Kraytsberg, A., & Ein-Eli, Y. (2014). Review of Advanced Materials for Proton Exchange Membrane Fuel Cells. Energy & Fuels, 28(12), 7303-7330. doi:10.1021/ef501977k
Li, Q., Jensen, J. O., Savinell, R. F., & Bjerrum, N. J. (2009). High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Progress in Polymer Science, 34(5), 449-477. doi:10.1016/j.progpolymsci.2008.12.003
CLEGHORN, S. (1997). Pem fuel cells for transportation and stationary power generation applications. International Journal of Hydrogen Energy, 22(12), 1137-1144. doi:10.1016/s0360-3199(97)00016-5
[+]
Kraytsberg, A., & Ein-Eli, Y. (2014). Review of Advanced Materials for Proton Exchange Membrane Fuel Cells. Energy & Fuels, 28(12), 7303-7330. doi:10.1021/ef501977k
Li, Q., Jensen, J. O., Savinell, R. F., & Bjerrum, N. J. (2009). High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Progress in Polymer Science, 34(5), 449-477. doi:10.1016/j.progpolymsci.2008.12.003
CLEGHORN, S. (1997). Pem fuel cells for transportation and stationary power generation applications. International Journal of Hydrogen Energy, 22(12), 1137-1144. doi:10.1016/s0360-3199(97)00016-5
Scott, K., & Shukla, A. K. (2004). Polymer electrolyte membrane fuel cells: Principles and advances. Reviews in Environmental Science and Bio/Technology, 3(3), 273-280. doi:10.1007/s11157-004-6884-z
Zhang, H., & Shen, P. K. (2012). Recent Development of Polymer Electrolyte Membranes for Fuel Cells. Chemical Reviews, 112(5), 2780-2832. doi:10.1021/cr200035s
Cano, Z. P., Banham, D., Ye, S., Hintennach, A., Lu, J., Fowler, M., & Chen, Z. (2018). Batteries and fuel cells for emerging electric vehicle markets. Nature Energy, 3(4), 279-289. doi:10.1038/s41560-018-0108-1
Campanari, S., Manzolini, G., & Garcia de la Iglesia, F. (2009). Energy analysis of electric vehicles using batteries or fuel cells through well-to-wheel driving cycle simulations. Journal of Power Sources, 186(2), 464-477. doi:10.1016/j.jpowsour.2008.09.115
Merle, G., Wessling, M., & Nijmeijer, K. (2011). Anion exchange membranes for alkaline fuel cells: A review. Journal of Membrane Science, 377(1-2), 1-35. doi:10.1016/j.memsci.2011.04.043
Wang, Y., Chen, K. S., Mishler, J., Cho, S. C., & Adroher, X. C. (2011). A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Applied Energy, 88(4), 981-1007. doi:10.1016/j.apenergy.2010.09.030
Ormerod, R. M. (2002). Solid oxide fuel cells. Chemical Society Reviews, 32(1), 17-28. doi:10.1039/b105764m
Dresp, S., Luo, F., Schmack, R., Kühl, S., Gliech, M., & Strasser, P. (2016). An efficient bifunctional two-component catalyst for oxygen reduction and oxygen evolution in reversible fuel cells, electrolyzers and rechargeable air electrodes. Energy & Environmental Science, 9(6), 2020-2024. doi:10.1039/c6ee01046f
Haile, S. M., Boysen, D. A., Chisholm, C. R. I., & Merle, R. B. (2001). Solid acids as fuel cell electrolytes. Nature, 410(6831), 910-913. doi:10.1038/35073536
Pourcelly, G. (2011). Membranes for low and medium temperature fuel cells. State-of-the-art and new trends. Petroleum Chemistry, 51(7), 480-491. doi:10.1134/s0965544111070103
Scott, K., Xu, C., & Wu, X. (2013). Intermediate temperature proton-conducting membrane electrolytes for fuel cells. Wiley Interdisciplinary Reviews: Energy and Environment, 3(1), 24-41. doi:10.1002/wene.64
Dupuis, A.-C. (2011). Proton exchange membranes for fuel cells operated at medium temperatures: Materials and experimental techniques. Progress in Materials Science, 56(3), 289-327. doi:10.1016/j.pmatsci.2010.11.001
Park, C. H., Lee, C. H., Guiver, M. D., & Lee, Y. M. (2011). Sulfonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs). Progress in Polymer Science, 36(11), 1443-1498. doi:10.1016/j.progpolymsci.2011.06.001
Sun, X., Simonsen, S., Norby, T., & Chatzitakis, A. (2019). Composite Membranes for High Temperature PEM Fuel Cells and Electrolysers: A Critical Review. Membranes, 9(7), 83. doi:10.3390/membranes9070083
Lee, K.-S., Maurya, S., Kim, Y. S., Kreller, C. R., Wilson, M. S., Larsen, D., … Mukundan, R. (2018). Intermediate temperature fuel cells via an ion-pair coordinated polymer electrolyte. Energy & Environmental Science, 11(4), 979-987. doi:10.1039/c7ee03595k
Mauritz, K. A., & Moore, R. B. (2004). State of Understanding of Nafion. Chemical Reviews, 104(10), 4535-4586. doi:10.1021/cr0207123
Casciola, M., Alberti, G., Sganappa, M., & Narducci, R. (2006). On the decay of Nafion proton conductivity at high temperature and relative humidity. Journal of Power Sources, 162(1), 141-145. doi:10.1016/j.jpowsour.2006.06.023
Alberti, G., Narducci, R., Di Vona, M. L., & Giancola, S. (2013). More on Nafion Conductivity Decay at Temperatures Higher than 80 °C: Preparation and First Characterization of In-Plane Oriented Layered Morphologies. Industrial & Engineering Chemistry Research, 52(31), 10418-10424. doi:10.1021/ie303628c
Li, Q., He, R., Jensen, J. O., & Bjerrum, N. J. (2003). Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100 °C. Chemistry of Materials, 15(26), 4896-4915. doi:10.1021/cm0310519
Alberti, G., Narducci, R., & Sganappa, M. (2008). Effects of hydrothermal/thermal treatments on the water-uptake of Nafion membranes and relations with changes of conformation, counter-elastic force and tensile modulus of the matrix. Journal of Power Sources, 178(2), 575-583. doi:10.1016/j.jpowsour.2007.09.034
Subianto, S., Choudhury, N., & Dutta, N. (2013). Composite Electrolyte Membranes from Partially Fluorinated Polymer and Hyperbranched, Sulfonated Polysulfone. Nanomaterials, 4(1), 1-18. doi:10.3390/nano4010001
Zhang, J., Xie, Z., Zhang, J., Tang, Y., Song, C., Navessin, T., … Holdcroft, S. (2006). High temperature PEM fuel cells. Journal of Power Sources, 160(2), 872-891. doi:10.1016/j.jpowsour.2006.05.034
Neburchilov, V., Martin, J., Wang, H., & Zhang, J. (2007). A review of polymer electrolyte membranes for direct methanol fuel cells. Journal of Power Sources, 169(2), 221-238. doi:10.1016/j.jpowsour.2007.03.044
Zeis, R. (2015). Materials and characterization techniques for high-temperature polymer electrolyte membrane fuel cells. Beilstein Journal of Nanotechnology, 6, 68-83. doi:10.3762/bjnano.6.8
Abdul Rasheed, R. K., Liao, Q., Caizhi, Z., & Chan, S. H. (2017). A review on modelling of high temperature proton exchange membrane fuel cells (HT-PEMFCs). International Journal of Hydrogen Energy, 42(5), 3142-3165. doi:10.1016/j.ijhydene.2016.10.078
Rikukawa, M., & Sanui, K. (2000). Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Progress in Polymer Science, 25(10), 1463-1502. doi:10.1016/s0079-6700(00)00032-0
Kurdakova, V., Quartarone, E., Mustarelli, P., Magistris, A., Caponetti, E., & Saladino, M. L. (2010). PBI-based composite membranes for polymer fuel cells. Journal of Power Sources, 195(23), 7765-7769. doi:10.1016/j.jpowsour.2009.09.064
Wang, S., Zhang, G., Han, M., Li, H., Zhang, Y., Ni, J., … Na, H. (2011). Novel epoxy-based cross-linked polybenzimidazole for high temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 36(14), 8412-8421. doi:10.1016/j.ijhydene.2011.03.147
Lipman, T. E., Edwards, J. L., & Kammen, D. M. (2004). Fuel cell system economics: comparing the costs of generating power with stationary and motor vehicle PEM fuel cell systems. Energy Policy, 32(1), 101-125. doi:10.1016/s0301-4215(02)00286-0
Savinell, R., Yeager, E., Tryk, D., Landau, U., Wainright, J., Weng, D., … Rogers, C. (1994). A Polymer Electrolyte for Operation at Temperatures up to 200°C. Journal of The Electrochemical Society, 141(4), L46-L48. doi:10.1149/1.2054875
Asensio, J. A., Sánchez, E. M., & Gómez-Romero, P. (2010). Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest. Chemical Society Reviews, 39(8), 3210. doi:10.1039/b922650h
Araya, S. S., Zhou, F., Liso, V., Sahlin, S. L., Vang, J. R., Thomas, S., … Kær, S. K. (2016). A comprehensive review of PBI-based high temperature PEM fuel cells. International Journal of Hydrogen Energy, 41(46), 21310-21344. doi:10.1016/j.ijhydene.2016.09.024
Vogel, H., & Marvel, C. S. (1961). Polybenzimidazoles, new thermally stable polymers. Journal of Polymer Science, 50(154), 511-539. doi:10.1002/pol.1961.1205015419
Mack, F., Klages, M., Scholta, J., Jörissen, L., Morawietz, T., Hiesgen, R., … Zeis, R. (2014). Morphology studies on high-temperature polymer electrolyte membrane fuel cell electrodes. Journal of Power Sources, 255, 431-438. doi:10.1016/j.jpowsour.2014.01.032
A. Perry, K., L. More, K., Andrew Payzant, E., Meisner, R. A., Sumpter, B. G., & Benicewicz, B. C. (2013). A comparative study of phosphoric acid-dopedm-PBI membranes. Journal of Polymer Science Part B: Polymer Physics, 52(1), 26-35. doi:10.1002/polb.23403
Quartarone, E., Angioni, S., & Mustarelli, P. (2017). Polymer and Composite Membranes for Proton-Conducting, High-Temperature Fuel Cells: A Critical Review. Materials, 10(7), 687. doi:10.3390/ma10070687
Kirubakaran, A., Jain, S., & Nema, R. K. (2009). A review on fuel cell technologies and power electronic interface. Renewable and Sustainable Energy Reviews, 13(9), 2430-2440. doi:10.1016/j.rser.2009.04.004
Ponomarev, I. I., Goryunov, E. I., Petrovskii, P. V., Ponomarev, I. I., Volkova, Y. A., Razorenov, D. Y., & Khokhlov, A. R. (2009). Synthesis of new monomer 3,3′-diamino-4,4′-bis{p-[(diethoxyphosphoryl)methyl]phenylamino}diphenyl sulfone and polybenzimidazoles on its basis. Doklady Chemistry, 429(2), 315-320. doi:10.1134/s0012500809120040
Ng, F., Péron, J., Jones, D. J., & Rozière, J. (2011). Synthesis of novel proton‐conducting highly sulfonated polybenzimidazoles for PEMFC and the effect of the type of bisphenyl bridge on polymer and membrane properties. Journal of Polymer Science Part A: Polymer Chemistry, 49(10), 2107-2117. doi:10.1002/pola.24630
Carollo, A., Quartarone, E., Tomasi, C., Mustarelli, P., Belotti, F., Magistris, A., … Righetti, P. P. (2006). Developments of new proton conducting membranes based on different polybenzimidazole structures for fuel cells applications. Journal of Power Sources, 160(1), 175-180. doi:10.1016/j.jpowsour.2006.01.081
Mustarelli, P., Quartarone, E., Grandi, S., Angioni, S., & Magistris, A. (2012). Increasing the permanent conductivity of PBI membranes for HT-PEMs. Solid State Ionics, 225, 228-231. doi:10.1016/j.ssi.2012.04.007
Conti, F., Majerus, A., Di Noto, V., Korte, C., Lehnert, W., & Stolten, D. (2012). Raman study of the polybenzimidazole–phosphoric acid interactions in membranes for fuel cells. Physical Chemistry Chemical Physics, 14(28), 10022. doi:10.1039/c2cp40553a
Wippermann, K., Wannek, C., Oetjen, H.-F., Mergel, J., & Lehnert, W. (2010). Cell resistances of poly(2,5-benzimidazole)-based high temperature polymer membrane fuel cell membrane electrode assemblies: Time dependence and influence of operating parameters. Journal of Power Sources, 195(9), 2806-2809. doi:10.1016/j.jpowsour.2009.10.100
Mack, F., Aniol, K., Ellwein, C., Kerres, J., & Zeis, R. (2015). Novel phosphoric acid-doped PBI-blends as membranes for high-temperature PEM fuel cells. Journal of Materials Chemistry A, 3(20), 10864-10874. doi:10.1039/c5ta01337b
Li, Z., He, G., Zhang, B., Cao, Y., Wu, H., Jiang, Z., & Tiantian, Z. (2014). Enhanced Proton Conductivity of Nafion Hybrid Membrane under Different Humidities by Incorporating Metal–Organic Frameworks With High Phytic Acid Loading. ACS Applied Materials & Interfaces, 6(12), 9799-9807. doi:10.1021/am502236v
Zhou, Y., Yang, J., Su, H., Zeng, J., Jiang, S. P., & Goddard, W. A. (2014). Insight into Proton Transfer in Phosphotungstic Acid Functionalized Mesoporous Silica-Based Proton Exchange Membrane Fuel Cells. Journal of the American Chemical Society, 136(13), 4954-4964. doi:10.1021/ja411268q
Zeng, J., Zhou, Y., Li, L., & Jiang, S. P. (2011). Phosphotungstic acid functionalized silica nanocomposites with tunable bicontinuous mesoporous structure and superior proton conductivity and stability for fuel cells. Physical Chemistry Chemical Physics, 13(21), 10249. doi:10.1039/c1cp20076c
Liu, X., Li, Y., Xue, J., Zhu, W., Zhang, J., Yin, Y., … Guiver, M. D. (2019). Magnetic field alignment of stable proton-conducting channels in an electrolyte membrane. Nature Communications, 10(1). doi:10.1038/s41467-019-08622-2
Zhai, & Li. (2019). Polyoxometalate–Polymer Hybrid Materials as Proton Exchange Membranes for Fuel Cell Applications. Molecules, 24(19), 3425. doi:10.3390/molecules24193425
Escorihuela, J., García-Bernabé, A., & Compañ, V. (2020). A Deep Insight into Different Acidic Additives as Doping Agents for Enhancing Proton Conductivity on Polybenzimidazole Membranes. Polymers, 12(6), 1374. doi:10.3390/polym12061374
Yang, J. S., Cleemann, L. N., Steenberg, T., Terkelsen, C., Li, Q. F., Jensen, J. O., … He, R. H. (2013). High Molecular Weight Polybenzimidazole Membranes for High Temperature PEMFC. Fuel Cells, 14(1), 7-15. doi:10.1002/fuce.201300070
Chaudhari, H. D., Illathvalappil, R., Kurungot, S., & Kharul, U. K. (2018). Preparation and investigations of ABPBI membrane for HT-PEMFC by immersion precipitation method. Journal of Membrane Science, 564, 211-217. doi:10.1016/j.memsci.2018.07.026
Shigematsu, A., Yamada, T., & Kitagawa, H. (2011). Wide Control of Proton Conductivity in Porous Coordination Polymers. Journal of the American Chemical Society, 133(7), 2034-2036. doi:10.1021/ja109810w
Agmon, N. (1995). The Grotthuss mechanism. Chemical Physics Letters, 244(5-6), 456-462. doi:10.1016/0009-2614(95)00905-j
Bouchet, R. (1999). Proton conduction in acid doped polybenzimidazole. Solid State Ionics, 118(3-4), 287-299. doi:10.1016/s0167-2738(98)00466-4
Gebbie, M. A., Smith, A. M., Dobbs, H. A., Lee, A. A., Warr, G. G., Banquy, X., … Atkin, R. (2017). Long range electrostatic forces in ionic liquids. Chemical Communications, 53(7), 1214-1224. doi:10.1039/c6cc08820a
Weingärtner, H. (2008). Understanding Ionic Liquids at the Molecular Level: Facts, Problems, and Controversies. Angewandte Chemie International Edition, 47(4), 654-670. doi:10.1002/anie.200604951
Wang, C., Li, Z., Sun, P., Pei, H., & Yin, X. (2020). Preparation and Properties of Covalently Crosslinked Polybenzimidazole High Temperature Proton Exchange Membranes Doped with High Sulfonated Polyphosphazene. Journal of The Electrochemical Society, 167(10), 104517. doi:10.1149/1945-7111/ab9d60
Rajabi, Z., Javanbakht, M., Hooshyari, K., Badiei, A., & Adibi, M. (2020). High temperature composite membranes based on polybenzimidazole and dendrimer amine functionalized SBA-15 mesoporous silica for fuel cells. New Journal of Chemistry, 44(13), 5001-5018. doi:10.1039/c9nj05369g
Escorihuela, García-Bernabé, Montero, Andrio, Sahuquillo, Giménez, & Compañ. (2019). Proton Conductivity through Polybenzimidazole Composite Membranes Containing Silica Nanofiber Mats. Polymers, 11(7), 1182. doi:10.3390/polym11071182
Escorihuela, J., Sahuquillo, Ó., García-Bernabé, A., Giménez, E., & Compañ, V. (2018). Phosphoric Acid Doped Polybenzimidazole (PBI)/Zeolitic Imidazolate Framework Composite Membranes with Significantly Enhanced Proton Conductivity under Low Humidity Conditions. Nanomaterials, 8(10), 775. doi:10.3390/nano8100775
Abouzari-Lotf, E., Zakeri, M., Nasef, M. M., Miyake, M., Mozarmnia, P., Bazilah, N. A., … Ahmad, A. (2019). Highly durable polybenzimidazole composite membranes with phosphonated graphene oxide for high temperature polymer electrolyte membrane fuel cells. Journal of Power Sources, 412, 238-245. doi:10.1016/j.jpowsour.2018.11.057
Quartarone, E., & Mustarelli, P. (2012). Polymer fuel cells based on polybenzimidazole/H3PO4. Energy & Environmental Science, 5(4), 6436. doi:10.1039/c2ee03055a
Samms, S. R., Wasmus, S., & Savinell, R. F. (1996). Thermal Stability of Proton Conducting Acid Doped Polybenzimidazole in Simulated Fuel Cell Environments. Journal of The Electrochemical Society, 143(4), 1225-1232. doi:10.1149/1.1836621
Yang, J., Li, Q., Cleemann, L. N., Xu, C., Jensen, J. O., Pan, C., … He, R. (2012). Synthesis and properties of poly(aryl sulfone benzimidazole) and its copolymers for high temperature membrane electrolytes for fuel cells. Journal of Materials Chemistry, 22(22), 11185. doi:10.1039/c2jm30217a
Yang, J., Aili, D., Li, Q., Xu, Y., Liu, P., Che, Q., … He, R. (2013). Benzimidazole grafted polybenzimidazoles for proton exchange membrane fuel cells. Polymer Chemistry, 4(17), 4768. doi:10.1039/c3py00408b
Li, J., Li, X., Zhao, Y., Lu, W., Shao, Z., & Yi, B. (2012). High-Temperature Proton-Exchange-Membrane Fuel Cells Using an Ether-Containing Polybenzimidazole Membrane as Electrolyte. ChemSusChem, 5(5), 896-900. doi:10.1002/cssc.201100725
Berber, M. R., & Nakashima, N. (2019). Bipyridine-based polybenzimidazole membranes with outstanding hydrogen fuel cell performance at high temperature and non-humidifying conditions. Journal of Membrane Science, 591, 117354. doi:10.1016/j.memsci.2019.117354
Kang, Y., Zou, J., Sun, Z., Wang, F., Zhu, H., Han, K., … Meng, Q. (2013). Polybenzimidazole containing ether units as electrolyte for high temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 38(15), 6494-6502. doi:10.1016/j.ijhydene.2013.03.051
Ou, T., Chen, H., Hu, B., Zheng, H., Li, W., & Wang, Y. (2018). A facile method of asymmetric ether-containing polybenzimidazole membrane for high temperature proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 43(27), 12337-12345. doi:10.1016/j.ijhydene.2018.04.166
Bruma, M., Fitch, J. W., & Cassidy, P. E. (1996). Hexafluoroisopropylidene-Containing Polymers for High-Performance Applications. Journal of Macromolecular Science, Part C: Polymer Reviews, 36(1), 119-159. doi:10.1080/15321799608009644
Qian, G., & Benicewicz, B. C. (2009). Synthesis and characterization of high molecular weight hexafluoroisopropylidene-containing polybenzimidazole for high-temperature polymer electrolyte membrane fuel cells. Journal of Polymer Science Part A: Polymer Chemistry, 47(16), 4064-4073. doi:10.1002/pola.23467
Yang, J., Xu, Y., Liu, P., Gao, L., Che, Q., & He, R. (2015). Epoxides cross-linked hexafluoropropylidene polybenzimidazole membranes for application as high temperature proton exchange membranes. Electrochimica Acta, 160, 281-287. doi:10.1016/j.electacta.2015.01.094
Kolb, H. C., Finn, M. G., & Sharpless, K. B. (2001). Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angewandte Chemie International Edition, 40(11), 2004-2021. doi:10.1002/1521-3773(20010601)40:11<2004::aid-anie2004>3.0.co;2-5
Escorihuela, J., Marcelis, A. T. M., & Zuilhof, H. (2015). Metal‐Free Click Chemistry Reactions on Surfaces. Advanced Materials Interfaces, 2(13), 1500135. doi:10.1002/admi.201500135
Sen, R., Escorihuela, J., Smulders, M. M. J., & Zuilhof, H. (2016). Use of Ambient Ionization High-Resolution Mass Spectrometry for the Kinetic Analysis of Organic Surface Reactions. Langmuir, 32(14), 3412-3419. doi:10.1021/acs.langmuir.6b00427
Lowe, A. B. (2010). Thiol-ene «click» reactions and recent applications in polymer and materials synthesis. Polym. Chem., 1(1), 17-36. doi:10.1039/b9py00216b
Escorihuela, J., Bañuls, M.-J., Grijalvo, S., Eritja, R., Puchades, R., & Maquieira, Á. (2014). Direct Covalent Attachment of DNA Microarrays by Rapid Thiol–Ene «Click» Chemistry. Bioconjugate Chemistry, 25(3), 618-627. doi:10.1021/bc500033d
Yao, B., Mei, J., Li, J., Wang, J., Wu, H., Sun, J. Z., … Tang, B. Z. (2014). Catalyst-Free Thiol–Yne Click Polymerization: A Powerful and Facile Tool for Preparation of Functional Poly(vinylene sulfide)s. Macromolecules, 47(4), 1325-1333. doi:10.1021/ma402559a
Escorihuela, J., Bañuls, M.-J., Puchades, R., & Maquieira, Á. (2014). Site-specific immobilization of DNA on silicon surfaces by using the thiol–yne reaction. J. Mater. Chem. B, 2(48), 8510-8517. doi:10.1039/c4tb01108b
Sen, R., Gahtory, D., Escorihuela, J., Firet, J., Pujari, S. P., & Zuilhof, H. (2017). Approach Matters: The Kinetics of Interfacial Inverse-Electron Demand Diels-Alder Reactions. Chemistry - A European Journal, 23(53), 13015-13022. doi:10.1002/chem.201703103
MacKenzie, D. A., Sherratt, A. R., Chigrinova, M., Cheung, L. L., & Pezacki, J. P. (2014). Strain-promoted cycloadditions involving nitrones and alkynes—rapid tunable reactions for bioorthogonal labeling. Current Opinion in Chemical Biology, 21, 81-88. doi:10.1016/j.cbpa.2014.05.023
Ning, X., Temming, R. P., Dommerholt, J., Guo, J., Ania, D. B., Debets, M. F., … van Delft, F. L. (2010). Protein Modification by Strain-Promoted Alkyne-Nitrone Cycloaddition. Angewandte Chemie International Edition, 49(17), 3065-3068. doi:10.1002/anie.201000408
Sen, R., Escorihuela, J., van Delft, F., & Zuilhof, H. (2017). Rapid and Complete Surface Modification with Strain-Promoted Oxidation-Controlled Cyclooctyne-1,2-Quinone Cycloaddition (SPOCQ). Angewandte Chemie International Edition, 56(12), 3299-3303. doi:10.1002/anie.201612037
Escorihuela, J., Das, A., Looijen, W. J. E., van Delft, F. L., Aquino, A. J. A., Lischka, H., & Zuilhof, H. (2017). Kinetics of the Strain-Promoted Oxidation-Controlled Cycloalkyne-1,2-quinone Cycloaddition: Experimental and Theoretical Studies. The Journal of Organic Chemistry, 83(1), 244-252. doi:10.1021/acs.joc.7b02614
Gahtory, D., Sen, R., Kuzmyn, A. R., Escorihuela, J., & Zuilhof, H. (2018). Strain-Promoted Cycloaddition of Cyclopropenes with o
-Quinones: A Rapid Click Reaction. Angewandte Chemie International Edition, 57(32), 10118-10122. doi:10.1002/anie.201800937
Leophairatana, P., De Silva, C. C., & Koberstein, J. T. (2017). How good is CuAAC «click» chemistry for polymer coupling reactions? Journal of Polymer Science Part A: Polymer Chemistry, 56(1), 75-84. doi:10.1002/pola.28872
Kumar B., S., Sana, B., Unnikrishnan, G., Jana, T., & Kumar K. S., S. (2020). Polybenzimidazole co-polymers: their synthesis, morphology and high temperature fuel cell membrane properties. Polymer Chemistry, 11(5), 1043-1054. doi:10.1039/c9py01403a
Kulkarni, M. P., Peckham, T. J., Thomas, O. D., & Holdcroft, S. (2013). Synthesis of highly sulfonated polybenzimidazoles by direct copolymerization and grafting. Journal of Polymer Science Part A: Polymer Chemistry, 51(17), 3654-3666. doi:10.1002/pola.26764
Aili, D., Javakhishvili, I., Han, J., Jankova, K., Pan, C., Hvilsted, S., … Li, Q. (2016). Amino-Functional Polybenzimidazole Blends with Enhanced Phosphoric Acid Mediated Proton Conductivity as Fuel Cell Electrolytes. Macromolecular Chemistry and Physics, 217(10), 1161-1168. doi:10.1002/macp.201600059
Zhao, B., Cheng, L., Bei, Y., Wang, S., Cui, J., Zhu, H., … Zhu, Q. (2017). Grafted polybenzimidazole copolymers bearing polyhedral oligosilsesquioxane pendant moieties. European Polymer Journal, 94, 99-110. doi:10.1016/j.eurpolymj.2017.05.024
Lee, H.-S., Roy, A., Lane, O., & McGrath, J. E. (2008). Synthesis and characterization of poly(arylene ether sulfone)-b-polybenzimidazole copolymers for high temperature low humidity proton exchange membrane fuel cells. Polymer, 49(25), 5387-5396. doi:10.1016/j.polymer.2008.09.019
Kim, T.-H., Kim, S.-K., Lim, T.-W., & Lee, J.-C. (2008). Synthesis and properties of poly(aryl ether benzimidazole) copolymers for high-temperature fuel cell membranes. Journal of Membrane Science, 323(2), 362-370. doi:10.1016/j.memsci.2008.06.040
Mader, J. A., & Benicewicz, B. C. (2011). Synthesis and Properties of Random Copolymers of Functionalised Polybenzimidazoles for High Temperature Fuel Cells. Fuel Cells, 11(2), 212-221. doi:10.1002/fuce.201000080
Seel, D. C., & Benicewicz, B. C. (2012). Polyphenylquinoxaline-based proton exchange membranes synthesized via the PPA Process for high temperature fuel cell systems. Journal of Membrane Science, 405-406, 57-67. doi:10.1016/j.memsci.2012.02.044
Molleo, M. A., Chen, X., Ploehn, H. J., Fishel, K. J., & Benicewicz, B. C. (2014). High Polymer Content 3,5-Pyridine-Polybenzimidazole Copolymer Membranes with Improved Compressive Properties. Fuel Cells, 14(1), 16-25. doi:10.1002/fuce.201300202
Molleo, M. A., Chen, X., Ploehn, H. J., & Benicewicz, B. C. (2014). High Polymer Content 2,5-Pyridine-Polybenzimidazole Copolymer Membranes with Improved Compressive Properties. Fuel Cells, 15(1), 150-155. doi:10.1002/fuce.201400129
Schönberger, F., Qian, G., & Benicewicz, B. C. (2017). Polybenzimidazole-based block copolymers: From monomers to membrane electrode assemblies for high temperature polymer electrolyte membrane fuel cells. Journal of Polymer Science Part A: Polymer Chemistry, 55(11), 1831-1843. doi:10.1002/pola.28530
Maity, S., & Jana, T. (2014). Polybenzimidazole Block Copolymers for Fuel Cell: Synthesis and Studies of Block Length Effects on Nanophase Separation, Mechanical Properties, and Proton Conductivity of PEM. ACS Applied Materials & Interfaces, 6(9), 6851-6864. doi:10.1021/am500668c
Chen, S., Pan, H., Chang, Z., Jin, M., & Pu, H. (2018). Synthesis and study of pyridine-containing sulfonated polybenzimidazole multiblock copolymer for proton exchange membrane fuel cells. Ionics, 25(5), 2255-2265. doi:10.1007/s11581-018-2610-7
Yuan, Q., Sun, G.-H., Han, K.-F., Yu, J.-H., Zhu, H., & Wang, Z.-M. (2016). Copolymerization of 4-(3,4-diamino-phenoxy)-benzoic acid and 3,4-diaminobenzoic acid towards H3PO4-doped PBI membranes for proton conductor with better processability. European Polymer Journal, 85, 175-186. doi:10.1016/j.eurpolymj.2016.10.002
Kim, S.-K., Choi, S.-W., Jeon, W. S., Park, J. O., Ko, T., Chang, H., & Lee, J.-C. (2012). Cross-Linked Benzoxazine–Benzimidazole Copolymer Electrolyte Membranes for Fuel Cells at Elevated Temperature. Macromolecules, 45(3), 1438-1446. doi:10.1021/ma202694p
Dechnik, J., Gascon, J., Doonan, C. J., Janiak, C., & Sumby, C. J. (2017). Mixed‐Matrix Membranes. Angewandte Chemie International Edition, 56(32), 9292-9310. doi:10.1002/anie.201701109
Devrim, Y., Devrim, H., & Eroglu, I. (2016). Polybenzimidazole/SiO2 hybrid membranes for high temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 41(23), 10044-10052. doi:10.1016/j.ijhydene.2016.02.043
Pinar, F. J., Cañizares, P., Rodrigo, M. A., Úbeda, D., & Lobato, J. (2015). Long-term testing of a high-temperature proton exchange membrane fuel cell short stack operated with improved polybenzimidazole-based composite membranes. Journal of Power Sources, 274, 177-185. doi:10.1016/j.jpowsour.2014.08.136
Nawn, G., Pace, G., Lavina, S., Vezzù, K., Negro, E., Bertasi, F., … Di Noto, V. (2015). Nanocomposite Membranes based on Polybenzimidazole and ZrO2for High-Temperature Proton Exchange Membrane Fuel Cells. ChemSusChem, 8(8), 1381-1393. doi:10.1002/cssc.201403049
Zhang, S., Davaajargal, T., Aiba, M., Akasaka, S., Ashizawa, M., Tsuruoka, S., … Matsumoto, H. (2017). Enhancing water flux through semipermeable polybenzimidazole membranes by adding surfactant‐treated
CNT
s. Journal of Applied Polymer Science, 135(7), 45875. doi:10.1002/app.45875
Xu, C., Cao, Y., Kumar, R., Wu, X., Wang, X., & Scott, K. (2011). A polybenzimidazole/sulfonated graphite oxide composite membrane for high temperature polymer electrolyte membrane fuel cells. Journal of Materials Chemistry, 21(30), 11359. doi:10.1039/c1jm11159k
Cai, Y., Yue, Z., & Xu, S. (2017). A novel polybenzimidazole composite modified by sulfonated graphene oxide for high temperature proton exchange membrane fuel cells in anhydrous atmosphere. Journal of Applied Polymer Science, 134(25). doi:10.1002/app.44986
Gupta, C., Maheshwari, P. H., & Dhakate, S. R. (2016). Development of multiwalled carbon nanotubes platinum nanocomposite as efficient PEM fuel cell catalyst. Materials for Renewable and Sustainable Energy, 5(1). doi:10.1007/s40243-015-0066-5
Díaz, M., Ortiz, A., & Ortiz, I. (2014). Progress in the use of ionic liquids as electrolyte membranes in fuel cells. Journal of Membrane Science, 469, 379-396. doi:10.1016/j.memsci.2014.06.033
Kallem, P., Yanar, N., & Choi, H. (2018). Nanofiber-Based Proton Exchange Membranes: Development of Aligned Electrospun Nanofibers for Polymer Electrolyte Fuel Cell Applications. ACS Sustainable Chemistry & Engineering, 7(2), 1808-1825. doi:10.1021/acssuschemeng.8b03601
Lobato, J., Cañizares, P., Rodrigo, M. A., Úbeda, D., & Pinar, F. J. (2011). A novel titanium PBI-based composite membrane for high temperature PEMFCs. Journal of Membrane Science, 369(1-2), 105-111. doi:10.1016/j.memsci.2010.11.051
Tahrim, A. A., & Amin, I. N. H. M. (2018). Advancement in Phosphoric Acid Doped Polybenzimidazole Membrane for High Temperature PEM Fuel Cells: A Review. Journal of Applied Membrane Science & Technology, 23(1). doi:10.11113/amst.v23n1.136
Pu, H., Liu, L., Chang, Z., & Yuan, J. (2009). Organic/inorganic composite membranes based on polybenzimidazole and nano-SiO2. Electrochimica Acta, 54(28), 7536-7541. doi:10.1016/j.electacta.2009.08.011
Özdemir, Y., Üregen, N., & Devrim, Y. (2017). Polybenzimidazole based nanocomposite membranes with enhanced proton conductivity for high temperature PEM fuel cells. International Journal of Hydrogen Energy, 42(4), 2648-2657. doi:10.1016/j.ijhydene.2016.04.132
Seo, K., Seo, J., Nam, K.-H., & Han, H. (2015). Polybenzimidazole/inorganic composite membrane with advanced performance for high temperature polymer electrolyte membrane fuel cells. Polymer Composites, 38(1), 87-95. doi:10.1002/pc.23563
Lysova, A. A., Ponomarev, I. I., & Yaroslavtsev, A. B. (2011). Composite materials based on polybenzimidazole and inorganic oxides. Solid State Ionics, 188(1), 132-134. doi:10.1016/j.ssi.2010.10.010
Zhang, Q., Liu, H., Li, X., Xu, R., Zhong, J., Chen, R., & Gu, X. (2016). Synthesis and characterization of polybenzimidazole/α-zirconium phosphate composites as proton exchange membrane. Polymer Engineering & Science, 56(6), 622-628. doi:10.1002/pen.24287
Lobato, J., Cañizares, P., Rodrigo, M. A., Úbeda, D., & Pinar, F. J. (2011). Enhancement of the fuel cell performance of a high temperature proton exchange membrane fuel cell running with titanium composite polybenzimidazole-based membranes. Journal of Power Sources, 196(20), 8265-8271. doi:10.1016/j.jpowsour.2011.06.011
Shabanikia, A., Javanbakht, M., Amoli, H. S., Hooshyari, K., & Enhessari, M. (2015). Novel nanocomposite membranes based on polybenzimidazole and Fe2TiO5 nanoparticles for proton exchange membrane fuel cells. Ionics, 21(8), 2227-2236. doi:10.1007/s11581-015-1392-4
Qiu, G., Jiang, T., Li, H., & Wang, D. (2003). Functions and molecular structure of organic binders for iron ore pelletization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 224(1-3), 11-22. doi:10.1016/s0927-7757(03)00264-4
Mohammadi, G., Jahanshahi, M., & Rahimpour, A. (2013). Fabrication and evaluation of Nafion nanocomposite membrane based on ZrO2–TiO2 binary nanoparticles as fuel cell MEA. International Journal of Hydrogen Energy, 38(22), 9387-9394. doi:10.1016/j.ijhydene.2012.09.096
He, R. (2003). Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors. Journal of Membrane Science, 226(1-2), 169-184. doi:10.1016/j.memsci.2003.09.002
Di, S., Yan, L., Han, S., Yue, B., Feng, Q., Xie, L., … Sun, C. (2012). Enhancing the high-temperature proton conductivity of phosphoric acid doped poly(2,5-benzimidazole) by preblending boron phosphate nanoparticles to the raw materials. Journal of Power Sources, 211, 161-168. doi:10.1016/j.jpowsour.2012.03.091
Xu, C., Wu, X., Wang, X., Mamlouk, M., & Scott, K. (2011). Composite membranes of polybenzimidazole and caesium-salts-of-heteropolyacids for intermediate temperature fuel cells. Journal of Materials Chemistry, 21(16), 6014. doi:10.1039/c1jm10093a
Hooshyari, K., Javanbakht, M., Shabanikia, A., & Enhessari, M. (2015). Fabrication BaZrO3/PBI-based nanocomposite as a new proton conducting membrane for high temperature proton exchange membrane fuel cells. Journal of Power Sources, 276, 62-72. doi:10.1016/j.jpowsour.2014.11.083
Shabanikia, A., Javanbakht, M., Amoli, H. S., Hooshyari, K., & Enhessari, M. (2015). Polybenzimidazole/strontium cerate nanocomposites with enhanced proton conductivity for proton exchange membrane fuel cells operating at high temperature. Electrochimica Acta, 154, 370-378. doi:10.1016/j.electacta.2014.12.025
Fuentes, I., Andrio, A., Teixidor, F., Viñas, C., & Compañ, V. (2017). Enhanced conductivity of sodium versus lithium salts measured by impedance spectroscopy. Sodium cobaltacarboranes as electrolytes of choice. Physical Chemistry Chemical Physics, 19(23), 15177-15186. doi:10.1039/c7cp02526b
Fuentes, I., Andrio, A., García-Bernabé, A., Escorihuela, J., Viñas, C., Teixidor, F., & Compañ, V. (2018). Structural and dielectric properties of cobaltacarborane composite polybenzimidazole membranes as solid polymer electrolytes at high temperature. Physical Chemistry Chemical Physics, 20(15), 10173-10184. doi:10.1039/c8cp00372f
Olvera-Mancilla, J., Escorihuela, J., Alexandrova, L., Andrio, A., García-Bernabé, A., del Castillo, L. F., & Compañ, V. (2020). Effect of metallacarborane salt H[COSANE] doping on the performance properties of polybenzimidazole membranes for high temperature PEMFCs. Soft Matter, 16(32), 7624-7635. doi:10.1039/d0sm00743a
Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., … Ruoff, R. S. (2006). Graphene-based composite materials. Nature, 442(7100), 282-286. doi:10.1038/nature04969
Chee, W. K., Lim, H. N., Huang, N. M., & Harrison, I. (2015). Nanocomposites of graphene/polymers: a review. RSC Advances, 5(83), 68014-68051. doi:10.1039/c5ra07989f
Xu, C., Liu, X., Cheng, J., & Scott, K. (2015). A polybenzimidazole/ionic-liquid-graphite-oxide composite membrane for high temperature polymer electrolyte membrane fuel cells. Journal of Power Sources, 274, 922-927. doi:10.1016/j.jpowsour.2014.10.134
Chen, D., Tang, L., & Li, J. (2010). Graphene-based materials in electrochemistry. Chemical Society Reviews, 39(8), 3157. doi:10.1039/b923596e
Yang, Y.-H., Bolling, L., Priolo, M. A., & Grunlan, J. C. (2012). Super Gas Barrier and Selectivity of Graphene Oxide-Polymer Multilayer Thin Films. Advanced Materials, 25(4), 503-508. doi:10.1002/adma.201202951
Thebo, K. H., Qian, X., Zhang, Q., Chen, L., Cheng, H.-M., & Ren, W. (2018). Highly stable graphene-oxide-based membranes with superior permeability. Nature Communications, 9(1). doi:10.1038/s41467-018-03919-0
Ma, M., Guo, L., Anderson, D. G., & Langer, R. (2013). Bio-Inspired Polymer Composite Actuator and Generator Driven by Water Gradients. Science, 339(6116), 186-189. doi:10.1126/science.1230262
Chee, W. K., Lim, H. N., Harrison, I., Chong, K. F., Zainal, Z., Ng, C. H., & Huang, N. M. (2015). Performance of Flexible and Binderless Polypyrrole/Graphene Oxide/Zinc Oxide Supercapacitor Electrode in a Symmetrical Two-Electrode Configuration. Electrochimica Acta, 157, 88-94. doi:10.1016/j.electacta.2015.01.080
Cao, J., Chen, C., Zhao, Q., Zhang, N., Lu, Q., Wang, X., … Chen, J. (2016). A Flexible Nanostructured Paper of a Reduced Graphene Oxide-Sulfur Composite for High-Performance Lithium-Sulfur Batteries with Unconventional Configurations. Advanced Materials, 28(43), 9629-9636. doi:10.1002/adma.201602262
Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., … Hong, B. H. (2009). Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457(7230), 706-710. doi:10.1038/nature07719
Yang, J., Liu, C., Gao, L., Wang, J., Xu, Y., & He, R. (2015). Novel composite membranes of triazole modified graphene oxide and polybenzimidazole for high temperature polymer electrolyte membrane fuel cell applications. RSC Advances, 5(122), 101049-101054. doi:10.1039/c5ra16554g
Adeli, M., Soleyman, R., Beiranvand, Z., & Madani, F. (2013). Carbon nanotubes in cancer therapy: a more precise look at the role of carbon nanotube–polymer interactions. Chemical Society Reviews, 42(12), 5231. doi:10.1039/c3cs35431h
Saito, N., Haniu, H., Usui, Y., Aoki, K., Hara, K., Takanashi, S., … Endo, M. (2014). Safe Clinical Use of Carbon Nanotubes as Innovative Biomaterials. Chemical Reviews, 114(11), 6040-6079. doi:10.1021/cr400341h
Rajabi, M., Mahanpoor, K., & Moradi, O. (2017). Removal of dye molecules from aqueous solution by carbon nanotubes and carbon nanotube functional groups: critical review. RSC Adv., 7(74), 47083-47090. doi:10.1039/c7ra09377b
Yan, Y., Miao, J., Yang, Z., Xiao, F.-X., Yang, H. B., Liu, B., & Yang, Y. (2015). Carbon nanotube catalysts: recent advances in synthesis, characterization and applications. Chemical Society Reviews, 44(10), 3295-3346. doi:10.1039/c4cs00492b
Hu, L., Hecht, D. S., & Grüner, G. (2010). Carbon Nanotube Thin Films: Fabrication, Properties, and Applications. Chemical Reviews, 110(10), 5790-5844. doi:10.1021/cr9002962
Che, Y., Chen, H., Gui, H., Liu, J., Liu, B., & Zhou, C. (2014). Review of carbon nanotube nanoelectronics and macroelectronics. Semiconductor Science and Technology, 29(7), 073001. doi:10.1088/0268-1242/29/7/073001
Dillon, A. C. (2010). Carbon Nanotubes for Photoconversion and Electrical Energy Storage. Chemical Reviews, 110(11), 6856-6872. doi:10.1021/cr9003314
Wang, L., Liu, H., Konik, R. M., Misewich, J. A., & Wong, S. S. (2013). Carbon nanotube-based heterostructures for solar energy applications. Chemical Society Reviews, 42(20), 8134. doi:10.1039/c3cs60088b
Yu, L., Shearer, C., & Shapter, J. (2016). Recent Development of Carbon Nanotube Transparent Conductive Films. Chemical Reviews, 116(22), 13413-13453. doi:10.1021/acs.chemrev.6b00179
Valitova, I., Amato, M., Mahvash, F., Cantele, G., Maffucci, A., Santato, C., … Cicoira, F. (2013). Carbon nanotube electrodes in organic transistors. Nanoscale, 5(11), 4638. doi:10.1039/c3nr33727h
Cao, Z., & Wei, B. (B. Q. . (2013). A perspective: carbon nanotube macro-films for energy storage. Energy Environ. Sci., 6(11), 3183-3201. doi:10.1039/c3ee42261e
De Volder, M. F. L., Tawfick, S. H., Baughman, R. H., & Hart, A. J. (2013). Carbon Nanotubes: Present and Future Commercial Applications. Science, 339(6119), 535-539. doi:10.1126/science.1222453
Zadehnazari, A., & Takassi, M. A. (2016). Synthesis of modified multi-walled carbon nanotube poly(benzimidazole-imide) composites: assessment of morphological and thermo-mechanical properties. Composite Interfaces, 23(9), 909-924. doi:10.1080/09276440.2016.1180500
Chang, C.-M., & Liu, Y.-L. (2010). Functionalization of multi-walled carbon nanotubes with non-reactive polymers through an ozone-mediated process for the preparation of a wide range of high performance polymer/carbon nanotube composites. Carbon, 48(4), 1289-1297. doi:10.1016/j.carbon.2009.12.002
Suryani, Chang, C.-M., Liu, Y.-L., & Lee, Y. M. (2011). Polybenzimidazole membranes modified with polyelectrolyte-functionalized multiwalled carbon nanotubes for proton exchange membrane fuel cells. Journal of Materials Chemistry, 21(20), 7480. doi:10.1039/c1jm10439j
Kannan, R., Kagalwala, H. N., Chaudhari, H. D., Kharul, U. K., Kurungot, S., & Pillai, V. K. (2011). Improved performance of phosphonated carbon nanotube–polybenzimidazole composite membranes in proton exchange membrane fuel cells. Journal of Materials Chemistry, 21(20), 7223. doi:10.1039/c0jm04265j
Jheng, L., Huang, C., & Hsu, S. L. (2013). Sulfonated MWNT and imidazole functionalized MWNT/polybenzimidazole composite membranes for high-temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 38(3), 1524-1534. doi:10.1016/j.ijhydene.2012.10.111
Du, C. Y., Zhao, T. S., & Liang, Z. X. (2008). Sulfonation of carbon-nanotube supported platinum catalysts for polymer electrolyte fuel cells. Journal of Power Sources, 176(1), 9-15. doi:10.1016/j.jpowsour.2007.10.016
Park, M. J., Lee, J. K., Lee, B. S., Lee, Y.-W., Choi, I. S., & Lee, S. (2006). Covalent Modification of Multiwalled Carbon Nanotubes with Imidazolium-Based Ionic Liquids: Effect of Anions on Solubility. Chemistry of Materials, 18(6), 1546-1551. doi:10.1021/cm0511421
Guerrero Moreno, N., Gervasio, D., Godínez García, A., & Pérez Robles, J. F. (2015). Polybenzimidazole-multiwall carbon nanotubes composite membranes for polymer electrolyte membrane fuel cells. Journal of Power Sources, 300, 229-237. doi:10.1016/j.jpowsour.2015.09.070
Escorihuela, J., Narducci, R., Compañ, V., & Costantino, F. (2018). Proton Conductivity of Composite Polyelectrolyte Membranes with Metal‐Organic Frameworks for Fuel Cell Applications. Advanced Materials Interfaces, 1801146. doi:10.1002/admi.201801146
Ramaswamy, P., Wong, N. E., Gelfand, B. S., & Shimizu, G. K. H. (2015). A Water Stable Magnesium MOF That Conducts Protons over 10–2 S cm–1. Journal of the American Chemical Society, 137(24), 7640-7643. doi:10.1021/jacs.5b04399
Diercks, C. S., & Yaghi, O. M. (2017). The atom, the molecule, and the covalent organic framework. Science, 355(6328). doi:10.1126/science.aal1585
Lim, D.-W., & Kitagawa, H. (2020). Proton Transport in Metal–Organic Frameworks. Chemical Reviews, 120(16), 8416-8467. doi:10.1021/acs.chemrev.9b00842
Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O’Keeffe, M., & Yaghi, O. M. (2002). Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science, 295(5554), 469-472. doi:10.1126/science.1067208
Huang, Y.-B., Liang, J., Wang, X.-S., & Cao, R. (2017). Multifunctional metal–organic framework catalysts: synergistic catalysis and tandem reactions. Chemical Society Reviews, 46(1), 126-157. doi:10.1039/c6cs00250a
Banerjee, D., Cairns, A. J., Liu, J., Motkuri, R. K., Nune, S. K., Fernandez, C. A., … Thallapally, P. K. (2014). Potential of Metal–Organic Frameworks for Separation of Xenon and Krypton. Accounts of Chemical Research, 48(2), 211-219. doi:10.1021/ar5003126
Wen, X., Zhang, Q., & Guan, J. (2020). Applications of metal–organic framework-derived materials in fuel cells and metal-air batteries. Coordination Chemistry Reviews, 409, 213214. doi:10.1016/j.ccr.2020.213214
Shi, G. M., Yang, T., & Chung, T. S. (2012). Polybenzimidazole (PBI)/zeolitic imidazolate frameworks (ZIF-8) mixed matrix membranes for pervaporation dehydration of alcohols. Journal of Membrane Science, 415-416, 577-586. doi:10.1016/j.memsci.2012.05.052
Fei, F., Cseri, L., Szekely, G., & Blanford, C. F. (2018). Robust Covalently Cross-linked Polybenzimidazole/Graphene Oxide Membranes for High-Flux Organic Solvent Nanofiltration. ACS Applied Materials & Interfaces, 10(18), 16140-16147. doi:10.1021/acsami.8b03591
Zhang, Z., Nguyen, H. T. H., Miller, S. A., Ploskonka, A. M., DeCoste, J. B., & Cohen, S. M. (2016). Polymer–Metal–Organic Frameworks (polyMOFs) as Water Tolerant Materials for Selective Carbon Dioxide Separations. Journal of the American Chemical Society, 138(3), 920-925. doi:10.1021/jacs.5b11034
DeCoste, J. B., Denny, Jr., M. S., Peterson, G. W., Mahle, J. J., & Cohen, S. M. (2016). Enhanced aging properties of HKUST-1 in hydrophobic mixed-matrix membranes for ammonia adsorption. Chemical Science, 7(4), 2711-2716. doi:10.1039/c5sc04368a
Didaskalou, C., Kupai, J., Cseri, L., Barabas, J., Vass, E., Holtzl, T., & Szekely, G. (2018). Membrane-Grafted Asymmetric Organocatalyst for an Integrated Synthesis–Separation Platform. ACS Catalysis, 8(8), 7430-7438. doi:10.1021/acscatal.8b01706
Sun, Y., Sun, L., Feng, D., & Zhou, H. (2016). An In Situ One‐Pot Synthetic Approach towards Multivariate Zirconium MOFs. Angewandte Chemie International Edition, 55(22), 6471-6475. doi:10.1002/anie.201602274
Donnadio, A., Narducci, R., Casciola, M., Marmottini, F., D’Amato, R., Jazestani, M., … Costantino, F. (2017). Mixed Membrane Matrices Based on Nafion/UiO-66/SO3H-UiO-66 Nano-MOFs: Revealing the Effect of Crystal Size, Sulfonation, and Filler Loading on the Mechanical and Conductivity Properties. ACS Applied Materials & Interfaces, 9(48), 42239-42246. doi:10.1021/acsami.7b14847
Rao, Z., Feng, K., Tang, B., & Wu, P. (2017). Construction of well interconnected metal-organic framework structure for effectively promoting proton conductivity of proton exchange membrane. Journal of Membrane Science, 533, 160-170. doi:10.1016/j.memsci.2017.03.031
Cai, K., Sun, F., Liang, X., Liu, C., Zhao, N., Zou, X., & Zhu, G. (2017). An acid-stable hexaphosphate ester based metal–organic framework and its polymer composite as proton exchange membrane. Journal of Materials Chemistry A, 5(25), 12943-12950. doi:10.1039/c7ta00169j
Tsai, C.-H., Wang, C.-C., Chang, C.-Y., Lin, C.-H., & Chen-Yang, Y. W. (2014). Enhancing performance of Nafion ® -based PEMFC by 1-D channel metal-organic frameworks as PEM filler. International Journal of Hydrogen Energy, 39(28), 15696-15705. doi:10.1016/j.ijhydene.2014.07.134
Kim, H. J., Talukdar, K., & Choi, S.-J. (2016). Tuning of Nafion® by HKUST-1 as coordination network to enhance proton conductivity for fuel cell applications. Journal of Nanoparticle Research, 18(2). doi:10.1007/s11051-016-3346-9
Sun, H., Tang, B., & Wu, P. (2017). Rational Design of S-UiO-66@GO Hybrid Nanosheets for Proton Exchange Membranes with Significantly Enhanced Transport Performance. ACS Applied Materials & Interfaces, 9(31), 26077-26087. doi:10.1021/acsami.7b07651
Han, R., & Wu, P. (2018). Composite Proton-Exchange Membrane with Highly Improved Proton Conductivity Prepared by in Situ Crystallization of Porous Organic Cage. ACS Applied Materials & Interfaces, 10(21), 18351-18358. doi:10.1021/acsami.8b04311
Patel, H. A., Mansor, N., Gadipelli, S., Brett, D. J. L., & Guo, Z. (2016). Superacidity in Nafion/MOF Hybrid Membranes Retains Water at Low Humidity to Enhance Proton Conduction for Fuel Cells. ACS Applied Materials & Interfaces, 8(45), 30687-30691. doi:10.1021/acsami.6b12240
Li, Z., He, G., Zhao, Y., Cao, Y., Wu, H., Li, Y., & Jiang, Z. (2014). Enhanced proton conductivity of proton exchange membranes by incorporating sulfonated metal-organic frameworks. Journal of Power Sources, 262, 372-379. doi:10.1016/j.jpowsour.2014.03.123
Wu, B., Pan, J., Ge, L., Wu, L., Wang, H., & Xu, T. (2014). Oriented MOF-polymer Composite Nanofiber Membranes for High Proton Conductivity at High Temperature and Anhydrous Condition. Scientific Reports, 4(1). doi:10.1038/srep04334
Ru, C., Li, Z., Zhao, C., Duan, Y., Zhuang, Z., Bu, F., & Na, H. (2018). Enhanced Proton Conductivity of Sulfonated Hybrid Poly(arylene ether ketone) Membranes by Incorporating an Amino–Sulfo Bifunctionalized Metal–Organic Framework for Direct Methanol Fuel Cells. ACS Applied Materials & Interfaces, 10(9), 7963-7973. doi:10.1021/acsami.7b17299
Zhang, B., Cao, Y., Li, Z., Wu, H., Yin, Y., Cao, L., … Jiang, Z. (2017). Proton exchange nanohybrid membranes with high phosphotungstic acid loading within metal-organic frameworks for PEMFC applications. Electrochimica Acta, 240, 186-194. doi:10.1016/j.electacta.2017.04.087
Ahmadian-Alam, L., & Mahdavi, H. (2018). A novel polysulfone-based ternary nanocomposite membrane consisting of metal-organic framework and silica nanoparticles: As proton exchange membrane for polymer electrolyte fuel cells. Renewable Energy, 126, 630-639. doi:10.1016/j.renene.2018.03.075
Vega, J., Andrio, A., Lemus, A. A., del Castillo, L. F., & Compañ, V. (2017). Conductivity study of Zeolitic Imidazolate Frameworks, Tetrabutylammonium hydroxide doped with Zeolitic Imidazolate Frameworks, and mixed matrix membranes of Polyetherimide/Tetrabutylammonium hydroxide doped with Zeolitic Imidazolate Frameworks for proton conducting applications. Electrochimica Acta, 258, 153-166. doi:10.1016/j.electacta.2017.10.095
Wu, B., Lin, X., Ge, L., Wu, L., & Xu, T. (2013). A novel route for preparing highly proton conductive membrane materials with metal-organic frameworks. Chem. Commun., 49(2), 143-145. doi:10.1039/c2cc37045j
Fadzallah, I. A., Majid, S. R., Careem, M. A., & Arof, A. K. (2014). A study on ionic interactions in chitosan–oxalic acid polymer electrolyte membranes. Journal of Membrane Science, 463, 65-72. doi:10.1016/j.memsci.2014.03.044
Erkartal, M., Usta, H., Citir, M., & Sen, U. (2016). Proton conducting poly(vinyl alcohol) (PVA)/ poly(2-acrylamido-2-methylpropane sulfonic acid) (PAMPS)/ zeolitic imidazolate framework (ZIF) ternary composite membrane. Journal of Membrane Science, 499, 156-163. doi:10.1016/j.memsci.2015.10.032
Liang, X., Zhang, F., Feng, W., Zou, X., Zhao, C., Na, H., … Zhu, G. (2013). From metal–organic framework (MOF) to MOF–polymer composite membrane: enhancement of low-humidity proton conductivity. Chem. Sci., 4(3), 983-992. doi:10.1039/c2sc21927a
Park, K. S., Ni, Z., Cote, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., … Yaghi, O. M. (2006). Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences, 103(27), 10186-10191. doi:10.1073/pnas.0602439103
Erkartal, M., Erkilic, U., Tam, B., Usta, H., Yazaydin, O., Hupp, J. T., … Sen, U. (2017). From 2-methylimidazole to 1,2,3-triazole: a topological transformation of ZIF-8 and ZIF-67 by post-synthetic modification. Chemical Communications, 53(12), 2028-2031. doi:10.1039/c6cc08746a
Plechkova, N. V., & Seddon, K. R. (2008). Applications of ionic liquids in the chemical industry. Chem. Soc. Rev., 37(1), 123-150. doi:10.1039/b006677j
Earle, M. J., & Seddon, K. R. (2000). Ionic liquids. Green solvents for the future. Pure and Applied Chemistry, 72(7), 1391-1398. doi:10.1351/pac200072071391
Dai, C., Zhang, J., Huang, C., & Lei, Z. (2017). Ionic Liquids in Selective Oxidation: Catalysts and Solvents. Chemical Reviews, 117(10), 6929-6983. doi:10.1021/acs.chemrev.7b00030
González, L., Escorihuela, J., Altava, B., Burguete, M. I., & Luis, S. V. (2014). Chiral Room Temperature Ionic Liquids as Enantioselective Promoters for the Asymmetric Aldol Reaction. European Journal of Organic Chemistry, 2014(24), 5356-5363. doi:10.1002/ejoc.201402436
Chen, D., Ying, W., Guo, Y., Ying, Y., & Peng, X. (2017). Enhanced Gas Separation through Nanoconfined Ionic Liquid in Laminated MoS2 Membrane. ACS Applied Materials & Interfaces, 9(50), 44251-44257. doi:10.1021/acsami.7b15762
González-Mendoza, L., Escorihuela, J., Altava, B., Burguete, M. I., & Luis, S. V. (2015). Application of optically active chiral bis(imidazolium) salts as potential receptors of chiral dicarboxylate salts of biological relevance. Organic & Biomolecular Chemistry, 13(19), 5450-5459. doi:10.1039/c5ob00348b
Valls, A., Altava, B., Burguete, M. I., Escorihuela, J., Martí-Centelles, V., & Luis, S. V. (2019). Supramolecularly assisted synthesis of chiral tripodal imidazolium compounds. Organic Chemistry Frontiers, 6(8), 1214-1225. doi:10.1039/c9qo00163h
González-Mendoza, L., Altava, B., Burguete, M. I., Escorihuela, J., Hernando, E., Luis, S. V., … Vicent, C. (2015). Bis(imidazolium) salts derived from amino acids as receptors and transport agents for chloride anions. RSC Advances, 5(43), 34415-34423. doi:10.1039/c5ra05880e
Marrucho, I. M., Branco, L. C., & Rebelo, L. P. N. (2014). Ionic Liquids in Pharmaceutical Applications. Annual Review of Chemical and Biomolecular Engineering, 5(1), 527-546. doi:10.1146/annurev-chembioeng-060713-040024
Egorova, K. S., Gordeev, E. G., & Ananikov, V. P. (2017). Biological Activity of Ionic Liquids and Their Application in Pharmaceutics and Medicine. Chemical Reviews, 117(10), 7132-7189. doi:10.1021/acs.chemrev.6b00562
Ye, Y.-S., Rick, J., & Hwang, B.-J. (2013). Ionic liquid polymer electrolytes. J. Mater. Chem. A, 1(8), 2719-2743. doi:10.1039/c2ta00126h
Wang, J. T.-W., & Hsu, S. L.-C. (2011). Enhanced high-temperature polymer electrolyte membrane for fuel cells based on polybenzimidazole and ionic liquids. Electrochimica Acta, 56(7), 2842-2846. doi:10.1016/j.electacta.2010.12.069
Van de Ven, E., Chairuna, A., Merle, G., Benito, S. P., Borneman, Z., & Nijmeijer, K. (2013). Ionic liquid doped polybenzimidazole membranes for high temperature Proton Exchange Membrane fuel cell applications. Journal of Power Sources, 222, 202-209. doi:10.1016/j.jpowsour.2012.07.112
Escorihuela, J., García-Bernabé, A., Montero, Á., Sahuquillo, Ó., Giménez, E., & Compañ, V. (2019). Ionic Liquid Composite Polybenzimidazol Membranes for High Temperature PEMFC Applications. Polymers, 11(4), 732. doi:10.3390/polym11040732
Compañ, V., Escorihuela, J., Olvera, J., García-Bernabé, A., & Andrio, A. (2020). Influence of the anion on diffusivity and mobility of ionic liquids composite polybenzimidazol membranes. Electrochimica Acta, 354, 136666. doi:10.1016/j.electacta.2020.136666
Liu, S., Zhou, L., Wang, P., Zhang, F., Yu, S., Shao, Z., & Yi, B. (2014). Ionic-Liquid-Based Proton Conducting Membranes for Anhydrous H2/Cl2 Fuel-Cell Applications. ACS Applied Materials & Interfaces, 6(5), 3195-3200. doi:10.1021/am404645c
Song, X., Ding, L., Wang, L., He, M., & Han, X. (2019). Polybenzimidazole membranes embedded with ionic liquids for use in high proton selectivity vanadium redox flow batteries. Electrochimica Acta, 295, 1034-1043. doi:10.1016/j.electacta.2018.11.123
Liao, Y., Loh, C.-H., Tian, M., Wang, R., & Fane, A. G. (2018). Progress in electrospun polymeric nanofibrous membranes for water treatment: Fabrication, modification and applications. Progress in Polymer Science, 77, 69-94. doi:10.1016/j.progpolymsci.2017.10.003
Lee, C., Jo, S. M., Choi, J., Baek, K.-Y., Truong, Y. B., Kyratzis, I. L., & Shul, Y.-G. (2013). SiO2/sulfonated poly ether ether ketone (SPEEK) composite nanofiber mat supported proton exchange membranes for fuel cells. Journal of Materials Science, 48(10), 3665-3671. doi:10.1007/s10853-013-7162-7
Reyes-Rodriguez, J. L., Escorihuela, J., García-Bernabé, A., Giménez, E., Solorza-Feria, O., & Compañ, V. (2017). Proton conducting electrospun sulfonated polyether ether ketone graphene oxide composite membranes. RSC Advances, 7(84), 53481-53491. doi:10.1039/c7ra10484g
Yu, D. M., Yoon, S., Kim, T.-H., Lee, J. Y., Lee, J., & Hong, Y. T. (2013). Properties of sulfonated poly(arylene ether sulfone)/electrospun nonwoven polyacrylonitrile composite membrane for proton exchange membrane fuel cells. Journal of Membrane Science, 446, 212-219. doi:10.1016/j.memsci.2013.06.028
Laforgue, A., Robitaille, L., Mokrini, A., & Ajji, A. (2007). Fabrication and Characterization of Ionic Conducting Nanofibers. Macromolecular Materials and Engineering, 292(12), 1229-1236. doi:10.1002/mame.200700200
Wang, L., Zhu, J., Zheng, J., Zhang, S., & dou, L. (2014). Nanofiber mats electrospun from composite proton exchange membranes prepared from poly(aryl ether sulfone)s with pendant sulfonated aliphatic side chains. RSC Adv., 4(48), 25195-25200. doi:10.1039/c4ra02286f
Dong, B., Gwee, L., Salas-de la Cruz, D., Winey, K. I., & Elabd, Y. A. (2010). Super Proton Conductive High-Purity Nafion Nanofibers. Nano Letters, 10(9), 3785-3790. doi:10.1021/nl102581w
Li, H.-Y., & Liu, Y.-L. (2013). Polyelectrolyte composite membranes of polybenzimidazole and crosslinked polybenzimidazole-polybenzoxazine electrospun nanofibers for proton exchange membrane fuel cells. J. Mater. Chem. A, 1(4), 1171-1178. doi:10.1039/c2ta00270a
Muthuraja, P., Prakash, S., Shanmugam, V. M., & Manisankar, P. (2018). Stable nanofibrous poly(aryl sulfone ether benzimidazole) membrane with high conductivity for high temperature PEM fuel cells. Solid State Ionics, 317, 201-209. doi:10.1016/j.ssi.2018.01.012
Jahangiri, S., Aravi, İ., Işıkel Şanlı, L., Menceloğlu, Y. Z., & Özden-Yenigün, E. (2017). Fabrication and optimization of proton conductive polybenzimidazole electrospun nanofiber membranes. Polymers for Advanced Technologies, 29(1), 594-602. doi:10.1002/pat.4169
Escorihuela, J., Pujari, S. P., & Zuilhof, H. (2017). Organic Monolayers by B(C6F5)3-Catalyzed Siloxanation of Oxidized Silicon Surfaces. Langmuir, 33(9), 2185-2193. doi:10.1021/acs.langmuir.7b00110
Escorihuela, J., & Zuilhof, H. (2017). Rapid Surface Functionalization of Hydrogen-Terminated Silicon by Alkyl Silanols. Journal of the American Chemical Society, 139(16), 5870-5876. doi:10.1021/jacs.7b01106
Escorihuela, J., Bañuls, M. J., Castelló, J. G., Toccafondo, V., García-Rupérez, J., Puchades, R., & Maquieira, Á. (2012). Chemical silicon surface modification and bioreceptor attachment to develop competitive integrated photonic biosensors. Analytical and Bioanalytical Chemistry, 404(10), 2831-2840. doi:10.1007/s00216-012-6280-4
https://www.mordorintelligence.com/industry-reports/global-polymer-electrolyte-membrane-pem-fuel-cells-market-industry
https://www.advent.energy/products-high-temperature-meas/
[-]