Aniol, K., Ellwein, C., Kerres, J., & Zeis, R. (2015). Novel phosphoric acid-doped PBI-blends as membranes for high-temperature PEM fuel cells. Journal of Materials Chemistry A, 3(20), 10864-10874. doi:10.1039/c5ta01337b

Li, Z., He, G., Zhang, B., Cao, Y., Wu, H., Jiang, Z., & Tiantian, Z. (2014). Enhanced Proton Conductivity of Nafion Hybrid Membrane under Different Humidities by Incorporating Metal–Organic Frameworks With High Phytic Acid Loading. ACS Applied Materials & Interfaces, 6(12), 9799-9807. doi:10.1021/am502236v

Zhou, Y., Yang, J., Su, H., Zeng, J., Jiang, S. P., & Goddard, W. A. (2014). Insight into Proton Transfer in Phosphotungstic Acid Functionalized Mesoporous Silica-Based Proton Exchange Membrane Fuel Cells. Journal of the American Chemical Society, 136(13), 4954-4964. doi:10.1021/ja411268q

Zeng, J., Zhou, Y., Li, L., & Jiang, S. P. (2011). Phosphotungstic acid functionalized silica nanocomposites with tunable bicontinuous mesoporous structure and superior proton conductivity and stability for fuel cells. Physical Chemistry Chemical Physics, 13(21), 10249. doi:10.1039/c1cp20076c

Liu, X., Li, Y., Xue, J., Zhu, W., Zhang, J., Yin, Y., … Guiver, M. D. (2019). Magnetic field alignment of stable proton-conducting channels in an electrolyte membrane. Nature Communications, 10(1). doi:10.1038/s41467-019-08622-2

Zhai, & Li. (2019). Polyoxometalate–Polymer Hybrid Materials as Proton Exchange Membranes for Fuel Cell Applications. Molecules, 24(19), 3425. doi:10.3390/molecules24193425

Escorihuela, J., García-Bernabé, A., & Compañ, V. (2020). A Deep Insight into Different Acidic Additives as Doping Agents for Enhancing Proton Conductivity on Polybenzimidazole Membranes. Polymers, 12(6), 1374. doi:10.3390/polym12061374

Yang, J. S., Cleemann, L. N., Steenberg, T., Terkelsen, C., Li, Q. F., Jensen, J. O., … He, R. H. (2013). High Molecular Weight Polybenzimidazole Membranes for High Temperature PEMFC. Fuel Cells, 14(1), 7-15. doi:10.1002/fuce.201300070

Chaudhari, H. D., Illathvalappil, R., Kurungot, S., & Kharul, U. K. (2018). Preparation and investigations of ABPBI membrane for HT-PEMFC by immersion precipitation method. Journal of Membrane Science, 564, 211-217. doi:10.1016/j.memsci.2018.07.026

Shigematsu, A., Yamada, T., & Kitagawa, H. (2011). Wide Control of Proton Conductivity in Porous Coordination Polymers. Journal of the American Chemical Society, 133(7), 2034-2036. doi:10.1021/ja109810w

Agmon, N. (1995). The Grotthuss mechanism. Chemical Physics Letters, 244(5-6), 456-462. doi:10.1016/0009-2614(95)00905-j

Bouchet, R. (1999). Proton conduction in acid doped polybenzimidazole. Solid State Ionics, 118(3-4), 287-299. doi:10.1016/s0167-2738(98)00466-4

Gebbie, M. A., Smith, A. M., Dobbs, H. A., Lee, A. A., Warr, G. G., Banquy, X., … Atkin, R. (2017). Long range electrostatic forces in ionic liquids. Chemical Communications, 53(7), 1214-1224. doi:10.1039/c6cc08820a

Weingärtner, H. (2008). Understanding Ionic Liquids at the Molecular Level: Facts, Problems, and Controversies. Angewandte Chemie International Edition, 47(4), 654-670. doi:10.1002/anie.200604951

Wang, C., Li, Z., Sun, P., Pei, H., & Yin, X. (2020). Preparation and Properties of Covalently Crosslinked Polybenzimidazole High Temperature Proton Exchange Membranes Doped with High Sulfonated Polyphosphazene. Journal of The Electrochemical Society, 167(10), 104517. doi:10.1149/1945-7111/ab9d60

Rajabi, Z., Javanbakht, M., Hooshyari, K., Badiei, A., & Adibi, M. (2020). High temperature composite membranes based on polybenzimidazole and dendrimer amine functionalized SBA-15 mesoporous silica for fuel cells. New Journal of Chemistry, 44(13), 5001-5018. doi:10.1039/c9nj05369g

Escorihuela, García-Bernabé, Montero, Andrio, Sahuquillo, Giménez, & Compañ. (2019). Proton Conductivity through Polybenzimidazole Composite Membranes Containing Silica Nanofiber Mats. Polymers, 11(7), 1182. doi:10.3390/polym11071182

Escorihuela, J., Sahuquillo, Ó., García-Bernabé, A., Giménez, E., & Compañ, V. (2018). Phosphoric Acid Doped Polybenzimidazole (PBI)/Zeolitic Imidazolate Framework Composite Membranes with Significantly Enhanced Proton Conductivity under Low Humidity Conditions. Nanomaterials, 8(10), 775. doi:10.3390/nano8100775

Abouzari-Lotf, E., Zakeri, M., Nasef, M. M., Miyake, M., Mozarmnia, P., Bazilah, N. A., … Ahmad, A. (2019). Highly durable polybenzimidazole composite membranes with phosphonated graphene oxide for high temperature polymer electrolyte membrane fuel cells. Journal of Power Sources, 412, 238-245. doi:10.1016/j.jpowsour.2018.11.057

Quartarone, E., & Mustarelli, P. (2012). Polymer fuel cells based on polybenzimidazole/H3PO4. Energy & Environmental Science, 5(4), 6436. doi:10.1039/c2ee03055a

Samms, S. R., Wasmus, S., & Savinell, R. F. (1996). Thermal Stability of Proton Conducting Acid Doped Polybenzimidazole in Simulated Fuel Cell Environments. Journal of The Electrochemical Society, 143(4), 1225-1232. doi:10.1149/1.1836621

Yang, J., Li, Q., Cleemann, L. N., Xu, C., Jensen, J. O., Pan, C., … He, R. (2012). Synthesis and properties of poly(aryl sulfone benzimidazole) and its copolymers for high temperature membrane electrolytes for fuel cells. Journal of Materials Chemistry, 22(22), 11185. doi:10.1039/c2jm30217a

Yang, J., Aili, D., Li, Q., Xu, Y., Liu, P., Che, Q., … He, R. (2013). Benzimidazole grafted polybenzimidazoles for proton exchange membrane fuel cells. Polymer Chemistry, 4(17), 4768. doi:10.1039/c3py00408b

Li, J., Li, X., Zhao, Y., Lu, W., Shao, Z., & Yi, B. (2012). High-Temperature Proton-Exchange-Membrane Fuel Cells Using an Ether-Containing Polybenzimidazole Membrane as Electrolyte. ChemSusChem, 5(5), 896-900. doi:10.1002/cssc.201100725

Berber, M. R., & Nakashima, N. (2019). Bipyridine-based polybenzimidazole membranes with outstanding hydrogen fuel cell performance at high temperature and non-humidifying conditions. Journal of Membrane Science, 591, 117354. doi:10.1016/j.memsci.2019.117354

Kang, Y., Zou, J., Sun, Z., Wang, F., Zhu, H., Han, K., … Meng, Q. (2013). Polybenzimidazole containing ether units as electrolyte for high temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 38(15), 6494-6502. doi:10.1016/j.ijhydene.2013.03.051

Ou, T., Chen, H., Hu, B., Zheng, H., Li, W., & Wang, Y. (2018). A facile method of asymmetric ether-containing polybenzimidazole membrane for high temperature proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 43(27), 12337-12345. doi:10.1016/j.ijhydene.2018.04.166

Bruma, M., Fitch, J. W., & Cassidy, P. E. (1996). Hexafluoroisopropylidene-Containing Polymers for High-Performance Applications. Journal of Macromolecular Science, Part C: Polymer Reviews, 36(1), 119-159. doi:10.1080/15321799608009644

Qian, G., & Benicewicz, B. C. (2009). Synthesis and characterization of high molecular weight hexafluoroisopropylidene-containing polybenzimidazole for high-temperature polymer electrolyte membrane fuel cells. Journal of Polymer Science Part A: Polymer Chemistry, 47(16), 4064-4073. doi:10.1002/pola.23467

Yang, J., Xu, Y., Liu, P., Gao, L., Che, Q., & He, R. (2015). Epoxides cross-linked hexafluoropropylidene polybenzimidazole membranes for application as high temperature proton exchange membranes. Electrochimica Acta, 160, 281-287. doi:10.1016/j.electacta.2015.01.094

Kolb, H. C., Finn, M. G., & Sharpless, K. B. (2001). Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angewandte Chemie International Edition, 40(11), 2004-2021. doi:10.1002/1521-3773(20010601)40:11<2004::aid-anie2004>3.0.co;2-5

Escorihuela, J., Marcelis, A. T. M., & Zuilhof, H. (2015). Metal‐Free Click Chemistry Reactions on Surfaces. Advanced Materials Interfaces, 2(13), 1500135. doi:10.1002/admi.201500135

Sen, R., Escorihuela, J., Smulders, M. M. J., & Zuilhof, H. (2016). Use of Ambient Ionization High-Resolution Mass Spectrometry for the Kinetic Analysis of Organic Surface Reactions. Langmuir, 32(14), 3412-3419. doi:10.1021/acs.langmuir.6b00427

Lowe, A. B. (2010). Thiol-ene «click» reactions and recent applications in polymer and materials synthesis. Polym. Chem., 1(1), 17-36. doi:10.1039/b9py00216b

Escorihuela, J., Bañuls, M.-J., Grijalvo, S., Eritja, R., Puchades, R., & Maquieira, Á. (2014). Direct Covalent Attachment of DNA Microarrays by Rapid Thiol–Ene «Click» Chemistry. Bioconjugate Chemistry, 25(3), 618-627. doi:10.1021/bc500033d

Yao, B., Mei, J., Li, J., Wang, J., Wu, H., Sun, J. Z., … Tang, B. Z. (2014). Catalyst-Free Thiol–Yne Click Polymerization: A Powerful and Facile Tool for Preparation of Functional Poly(vinylene sulfide)s. Macromolecules, 47(4), 1325-1333. doi:10.1021/ma402559a

Escorihuela, J., Bañuls, M.-J., Puchades, R., & Maquieira, Á. (2014). Site-specific immobilization of DNA on silicon surfaces by using the thiol–yne reaction. J. Mater. Chem. B, 2(48), 8510-8517. doi:10.1039/c4tb01108b

Sen, R., Gahtory, D., Escorihuela, J., Firet, J., Pujari, S. P., & Zuilhof, H. (2017). Approach Matters: The Kinetics of Interfacial Inverse-Electron Demand Diels-Alder Reactions. Chemistry - A European Journal, 23(53), 13015-13022. doi:10.1002/chem.201703103

MacKenzie, D. A., Sherratt, A. R., Chigrinova, M., Cheung, L. L., & Pezacki, J. P. (2014). Strain-promoted cycloadditions involving nitrones and alkynes—rapid tunable reactions for bioorthogonal labeling. Current Opinion in Chemical Biology, 21, 81-88. doi:10.1016/j.cbpa.2014.05.023

Ning, X., Temming, R. P., Dommerholt, J., Guo, J., Ania, D. B., Debets, M. F., … van Delft, F. L. (2010). Protein Modification by Strain-Promoted Alkyne-Nitrone Cycloaddition. Angewandte Chemie International Edition, 49(17), 3065-3068. doi:10.1002/anie.201000408

Sen, R., Escorihuela, J., van Delft, F., & Zuilhof, H. (2017). Rapid and Complete Surface Modification with Strain-Promoted Oxidation-Controlled Cyclooctyne-1,2-Quinone Cycloaddition (SPOCQ). Angewandte Chemie International Edition, 56(12), 3299-3303. doi:10.1002/anie.201612037

Escorihuela, J., Das, A., Looijen, W. J. E., van Delft, F. L., Aquino, A. J. A., Lischka, H., & Zuilhof, H. (2017). Kinetics of the Strain-Promoted Oxidation-Controlled Cycloalkyne-1,2-quinone Cycloaddition: Experimental and Theoretical Studies. The Journal of Organic Chemistry, 83(1), 244-252. doi:10.1021/acs.joc.7b02614

Gahtory, D., Sen, R., Kuzmyn, A. R., Escorihuela, J., & Zuilhof, H. (2018). Strain-Promoted Cycloaddition of Cyclopropenes with o -Quinones: A Rapid Click Reaction. Angewandte Chemie International Edition, 57(32), 10118-10122. doi:10.1002/anie.201800937

Leophairatana, P., De Silva, C. C., & Koberstein, J. T. (2017). How good is CuAAC «click» chemistry for polymer coupling reactions? Journal of Polymer Science Part A: Polymer Chemistry, 56(1), 75-84. doi:10.1002/pola.28872

Kumar B., S., Sana, B., Unnikrishnan, G., Jana, T., & Kumar K. S., S. (2020). Polybenzimidazole co-polymers: their synthesis, morphology and high temperature fuel cell membrane properties. Polymer Chemistry, 11(5), 1043-1054. doi:10.1039/c9py01403a

Kulkarni, M. P., Peckham, T. J., Thomas, O. D., & Holdcroft, S. (2013). Synthesis of highly sulfonated polybenzimidazoles by direct copolymerization and grafting. Journal of Polymer Science Part A: Polymer Chemistry, 51(17), 3654-3666. doi:10.1002/pola.26764

Aili, D., Javakhishvili, I., Han, J., Jankova, K., Pan, C., Hvilsted, S., … Li, Q. (2016). Amino-Functional Polybenzimidazole Blends with Enhanced Phosphoric Acid Mediated Proton Conductivity as Fuel Cell Electrolytes. Macromolecular Chemistry and Physics, 217(10), 1161-1168. doi:10.1002/macp.201600059

Zhao, B., Cheng, L., Bei, Y., Wang, S., Cui, J., Zhu, H., … Zhu, Q. (2017). Grafted polybenzimidazole copolymers bearing polyhedral oligosilsesquioxane pendant moieties. European Polymer Journal, 94, 99-110. doi:10.1016/j.eurpolymj.2017.05.024

Lee, H.-S., Roy, A., Lane, O., & McGrath, J. E. (2008). Synthesis and characterization of poly(arylene ether sulfone)-b-polybenzimidazole copolymers for high temperature low humidity proton exchange membrane fuel cells. Polymer, 49(25), 5387-5396. doi:10.1016/j.polymer.2008.09.019

Kim, T.-H., Kim, S.-K., Lim, T.-W., & Lee, J.-C. (2008). Synthesis and properties of poly(aryl ether benzimidazole) copolymers for high-temperature fuel cell membranes. Journal of Membrane Science, 323(2), 362-370. doi:10.1016/j.memsci.2008.06.040

Mader, J. A., & Benicewicz, B. C. (2011). Synthesis and Properties of Random Copolymers of Functionalised Polybenzimidazoles for High Temperature Fuel Cells. Fuel Cells, 11(2), 212-221. doi:10.1002/fuce.201000080

Seel, D. C., & Benicewicz, B. C. (2012). Polyphenylquinoxaline-based proton exchange membranes synthesized via the PPA Process for high temperature fuel cell systems. Journal of Membrane Science, 405-406, 57-67. doi:10.1016/j.memsci.2012.02.044

Molleo, M. A., Chen, X., Ploehn, H. J., Fishel, K. J., & Benicewicz, B. C. (2014). High Polymer Content 3,5-Pyridine-Polybenzimidazole Copolymer Membranes with Improved Compressive Properties. Fuel Cells, 14(1), 16-25. doi:10.1002/fuce.201300202

Molleo, M. A., Chen, X., Ploehn, H. J., & Benicewicz, B. C. (2014). High Polymer Content 2,5-Pyridine-Polybenzimidazole Copolymer Membranes with Improved Compressive Properties. Fuel Cells, 15(1), 150-155. doi:10.1002/fuce.201400129

Schönberger, F., Qian, G., & Benicewicz, B. C. (2017). Polybenzimidazole-based block copolymers: From monomers to membrane electrode assemblies for high temperature polymer electrolyte membrane fuel cells. Journal of Polymer Science Part A: Polymer Chemistry, 55(11), 1831-1843. doi:10.1002/pola.28530

Maity, S., & Jana, T. (2014). Polybenzimidazole Block Copolymers for Fuel Cell: Synthesis and Studies of Block Length Effects on Nanophase Separation, Mechanical Properties, and Proton Conductivity of PEM. ACS Applied Materials & Interfaces, 6(9), 6851-6864. doi:10.1021/am500668c

Chen, S., Pan, H., Chang, Z., Jin, M., & Pu, H. (2018). Synthesis and study of pyridine-containing sulfonated polybenzimidazole multiblock copolymer for proton exchange membrane fuel cells. Ionics, 25(5), 2255-2265. doi:10.1007/s11581-018-2610-7

Yuan, Q., Sun, G.-H., Han, K.-F., Yu, J.-H., Zhu, H., & Wang, Z.-M. (2016). Copolymerization of 4-(3,4-diamino-phenoxy)-benzoic acid and 3,4-diaminobenzoic acid towards H3PO4-doped PBI membranes for proton conductor with better processability. European Polymer Journal, 85, 175-186. doi:10.1016/j.eurpolymj.2016.10.002

Kim, S.-K., Choi, S.-W., Jeon, W. S., Park, J. O., Ko, T., Chang, H., & Lee, J.-C. (2012). Cross-Linked Benzoxazine–Benzimidazole Copolymer Electrolyte Membranes for Fuel Cells at Elevated Temperature. Macromolecules, 45(3), 1438-1446. doi:10.1021/ma202694p

Dechnik, J., Gascon, J., Doonan, C. J., Janiak, C., & Sumby, C. J. (2017). Mixed‐Matrix Membranes. Angewandte Chemie International Edition, 56(32), 9292-9310. doi:10.1002/anie.201701109

Devrim, Y., Devrim, H., & Eroglu, I. (2016). Polybenzimidazole/SiO2 hybrid membranes for high temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 41(23), 10044-10052. doi:10.1016/j.ijhydene.2016.02.043

Pinar, F. J., Cañizares, P., Rodrigo, M. A., Úbeda, D., & Lobato, J. (2015). Long-term testing of a high-temperature proton exchange membrane fuel cell short stack operated with improved polybenzimidazole-based composite membranes. Journal of Power Sources, 274, 177-185. doi:10.1016/j.jpowsour.2014.08.136

Nawn, G., Pace, G., Lavina, S., Vezzù, K., Negro, E., Bertasi, F., … Di Noto, V. (2015). Nanocomposite Membranes based on Polybenzimidazole and ZrO2for High-Temperature Proton Exchange Membrane Fuel Cells. ChemSusChem, 8(8), 1381-1393. doi:10.1002/cssc.201403049

Zhang, S., Davaajargal, T., Aiba, M., Akasaka, S., Ashizawa, M., Tsuruoka, S., … Matsumoto, H. (2017). Enhancing water flux through semipermeable polybenzimidazole membranes by adding surfactant‐treated CNT s. Journal of Applied Polymer Science, 135(7), 45875. doi:10.1002/app.45875

Xu, C., Cao, Y., Kumar, R., Wu, X., Wang, X., & Scott, K. (2011). A polybenzimidazole/sulfonated graphite oxide composite membrane for high temperature polymer electrolyte membrane fuel cells. Journal of Materials Chemistry, 21(30), 11359. doi:10.1039/c1jm11159k

Cai, Y., Yue, Z., & Xu, S. (2017). A novel polybenzimidazole composite modified by sulfonated graphene oxide for high temperature proton exchange membrane fuel cells in anhydrous atmosphere. Journal of Applied Polymer Science, 134(25). doi:10.1002/app.44986

Gupta, C., Maheshwari, P. H., & Dhakate, S. R. (2016). Development of multiwalled carbon nanotubes platinum nanocomposite as efficient PEM fuel cell catalyst. Materials for Renewable and Sustainable Energy, 5(1). doi:10.1007/s40243-015-0066-5

Díaz, M., Ortiz, A., & Ortiz, I. (2014). Progress in the use of ionic liquids as electrolyte membranes in fuel cells. Journal of Membrane Science, 469, 379-396. doi:10.1016/j.memsci.2014.06.033

Kallem, P., Yanar, N., & Choi, H. (2018). Nanofiber-Based Proton Exchange Membranes: Development of Aligned Electrospun Nanofibers for Polymer Electrolyte Fuel Cell Applications. ACS Sustainable Chemistry & Engineering, 7(2), 1808-1825. doi:10.1021/acssuschemeng.8b03601

Lobato, J., Cañizares, P., Rodrigo, M. A., Úbeda, D., & Pinar, F. J. (2011). A novel titanium PBI-based composite membrane for high temperature PEMFCs. Journal of Membrane Science, 369(1-2), 105-111. doi:10.1016/j.memsci.2010.11.051

Tahrim, A. A., & Amin, I. N. H. M. (2018). Advancement in Phosphoric Acid Doped Polybenzimidazole Membrane for High Temperature PEM Fuel Cells: A Review. Journal of Applied Membrane Science & Technology, 23(1). doi:10.11113/amst.v23n1.136

Pu, H., Liu, L., Chang, Z., & Yuan, J. (2009). Organic/inorganic composite membranes based on polybenzimidazole and nano-SiO2. Electrochimica Acta, 54(28), 7536-7541. doi:10.1016/j.electacta.2009.08.011

Özdemir, Y., Üregen, N., & Devrim, Y. (2017). Polybenzimidazole based nanocomposite membranes with enhanced proton conductivity for high temperature PEM fuel cells. International Journal of Hydrogen Energy, 42(4), 2648-2657. doi:10.1016/j.ijhydene.2016.04.132

Seo, K., Seo, J., Nam, K.-H., & Han, H. (2015). Polybenzimidazole/inorganic composite membrane with advanced performance for high temperature polymer electrolyte membrane fuel cells. Polymer Composites, 38(1), 87-95. doi:10.1002/pc.23563

Lysova, A. A., Ponomarev, I. I., & Yaroslavtsev, A. B. (2011). Composite materials based on polybenzimidazole and inorganic oxides. Solid State Ionics, 188(1), 132-134. doi:10.1016/j.ssi.2010.10.010

Zhang, Q., Liu, H., Li, X., Xu, R., Zhong, J., Chen, R., & Gu, X. (2016). Synthesis and characterization of polybenzimidazole/α-zirconium phosphate composites as proton exchange membrane. Polymer Engineering & Science, 56(6), 622-628. doi:10.1002/pen.24287

Lobato, J., Cañizares, P., Rodrigo, M. A., Úbeda, D., & Pinar, F. J. (2011). Enhancement of the fuel cell performance of a high temperature proton exchange membrane fuel cell running with titanium composite polybenzimidazole-based membranes. Journal of Power Sources, 196(20), 8265-8271. doi:10.1016/j.jpowsour.2011.06.011

Shabanikia, A., Javanbakht, M., Amoli, H. S., Hooshyari, K., & Enhessari, M. (2015). Novel nanocomposite membranes based on polybenzimidazole and Fe2TiO5 nanoparticles for proton exchange membrane fuel cells. Ionics, 21(8), 2227-2236. doi:10.1007/s11581-015-1392-4

Qiu, G., Jiang, T., Li, H., & Wang, D. (2003). Functions and molecular structure of organic binders for iron ore pelletization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 224(1-3), 11-22. doi:10.1016/s0927-7757(03)00264-4

Mohammadi, G., Jahanshahi, M., & Rahimpour, A. (2013). Fabrication and evaluation of Nafion nanocomposite membrane based on ZrO2–TiO2 binary nanoparticles as fuel cell MEA. International Journal of Hydrogen Energy, 38(22), 9387-9394. doi:10.1016/j.ijhydene.2012.09.096

He, R. (2003). Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors. Journal of Membrane Science, 226(1-2), 169-184. doi:10.1016/j.memsci.2003.09.002

Di, S., Yan, L., Han, S., Yue, B., Feng, Q., Xie, L., … Sun, C. (2012). Enhancing the high-temperature proton conductivity of phosphoric acid doped poly(2,5-benzimidazole) by preblending boron phosphate nanoparticles to the raw materials. Journal of Power Sources, 211, 161-168. doi:10.1016/j.jpowsour.2012.03.091

Xu, C., Wu, X., Wang, X., Mamlouk, M., & Scott, K. (2011). Composite membranes of polybenzimidazole and caesium-salts-of-heteropolyacids for intermediate temperature fuel cells. Journal of Materials Chemistry, 21(16), 6014. doi:10.1039/c1jm10093a

Hooshyari, K., Javanbakht, M., Shabanikia, A., & Enhessari, M. (2015). Fabrication BaZrO3/PBI-based nanocomposite as a new proton conducting membrane for high temperature proton exchange membrane fuel cells. Journal of Power Sources, 276, 62-72. doi:10.1016/j.jpowsour.2014.11.083

Shabanikia, A., Javanbakht, M., Amoli, H. S., Hooshyari, K., & Enhessari, M. (2015). Polybenzimidazole/strontium cerate nanocomposites with enhanced proton conductivity for proton exchange membrane fuel cells operating at high temperature. Electrochimica Acta, 154, 370-378. doi:10.1016/j.electacta.2014.12.025

Fuentes, I., Andrio, A., Teixidor, F., Viñas, C., & Compañ, V. (2017). Enhanced conductivity of sodium versus lithium salts measured by impedance spectroscopy. Sodium cobaltacarboranes as electrolytes of choice. Physical Chemistry Chemical Physics, 19(23), 15177-15186. doi:10.1039/c7cp02526b

Fuentes, I., Andrio, A., García-Bernabé, A., Escorihuela, J., Viñas, C., Teixidor, F., & Compañ, V. (2018). Structural and dielectric properties of cobaltacarborane composite polybenzimidazole membranes as solid polymer electrolytes at high temperature. Physical Chemistry Chemical Physics, 20(15), 10173-10184. doi:10.1039/c8cp00372f

Olvera-Mancilla, J., Escorihuela, J., Alexandrova, L., Andrio, A., García-Bernabé, A., del Castillo, L. F., & Compañ, V. (2020). Effect of metallacarborane salt H[COSANE] doping on the performance properties of polybenzimidazole membranes for high temperature PEMFCs. Soft Matter, 16(32), 7624-7635. doi:10.1039/d0sm00743a

Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., … Ruoff, R. S. (2006). Graphene-based composite materials. Nature, 442(7100), 282-286. doi:10.1038/nature04969

Chee, W. K., Lim, H. N., Huang, N. M., & Harrison, I. (2015). Nanocomposites of graphene/polymers: a review. RSC Advances, 5(83), 68014-68051. doi:10.1039/c5ra07989f

Xu, C., Liu, X., Cheng, J., & Scott, K. (2015). A polybenzimidazole/ionic-liquid-graphite-oxide composite membrane for high temperature polymer electrolyte membrane fuel cells. Journal of Power Sources, 274, 922-927. doi:10.1016/j.jpowsour.2014.10.134

Chen, D., Tang, L., & Li, J. (2010). Graphene-based materials in electrochemistry. Chemical Society Reviews, 39(8), 3157. doi:10.1039/b923596e

Yang, Y.-H., Bolling, L., Priolo, M. A., & Grunlan, J. C. (2012). Super Gas Barrier and Selectivity of Graphene Oxide-Polymer Multilayer Thin Films. Advanced Materials, 25(4), 503-508. doi:10.1002/adma.201202951

Thebo, K. H., Qian, X., Zhang, Q., Chen, L., Cheng, H.-M., & Ren, W. (2018). Highly stable graphene-oxide-based membranes with superior permeability. Nature Communications, 9(1). doi:10.1038/s41467-018-03919-0

Ma, M., Guo, L., Anderson, D. G., & Langer, R. (2013). Bio-Inspired Polymer Composite Actuator and Generator Driven by Water Gradients. Science, 339(6116), 186-189. doi:10.1126/science.1230262

Chee, W. K., Lim, H. N., Harrison, I., Chong, K. F., Zainal, Z., Ng, C. H., & Huang, N. M. (2015). Performance of Flexible and Binderless Polypyrrole/Graphene Oxide/Zinc Oxide Supercapacitor Electrode in a Symmetrical Two-Electrode Configuration. Electrochimica Acta, 157, 88-94. doi:10.1016/j.electacta.2015.01.080

Cao, J., Chen, C., Zhao, Q., Zhang, N., Lu, Q., Wang, X., … Chen, J. (2016). A Flexible Nanostructured Paper of a Reduced Graphene Oxide-Sulfur Composite for High-Performance Lithium-Sulfur Batteries with Unconventional Configurations. Advanced Materials, 28(43), 9629-9636. doi:10.1002/adma.201602262

Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., … Hong, B. H. (2009). Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457(7230), 706-710. doi:10.1038/nature07719

Yang, J., Liu, C., Gao, L., Wang, J., Xu, Y., & He, R. (2015). Novel composite membranes of triazole modified graphene oxide and polybenzimidazole for high temperature polymer electrolyte membrane fuel cell applications. RSC Advances, 5(122), 101049-101054. doi:10.1039/c5ra16554g

Adeli, M., Soleyman, R., Beiranvand, Z., & Madani, F. (2013). Carbon nanotubes in cancer therapy: a more precise look at the role of carbon nanotube–polymer interactions. Chemical Society Reviews, 42(12), 5231. doi:10.1039/c3cs35431h

Saito, N., Haniu, H., Usui, Y., Aoki, K., Hara, K., Takanashi, S., … Endo, M. (2014). Safe Clinical Use of Carbon Nanotubes as Innovative Biomaterials. Chemical Reviews, 114(11), 6040-6079. doi:10.1021/cr400341h

Rajabi, M., Mahanpoor, K., & Moradi, O. (2017). Removal of dye molecules from aqueous solution by carbon nanotubes and carbon nanotube functional groups: critical review. RSC Adv., 7(74), 47083-47090. doi:10.1039/c7ra09377b

Yan, Y., Miao, J., Yang, Z., Xiao, F.-X., Yang, H. B., Liu, B., & Yang, Y. (2015). Carbon nanotube catalysts: recent advances in synthesis, characterization and applications. Chemical Society Reviews, 44(10), 3295-3346. doi:10.1039/c4cs00492b

Hu, L., Hecht, D. S., & Grüner, G. (2010). Carbon Nanotube Thin Films: Fabrication, Properties, and Applications. Chemical Reviews, 110(10), 5790-5844. doi:10.1021/cr9002962

Che, Y., Chen, H., Gui, H., Liu, J., Liu, B., & Zhou, C. (2014). Review of carbon nanotube nanoelectronics and macroelectronics. Semiconductor Science and Technology, 29(7), 073001. doi:10.1088/0268-1242/29/7/073001

Dillon, A. C. (2010). Carbon Nanotubes for Photoconversion and Electrical Energy Storage. Chemical Reviews, 110(11), 6856-6872. doi:10.1021/cr9003314

Wang, L., Liu, H., Konik, R. M., Misewich, J. A., & Wong, S. S. (2013). Carbon nanotube-based heterostructures for solar energy applications. Chemical Society Reviews, 42(20), 8134. doi:10.1039/c3cs60088b

Yu, L., Shearer, C., & Shapter, J. (2016). Recent Development of Carbon Nanotube Transparent Conductive Films. Chemical Reviews, 116(22), 13413-13453. doi:10.1021/acs.chemrev.6b00179

Valitova, I., Amato, M., Mahvash, F., Cantele, G., Maffucci, A., Santato, C., … Cicoira, F. (2013). Carbon nanotube electrodes in organic transistors. Nanoscale, 5(11), 4638. doi:10.1039/c3nr33727h

Cao, Z., & Wei, B. (B. Q. . (2013). A perspective: carbon nanotube macro-films for energy storage. Energy Environ. Sci., 6(11), 3183-3201. doi:10.1039/c3ee42261e

De Volder, M. F. L., Tawfick, S. H., Baughman, R. H., & Hart, A. J. (2013). Carbon Nanotubes: Present and Future Commercial Applications. Science, 339(6119), 535-539. doi:10.1126/science.1222453

Zadehnazari, A., & Takassi, M. A. (2016). Synthesis of modified multi-walled carbon nanotube poly(benzimidazole-imide) composites: assessment of morphological and thermo-mechanical properties. Composite Interfaces, 23(9), 909-924. doi:10.1080/09276440.2016.1180500

Chang, C.-M., & Liu, Y.-L. (2010). Functionalization of multi-walled carbon nanotubes with non-reactive polymers through an ozone-mediated process for the preparation of a wide range of high performance polymer/carbon nanotube composites. Carbon, 48(4), 1289-1297. doi:10.1016/j.carbon.2009.12.002

Suryani, Chang, C.-M., Liu, Y.-L., & Lee, Y. M. (2011). Polybenzimidazole membranes modified with polyelectrolyte-functionalized multiwalled carbon nanotubes for proton exchange membrane fuel cells. Journal of Materials Chemistry, 21(20), 7480. doi:10.1039/c1jm10439j

Kannan, R., Kagalwala, H. N., Chaudhari, H. D., Kharul, U. K., Kurungot, S., & Pillai, V. K. (2011). Improved performance of phosphonated carbon nanotube–polybenzimidazole composite membranes in proton exchange membrane fuel cells. Journal of Materials Chemistry, 21(20), 7223. doi:10.1039/c0jm04265j

Jheng, L., Huang, C., & Hsu, S. L. (2013). Sulfonated MWNT and imidazole functionalized MWNT/polybenzimidazole composite membranes for high-temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 38(3), 1524-1534. doi:10.1016/j.ijhydene.2012.10.111

Du, C. Y., Zhao, T. S., & Liang, Z. X. (2008). Sulfonation of carbon-nanotube supported platinum catalysts for polymer electrolyte fuel cells. Journal of Power Sources, 176(1), 9-15. doi:10.1016/j.jpowsour.2007.10.016

Park, M. J., Lee, J. K., Lee, B. S., Lee, Y.-W., Choi, I. S., & Lee, S. (2006). Covalent Modification of Multiwalled Carbon Nanotubes with Imidazolium-Based Ionic Liquids:  Effect of Anions on Solubility. Chemistry of Materials, 18(6), 1546-1551. doi:10.1021/cm0511421

Guerrero Moreno, N., Gervasio, D., Godínez García, A., & Pérez Robles, J. F. (2015). Polybenzimidazole-multiwall carbon nanotubes composite membranes for polymer electrolyte membrane fuel cells. Journal of Power Sources, 300, 229-237. doi:10.1016/j.jpowsour.2015.09.070

Escorihuela, J., Narducci, R., Compañ, V., & Costantino, F. (2018). Proton Conductivity of Composite Polyelectrolyte Membranes with Metal‐Organic Frameworks for Fuel Cell Applications. Advanced Materials Interfaces, 1801146. doi:10.1002/admi.201801146

Ramaswamy, P., Wong, N. E., Gelfand, B. S., & Shimizu, G. K. H. (2015). A Water Stable Magnesium MOF That Conducts Protons over 10–2 S cm–1. Journal of the American Chemical Society, 137(24), 7640-7643. doi:10.1021/jacs.5b04399

Diercks, C. S., & Yaghi, O. M. (2017). The atom, the molecule, and the covalent organic framework. Science, 355(6328). doi:10.1126/science.aal1585

Lim, D.-W., & Kitagawa, H. (2020). Proton Transport in Metal–Organic Frameworks. Chemical Reviews, 120(16), 8416-8467. doi:10.1021/acs.chemrev.9b00842

Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O’Keeffe, M., & Yaghi, O. M. (2002). Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science, 295(5554), 469-472. doi:10.1126/science.1067208

Huang, Y.-B., Liang, J., Wang, X.-S., & Cao, R. (2017). Multifunctional metal–organic framework catalysts: synergistic catalysis and tandem reactions. Chemical Society Reviews, 46(1), 126-157. doi:10.1039/c6cs00250a

Banerjee, D., Cairns, A. J., Liu, J., Motkuri, R. K., Nune, S. K., Fernandez, C. A., … Thallapally, P. K. (2014). Potential of Metal–Organic Frameworks for Separation of Xenon and Krypton. Accounts of Chemical Research, 48(2), 211-219. doi:10.1021/ar5003126

Wen, X., Zhang, Q., & Guan, J. (2020). Applications of metal–organic framework-derived materials in fuel cells and metal-air batteries. Coordination Chemistry Reviews, 409, 213214. doi:10.1016/j.ccr.2020.213214

Shi, G. M., Yang, T., & Chung, T. S. (2012). Polybenzimidazole (PBI)/zeolitic imidazolate frameworks (ZIF-8) mixed matrix membranes for pervaporation dehydration of alcohols. Journal of Membrane Science, 415-416, 577-586. doi:10.1016/j.memsci.2012.05.052

Fei, F., Cseri, L., Szekely, G., & Blanford, C. F. (2018). Robust Covalently Cross-linked Polybenzimidazole/Graphene Oxide Membranes for High-Flux Organic Solvent Nanofiltration. ACS Applied Materials & Interfaces, 10(18), 16140-16147. doi:10.1021/acsami.8b03591

Zhang, Z., Nguyen, H. T. H., Miller, S. A., Ploskonka, A. M., DeCoste, J. B., & Cohen, S. M. (2016). Polymer–Metal–Organic Frameworks (polyMOFs) as Water Tolerant Materials for Selective Carbon Dioxide Separations. Journal of the American Chemical Society, 138(3), 920-925. doi:10.1021/jacs.5b11034

DeCoste, J. B., Denny, Jr., M. S., Peterson, G. W., Mahle, J. J., & Cohen, S. M. (2016). Enhanced aging properties of HKUST-1 in hydrophobic mixed-matrix membranes for ammonia adsorption. Chemical Science, 7(4), 2711-2716. doi:10.1039/c5sc04368a

Didaskalou, C., Kupai, J., Cseri, L., Barabas, J., Vass, E., Holtzl, T., & Szekely, G. (2018). Membrane-Grafted Asymmetric Organocatalyst for an Integrated Synthesis–Separation Platform. ACS Catalysis, 8(8), 7430-7438. doi:10.1021/acscatal.8b01706

Sun, Y., Sun, L., Feng, D., & Zhou, H. (2016). An In Situ One‐Pot Synthetic Approach towards Multivariate Zirconium MOFs. Angewandte Chemie International Edition, 55(22), 6471-6475. doi:10.1002/anie.201602274

Donnadio, A., Narducci, R., Casciola, M., Marmottini, F., D’Amato, R., Jazestani, M., … Costantino, F. (2017). Mixed Membrane Matrices Based on Nafion/UiO-66/SO3H-UiO-66 Nano-MOFs: Revealing the Effect of Crystal Size, Sulfonation, and Filler Loading on the Mechanical and Conductivity Properties. ACS Applied Materials & Interfaces, 9(48), 42239-42246. doi:10.1021/acsami.7b14847

Rao, Z., Feng, K., Tang, B., & Wu, P. (2017). Construction of well interconnected metal-organic framework structure for effectively promoting proton conductivity of proton exchange membrane. Journal of Membrane Science, 533, 160-170. doi:10.1016/j.memsci.2017.03.031

Cai, K., Sun, F., Liang, X., Liu, C., Zhao, N., Zou, X., & Zhu, G. (2017). An acid-stable hexaphosphate ester based metal–organic framework and its polymer composite as proton exchange membrane. Journal of Materials Chemistry A, 5(25), 12943-12950. doi:10.1039/c7ta00169j

Tsai, C.-H., Wang, C.-C., Chang, C.-Y., Lin, C.-H., & Chen-Yang, Y. W. (2014). Enhancing performance of Nafion ® -based PEMFC by 1-D channel metal-organic frameworks as PEM filler. International Journal of Hydrogen Energy, 39(28), 15696-15705. doi:10.1016/j.ijhydene.2014.07.134

Kim, H. J., Talukdar, K., & Choi, S.-J. (2016). Tuning of Nafion® by HKUST-1 as coordination network to enhance proton conductivity for fuel cell applications. Journal of Nanoparticle Research, 18(2). doi:10.1007/s11051-016-3346-9

Sun, H., Tang, B., & Wu, P. (2017). Rational Design of S-UiO-66@GO Hybrid Nanosheets for Proton Exchange Membranes with Significantly Enhanced Transport Performance. ACS Applied Materials & Interfaces, 9(31), 26077-26087. doi:10.1021/acsami.7b07651

Han, R., & Wu, P. (2018). Composite Proton-Exchange Membrane with Highly Improved Proton Conductivity Prepared by in Situ Crystallization of Porous Organic Cage. ACS Applied Materials & Interfaces, 10(21), 18351-18358. doi:10.1021/acsami.8b04311

Patel, H. A., Mansor, N., Gadipelli, S., Brett, D. J. L., & Guo, Z. (2016). Superacidity in Nafion/MOF Hybrid Membranes Retains Water at Low Humidity to Enhance Proton Conduction for Fuel Cells. ACS Applied Materials & Interfaces, 8(45), 30687-30691. doi:10.1021/acsami.6b12240

Li, Z., He, G., Zhao, Y., Cao, Y., Wu, H., Li, Y., & Jiang, Z. (2014). Enhanced proton conductivity of proton exchange membranes by incorporating sulfonated metal-organic frameworks. Journal of Power Sources, 262, 372-379. doi:10.1016/j.jpowsour.2014.03.123

Wu, B., Pan, J., Ge, L., Wu, L., Wang, H., & Xu, T. (2014). Oriented MOF-polymer Composite Nanofiber Membranes for High Proton Conductivity at High Temperature and Anhydrous Condition. Scientific Reports, 4(1). doi:10.1038/srep04334

Ru, C., Li, Z., Zhao, C., Duan, Y., Zhuang, Z., Bu, F., & Na, H. (2018). Enhanced Proton Conductivity of Sulfonated Hybrid Poly(arylene ether ketone) Membranes by Incorporating an Amino–Sulfo Bifunctionalized Metal–Organic Framework for Direct Methanol Fuel Cells. ACS Applied Materials & Interfaces, 10(9), 7963-7973. doi:10.1021/acsami.7b17299

Zhang, B., Cao, Y., Li, Z., Wu, H., Yin, Y., Cao, L., … Jiang, Z. (2017). Proton exchange nanohybrid membranes with high phosphotungstic acid loading within metal-organic frameworks for PEMFC applications. Electrochimica Acta, 240, 186-194. doi:10.1016/j.electacta.2017.04.087

Ahmadian-Alam, L., & Mahdavi, H. (2018). A novel polysulfone-based ternary nanocomposite membrane consisting of metal-organic framework and silica nanoparticles: As proton exchange membrane for polymer electrolyte fuel cells. Renewable Energy, 126, 630-639. doi:10.1016/j.renene.2018.03.075

Vega, J., Andrio, A., Lemus, A. A., del Castillo, L. F., & Compañ, V. (2017). Conductivity study of Zeolitic Imidazolate Frameworks, Tetrabutylammonium hydroxide doped with Zeolitic Imidazolate Frameworks, and mixed matrix membranes of Polyetherimide/Tetrabutylammonium hydroxide doped with Zeolitic Imidazolate Frameworks for proton conducting applications. Electrochimica Acta, 258, 153-166. doi:10.1016/j.electacta.2017.10.095

Wu, B., Lin, X., Ge, L., Wu, L., & Xu, T. (2013). A novel route for preparing highly proton conductive membrane materials with metal-organic frameworks. Chem. Commun., 49(2), 143-145. doi:10.1039/c2cc37045j

Fadzallah, I. A., Majid, S. R., Careem, M. A., & Arof, A. K. (2014). A study on ionic interactions in chitosan–oxalic acid polymer electrolyte membranes. Journal of Membrane Science, 463, 65-72. doi:10.1016/j.memsci.2014.03.044

Erkartal, M., Usta, H., Citir, M., & Sen, U. (2016). Proton conducting poly(vinyl alcohol) (PVA)/ poly(2-acrylamido-2-methylpropane sulfonic acid) (PAMPS)/ zeolitic imidazolate framework (ZIF) ternary composite membrane. Journal of Membrane Science, 499, 156-163. doi:10.1016/j.memsci.2015.10.032

Liang, X., Zhang, F., Feng, W., Zou, X., Zhao, C., Na, H., … Zhu, G. (2013). From metal–organic framework (MOF) to MOF–polymer composite membrane: enhancement of low-humidity proton conductivity. Chem. Sci., 4(3), 983-992. doi:10.1039/c2sc21927a

Park, K. S., Ni, Z., Cote, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., … Yaghi, O. M. (2006). Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences, 103(27), 10186-10191. doi:10.1073/pnas.0602439103

Erkartal, M., Erkilic, U., Tam, B., Usta, H., Yazaydin, O., Hupp, J. T., … Sen, U. (2017). From 2-methylimidazole to 1,2,3-triazole: a topological transformation of ZIF-8 and ZIF-67 by post-synthetic modification. Chemical Communications, 53(12), 2028-2031. doi:10.1039/c6cc08746a

Plechkova, N. V., & Seddon, K. R. (2008). Applications of ionic liquids in the chemical industry. Chem. Soc. Rev., 37(1), 123-150. doi:10.1039/b006677j

Earle, M. J., & Seddon, K. R. (2000). Ionic liquids. Green solvents for the future. Pure and Applied Chemistry, 72(7), 1391-1398. doi:10.1351/pac200072071391

Dai, C., Zhang, J., Huang, C., & Lei, Z. (2017). Ionic Liquids in Selective Oxidation: Catalysts and Solvents. Chemical Reviews, 117(10), 6929-6983. doi:10.1021/acs.chemrev.7b00030

González, L., Escorihuela, J., Altava, B., Burguete, M. I., & Luis, S. V. (2014). Chiral Room Temperature Ionic Liquids as Enantioselective Promoters for the Asymmetric Aldol Reaction. European Journal of Organic Chemistry, 2014(24), 5356-5363. doi:10.1002/ejoc.201402436

Chen, D., Ying, W., Guo, Y., Ying, Y., & Peng, X. (2017). Enhanced Gas Separation through Nanoconfined Ionic Liquid in Laminated MoS2 Membrane. ACS Applied Materials & Interfaces, 9(50), 44251-44257. doi:10.1021/acsami.7b15762

González-Mendoza, L., Escorihuela, J., Altava, B., Burguete, M. I., & Luis, S. V. (2015). Application of optically active chiral bis(imidazolium) salts as potential receptors of chiral dicarboxylate salts of biological relevance. Organic & Biomolecular Chemistry, 13(19), 5450-5459. doi:10.1039/c5ob00348b

Valls, A., Altava, B., Burguete, M. I., Escorihuela, J., Martí-Centelles, V., & Luis, S. V. (2019). Supramolecularly assisted synthesis of chiral tripodal imidazolium compounds. Organic Chemistry Frontiers, 6(8), 1214-1225. doi:10.1039/c9qo00163h

González-Mendoza, L., Altava, B., Burguete, M. I., Escorihuela, J., Hernando, E., Luis, S. V., … Vicent, C. (2015). Bis(imidazolium) salts derived from amino acids as receptors and transport agents for chloride anions. RSC Advances, 5(43), 34415-34423. doi:10.1039/c5ra05880e

Marrucho, I. M., Branco, L. C., & Rebelo, L. P. N. (2014). Ionic Liquids in Pharmaceutical Applications. Annual Review of Chemical and Biomolecular Engineering, 5(1), 527-546. doi:10.1146/annurev-chembioeng-060713-040024

Egorova, K. S., Gordeev, E. G., & Ananikov, V. P. (2017). Biological Activity of Ionic Liquids and Their Application in Pharmaceutics and Medicine. Chemical Reviews, 117(10), 7132-7189. doi:10.1021/acs.chemrev.6b00562

Ye, Y.-S., Rick, J., & Hwang, B.-J. (2013). Ionic liquid polymer electrolytes. J. Mater. Chem. A, 1(8), 2719-2743. doi:10.1039/c2ta00126h

Wang, J. T.-W., & Hsu, S. L.-C. (2011). Enhanced high-temperature polymer electrolyte membrane for fuel cells based on polybenzimidazole and ionic liquids. Electrochimica Acta, 56(7), 2842-2846. doi:10.1016/j.electacta.2010.12.069

Van de Ven, E., Chairuna, A., Merle, G., Benito, S. P., Borneman, Z., & Nijmeijer, K. (2013). Ionic liquid doped polybenzimidazole membranes for high temperature Proton Exchange Membrane fuel cell applications. Journal of Power Sources, 222, 202-209. doi:10.1016/j.jpowsour.2012.07.112

Escorihuela, J., García-Bernabé, A., Montero, Á., Sahuquillo, Ó., Giménez, E., & Compañ, V. (2019). Ionic Liquid Composite Polybenzimidazol Membranes for High Temperature PEMFC Applications. Polymers, 11(4), 732. doi:10.3390/polym11040732

Compañ, V., Escorihuela, J., Olvera, J., García-Bernabé, A., & Andrio, A. (2020). Influence of the anion on diffusivity and mobility of ionic liquids composite polybenzimidazol membranes. Electrochimica Acta, 354, 136666. doi:10.1016/j.electacta.2020.136666

Liu, S., Zhou, L., Wang, P., Zhang, F., Yu, S., Shao, Z., & Yi, B. (2014). Ionic-Liquid-Based Proton Conducting Membranes for Anhydrous H2/Cl2 Fuel-Cell Applications. ACS Applied Materials & Interfaces, 6(5), 3195-3200. doi:10.1021/am404645c

Song, X., Ding, L., Wang, L., He, M., & Han, X. (2019). Polybenzimidazole membranes embedded with ionic liquids for use in high proton selectivity vanadium redox flow batteries. Electrochimica Acta, 295, 1034-1043. doi:10.1016/j.electacta.2018.11.123

Liao, Y., Loh, C.-H., Tian, M., Wang, R., & Fane, A. G. (2018). Progress in electrospun polymeric nanofibrous membranes for water treatment: Fabrication, modification and applications. Progress in Polymer Science, 77, 69-94. doi:10.1016/j.progpolymsci.2017.10.003

Lee, C., Jo, S. M., Choi, J., Baek, K.-Y., Truong, Y. B., Kyratzis, I. L., & Shul, Y.-G. (2013). SiO2/sulfonated poly ether ether ketone (SPEEK) composite nanofiber mat supported proton exchange membranes for fuel cells. Journal of Materials Science, 48(10), 3665-3671. doi:10.1007/s10853-013-7162-7

Reyes-Rodriguez, J. L., Escorihuela, J., García-Bernabé, A., Giménez, E., Solorza-Feria, O., & Compañ, V. (2017). Proton conducting electrospun sulfonated polyether ether ketone graphene oxide composite membranes. RSC Advances, 7(84), 53481-53491. doi:10.1039/c7ra10484g

Yu, D. M., Yoon, S., Kim, T.-H., Lee, J. Y., Lee, J., & Hong, Y. T. (2013). Properties of sulfonated poly(arylene ether sulfone)/electrospun nonwoven polyacrylonitrile composite membrane for proton exchange membrane fuel cells. Journal of Membrane Science, 446, 212-219. doi:10.1016/j.memsci.2013.06.028

Laforgue, A., Robitaille, L., Mokrini, A., & Ajji, A. (2007). Fabrication and Characterization of Ionic Conducting Nanofibers. Macromolecular Materials and Engineering, 292(12), 1229-1236. doi:10.1002/mame.200700200

Wang, L., Zhu, J., Zheng, J., Zhang, S., & dou, L. (2014). Nanofiber mats electrospun from composite proton exchange membranes prepared from poly(aryl ether sulfone)s with pendant sulfonated aliphatic side chains. RSC Adv., 4(48), 25195-25200. doi:10.1039/c4ra02286f

Dong, B., Gwee, L., Salas-de la Cruz, D., Winey, K. I., & Elabd, Y. A. (2010). Super Proton Conductive High-Purity Nafion Nanofibers. Nano Letters, 10(9), 3785-3790. doi:10.1021/nl102581w

Li, H.-Y., & Liu, Y.-L. (2013). Polyelectrolyte composite membranes of polybenzimidazole and crosslinked polybenzimidazole-polybenzoxazine electrospun nanofibers for proton exchange membrane fuel cells. J. Mater. Chem. A, 1(4), 1171-1178. doi:10.1039/c2ta00270a

Muthuraja, P., Prakash, S., Shanmugam, V. M., & Manisankar, P. (2018). Stable nanofibrous poly(aryl sulfone ether benzimidazole) membrane with high conductivity for high temperature PEM fuel cells. Solid State Ionics, 317, 201-209. doi:10.1016/j.ssi.2018.01.012

Jahangiri, S., Aravi, İ., Işıkel Şanlı, L., Menceloğlu, Y. Z., & Özden-Yenigün, E. (2017). Fabrication and optimization of proton conductive polybenzimidazole electrospun nanofiber membranes. Polymers for Advanced Technologies, 29(1), 594-602. doi:10.1002/pat.4169

Escorihuela, J., Pujari, S. P., & Zuilhof, H. (2017). Organic Monolayers by B(C6F5)3-Catalyzed Siloxanation of Oxidized Silicon Surfaces. Langmuir, 33(9), 2185-2193. doi:10.1021/acs.langmuir.7b00110

Escorihuela, J., & Zuilhof, H. (2017). Rapid Surface Functionalization of Hydrogen-Terminated Silicon by Alkyl Silanols. Journal of the American Chemical Society, 139(16), 5870-5876. doi:10.1021/jacs.7b01106

Escorihuela, J., Bañuls, M. J., Castelló, J. G., Toccafondo, V., García-Rupérez, J., Puchades, R., & Maquieira, Á. (2012). Chemical silicon surface modification and bioreceptor attachment to develop competitive integrated photonic biosensors. Analytical and Bioanalytical Chemistry, 404(10), 2831-2840. doi:10.1007/s00216-012-6280-4






This item appears in the following Collection(s)

Show full item record