- -

Recent Progress in the Development of Composite Membranes Based on Polybenzimidazole for High Temperature Proton Exchange Membrane (PEM) Fuel Cell Applications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Recent Progress in the Development of Composite Membranes Based on Polybenzimidazole for High Temperature Proton Exchange Membrane (PEM) Fuel Cell Applications

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Escorihuela, Jorge es_ES
dc.contributor.author Olvera-Mancilla, Jessica es_ES
dc.contributor.author Alexandrova, Larissa es_ES
dc.contributor.author del Castillo, L. Felipe es_ES
dc.contributor.author Compañ Moreno, Vicente es_ES
dc.date.accessioned 2021-03-01T08:08:18Z
dc.date.available 2021-03-01T08:08:18Z
dc.date.issued 2020-09 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162564
dc.description.abstract [EN] The rapid increasing of the population in combination with the emergence of new energy-consuming technologies has risen worldwide total energy consumption towards unprecedent values. Furthermore, fossil fuel reserves are running out very quickly and the polluting greenhouse gases emitted during their utilization need to be reduced. In this scenario, a few alternative energy sources have been proposed and, among these, proton exchange membrane (PEM) fuel cells are promising. Recently, polybenzimidazole-based polymers, featuring high chemical and thermal stability, in combination with fillers that can regulate the proton mobility, have attracted tremendous attention for their roles as PEMs in fuel cells. Recent advances in composite membranes based on polybenzimidazole (PBI) for high temperature PEM fuel cell applications are summarized and highlighted in this review. In addition, the challenges, future trends, and prospects of composite membranes based on PBI for solid electrolytes are also discussed. es_ES
dc.description.sponsorship The authors acknowledge the Spanish Ministerio de Economía y Competitividad (MINECO) for the financial support under the project ENE/2015-69203-R. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Polymers es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Fuel cells es_ES
dc.subject Proton exchange membrane es_ES
dc.subject Polymer es_ES
dc.subject Polybenzimidazole es_ES
dc.subject Composite membranes es_ES
dc.subject Conductivity es_ES
dc.subject Carbon nanotubes es_ES
dc.subject Graphene oxide es_ES
dc.subject Ionic liquids es_ES
dc.subject Metal organic frameworks es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Recent Progress in the Development of Composite Membranes Based on Polybenzimidazole for High Temperature Proton Exchange Membrane (PEM) Fuel Cell Applications es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/polym12091861 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2015-69203-R/ES/DESARROLLO Y EVALUACION DE NUEVAS MEMBRANAS POLIMERICAS REFORZADAS CON NANOFIBRAS PARA SU APLICACION EN PILAS DE COMBUSTIBLE CON ELEVADA ESTABILIDAD TERMICA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Escorihuela, J.; Olvera-Mancilla, J.; Alexandrova, L.; Del Castillo, LF.; Compañ Moreno, V. (2020). Recent Progress in the Development of Composite Membranes Based on Polybenzimidazole for High Temperature Proton Exchange Membrane (PEM) Fuel Cell Applications. Polymers. 12(9):1-41. https://doi.org/10.3390/polym12091861 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/polym12091861 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 41 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 9 es_ES
dc.identifier.eissn 2073-4360 es_ES
dc.identifier.pmid 32825111 es_ES
dc.identifier.pmcid PMC7564738 es_ES
dc.relation.pasarela S\425651 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Kraytsberg, A., & Ein-Eli, Y. (2014). Review of Advanced Materials for Proton Exchange Membrane Fuel Cells. Energy & Fuels, 28(12), 7303-7330. doi:10.1021/ef501977k es_ES
dc.description.references Li, Q., Jensen, J. O., Savinell, R. F., & Bjerrum, N. J. (2009). High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Progress in Polymer Science, 34(5), 449-477. doi:10.1016/j.progpolymsci.2008.12.003 es_ES
dc.description.references CLEGHORN, S. (1997). Pem fuel cells for transportation and stationary power generation applications. International Journal of Hydrogen Energy, 22(12), 1137-1144. doi:10.1016/s0360-3199(97)00016-5 es_ES
dc.description.references Scott, K., & Shukla, A. K. (2004). Polymer electrolyte membrane fuel cells: Principles and advances. Reviews in Environmental Science and Bio/Technology, 3(3), 273-280. doi:10.1007/s11157-004-6884-z es_ES
dc.description.references Zhang, H., & Shen, P. K. (2012). Recent Development of Polymer Electrolyte Membranes for Fuel Cells. Chemical Reviews, 112(5), 2780-2832. doi:10.1021/cr200035s es_ES
dc.description.references Cano, Z. P., Banham, D., Ye, S., Hintennach, A., Lu, J., Fowler, M., & Chen, Z. (2018). Batteries and fuel cells for emerging electric vehicle markets. Nature Energy, 3(4), 279-289. doi:10.1038/s41560-018-0108-1 es_ES
dc.description.references Campanari, S., Manzolini, G., & Garcia de la Iglesia, F. (2009). Energy analysis of electric vehicles using batteries or fuel cells through well-to-wheel driving cycle simulations. Journal of Power Sources, 186(2), 464-477. doi:10.1016/j.jpowsour.2008.09.115 es_ES
dc.description.references Merle, G., Wessling, M., & Nijmeijer, K. (2011). Anion exchange membranes for alkaline fuel cells: A review. Journal of Membrane Science, 377(1-2), 1-35. doi:10.1016/j.memsci.2011.04.043 es_ES
dc.description.references Wang, Y., Chen, K. S., Mishler, J., Cho, S. C., & Adroher, X. C. (2011). A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Applied Energy, 88(4), 981-1007. doi:10.1016/j.apenergy.2010.09.030 es_ES
dc.description.references Ormerod, R. M. (2002). Solid oxide fuel cells. Chemical Society Reviews, 32(1), 17-28. doi:10.1039/b105764m es_ES
dc.description.references Dresp, S., Luo, F., Schmack, R., Kühl, S., Gliech, M., & Strasser, P. (2016). An efficient bifunctional two-component catalyst for oxygen reduction and oxygen evolution in reversible fuel cells, electrolyzers and rechargeable air electrodes. Energy & Environmental Science, 9(6), 2020-2024. doi:10.1039/c6ee01046f es_ES
dc.description.references Haile, S. M., Boysen, D. A., Chisholm, C. R. I., & Merle, R. B. (2001). Solid acids as fuel cell electrolytes. Nature, 410(6831), 910-913. doi:10.1038/35073536 es_ES
dc.description.references Pourcelly, G. (2011). Membranes for low and medium temperature fuel cells. State-of-the-art and new trends. Petroleum Chemistry, 51(7), 480-491. doi:10.1134/s0965544111070103 es_ES
dc.description.references Scott, K., Xu, C., & Wu, X. (2013). Intermediate temperature proton-conducting membrane electrolytes for fuel cells. Wiley Interdisciplinary Reviews: Energy and Environment, 3(1), 24-41. doi:10.1002/wene.64 es_ES
dc.description.references Dupuis, A.-C. (2011). Proton exchange membranes for fuel cells operated at medium temperatures: Materials and experimental techniques. Progress in Materials Science, 56(3), 289-327. doi:10.1016/j.pmatsci.2010.11.001 es_ES
dc.description.references Park, C. H., Lee, C. H., Guiver, M. D., & Lee, Y. M. (2011). Sulfonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs). Progress in Polymer Science, 36(11), 1443-1498. doi:10.1016/j.progpolymsci.2011.06.001 es_ES
dc.description.references Sun, X., Simonsen, S., Norby, T., & Chatzitakis, A. (2019). Composite Membranes for High Temperature PEM Fuel Cells and Electrolysers: A Critical Review. Membranes, 9(7), 83. doi:10.3390/membranes9070083 es_ES
dc.description.references Lee, K.-S., Maurya, S., Kim, Y. S., Kreller, C. R., Wilson, M. S., Larsen, D., … Mukundan, R. (2018). Intermediate temperature fuel cells via an ion-pair coordinated polymer electrolyte. Energy & Environmental Science, 11(4), 979-987. doi:10.1039/c7ee03595k es_ES
dc.description.references Mauritz, K. A., & Moore, R. B. (2004). State of Understanding of Nafion. Chemical Reviews, 104(10), 4535-4586. doi:10.1021/cr0207123 es_ES
dc.description.references Casciola, M., Alberti, G., Sganappa, M., & Narducci, R. (2006). On the decay of Nafion proton conductivity at high temperature and relative humidity. Journal of Power Sources, 162(1), 141-145. doi:10.1016/j.jpowsour.2006.06.023 es_ES
dc.description.references Alberti, G., Narducci, R., Di Vona, M. L., & Giancola, S. (2013). More on Nafion Conductivity Decay at Temperatures Higher than 80 °C: Preparation and First Characterization of In-Plane Oriented Layered Morphologies. Industrial & Engineering Chemistry Research, 52(31), 10418-10424. doi:10.1021/ie303628c es_ES
dc.description.references Li, Q., He, R., Jensen, J. O., & Bjerrum, N. J. (2003). Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100 °C. Chemistry of Materials, 15(26), 4896-4915. doi:10.1021/cm0310519 es_ES
dc.description.references Alberti, G., Narducci, R., & Sganappa, M. (2008). Effects of hydrothermal/thermal treatments on the water-uptake of Nafion membranes and relations with changes of conformation, counter-elastic force and tensile modulus of the matrix. Journal of Power Sources, 178(2), 575-583. doi:10.1016/j.jpowsour.2007.09.034 es_ES
dc.description.references Subianto, S., Choudhury, N., & Dutta, N. (2013). Composite Electrolyte Membranes from Partially Fluorinated Polymer and Hyperbranched, Sulfonated Polysulfone. Nanomaterials, 4(1), 1-18. doi:10.3390/nano4010001 es_ES
dc.description.references Zhang, J., Xie, Z., Zhang, J., Tang, Y., Song, C., Navessin, T., … Holdcroft, S. (2006). High temperature PEM fuel cells. Journal of Power Sources, 160(2), 872-891. doi:10.1016/j.jpowsour.2006.05.034 es_ES
dc.description.references Neburchilov, V., Martin, J., Wang, H., & Zhang, J. (2007). A review of polymer electrolyte membranes for direct methanol fuel cells. Journal of Power Sources, 169(2), 221-238. doi:10.1016/j.jpowsour.2007.03.044 es_ES
dc.description.references Zeis, R. (2015). Materials and characterization techniques for high-temperature polymer electrolyte membrane fuel cells. Beilstein Journal of Nanotechnology, 6, 68-83. doi:10.3762/bjnano.6.8 es_ES
dc.description.references Abdul Rasheed, R. K., Liao, Q., Caizhi, Z., & Chan, S. H. (2017). A review on modelling of high temperature proton exchange membrane fuel cells (HT-PEMFCs). International Journal of Hydrogen Energy, 42(5), 3142-3165. doi:10.1016/j.ijhydene.2016.10.078 es_ES
dc.description.references Rikukawa, M., & Sanui, K. (2000). Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Progress in Polymer Science, 25(10), 1463-1502. doi:10.1016/s0079-6700(00)00032-0 es_ES
dc.description.references Kurdakova, V., Quartarone, E., Mustarelli, P., Magistris, A., Caponetti, E., & Saladino, M. L. (2010). PBI-based composite membranes for polymer fuel cells. Journal of Power Sources, 195(23), 7765-7769. doi:10.1016/j.jpowsour.2009.09.064 es_ES
dc.description.references Wang, S., Zhang, G., Han, M., Li, H., Zhang, Y., Ni, J., … Na, H. (2011). Novel epoxy-based cross-linked polybenzimidazole for high temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 36(14), 8412-8421. doi:10.1016/j.ijhydene.2011.03.147 es_ES
dc.description.references Lipman, T. E., Edwards, J. L., & Kammen, D. M. (2004). Fuel cell system economics: comparing the costs of generating power with stationary and motor vehicle PEM fuel cell systems. Energy Policy, 32(1), 101-125. doi:10.1016/s0301-4215(02)00286-0 es_ES
dc.description.references Savinell, R., Yeager, E., Tryk, D., Landau, U., Wainright, J., Weng, D., … Rogers, C. (1994). A Polymer Electrolyte for Operation at Temperatures up to 200°C. Journal of The Electrochemical Society, 141(4), L46-L48. doi:10.1149/1.2054875 es_ES
dc.description.references Asensio, J. A., Sánchez, E. M., & Gómez-Romero, P. (2010). Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest. Chemical Society Reviews, 39(8), 3210. doi:10.1039/b922650h es_ES
dc.description.references Araya, S. S., Zhou, F., Liso, V., Sahlin, S. L., Vang, J. R., Thomas, S., … Kær, S. K. (2016). A comprehensive review of PBI-based high temperature PEM fuel cells. International Journal of Hydrogen Energy, 41(46), 21310-21344. doi:10.1016/j.ijhydene.2016.09.024 es_ES
dc.description.references Vogel, H., & Marvel, C. S. (1961). Polybenzimidazoles, new thermally stable polymers. Journal of Polymer Science, 50(154), 511-539. doi:10.1002/pol.1961.1205015419 es_ES
dc.description.references Mack, F., Klages, M., Scholta, J., Jörissen, L., Morawietz, T., Hiesgen, R., … Zeis, R. (2014). Morphology studies on high-temperature polymer electrolyte membrane fuel cell electrodes. Journal of Power Sources, 255, 431-438. doi:10.1016/j.jpowsour.2014.01.032 es_ES
dc.description.references A. Perry, K., L. More, K., Andrew Payzant, E., Meisner, R. A., Sumpter, B. G., & Benicewicz, B. C. (2013). A comparative study of phosphoric acid-dopedm-PBI membranes. Journal of Polymer Science Part B: Polymer Physics, 52(1), 26-35. doi:10.1002/polb.23403 es_ES
dc.description.references Quartarone, E., Angioni, S., & Mustarelli, P. (2017). Polymer and Composite Membranes for Proton-Conducting, High-Temperature Fuel Cells: A Critical Review. Materials, 10(7), 687. doi:10.3390/ma10070687 es_ES
dc.description.references Kirubakaran, A., Jain, S., & Nema, R. K. (2009). A review on fuel cell technologies and power electronic interface. Renewable and Sustainable Energy Reviews, 13(9), 2430-2440. doi:10.1016/j.rser.2009.04.004 es_ES
dc.description.references Ponomarev, I. I., Goryunov, E. I., Petrovskii, P. V., Ponomarev, I. I., Volkova, Y. A., Razorenov, D. Y., & Khokhlov, A. R. (2009). Synthesis of new monomer 3,3′-diamino-4,4′-bis{p-[(diethoxyphosphoryl)methyl]phenylamino}diphenyl sulfone and polybenzimidazoles on its basis. Doklady Chemistry, 429(2), 315-320. doi:10.1134/s0012500809120040 es_ES
dc.description.references Ng, F., Péron, J., Jones, D. J., & Rozière, J. (2011). Synthesis of novel proton‐conducting highly sulfonated polybenzimidazoles for PEMFC and the effect of the type of bisphenyl bridge on polymer and membrane properties. Journal of Polymer Science Part A: Polymer Chemistry, 49(10), 2107-2117. doi:10.1002/pola.24630 es_ES
dc.description.references Carollo, A., Quartarone, E., Tomasi, C., Mustarelli, P., Belotti, F., Magistris, A., … Righetti, P. P. (2006). Developments of new proton conducting membranes based on different polybenzimidazole structures for fuel cells applications. Journal of Power Sources, 160(1), 175-180. doi:10.1016/j.jpowsour.2006.01.081 es_ES
dc.description.references Mustarelli, P., Quartarone, E., Grandi, S., Angioni, S., & Magistris, A. (2012). Increasing the permanent conductivity of PBI membranes for HT-PEMs. Solid State Ionics, 225, 228-231. doi:10.1016/j.ssi.2012.04.007 es_ES
dc.description.references Conti, F., Majerus, A., Di Noto, V., Korte, C., Lehnert, W., & Stolten, D. (2012). Raman study of the polybenzimidazole–phosphoric acid interactions in membranes for fuel cells. Physical Chemistry Chemical Physics, 14(28), 10022. doi:10.1039/c2cp40553a es_ES
dc.description.references Wippermann, K., Wannek, C., Oetjen, H.-F., Mergel, J., & Lehnert, W. (2010). Cell resistances of poly(2,5-benzimidazole)-based high temperature polymer membrane fuel cell membrane electrode assemblies: Time dependence and influence of operating parameters. Journal of Power Sources, 195(9), 2806-2809. doi:10.1016/j.jpowsour.2009.10.100 es_ES
dc.description.references Mack, F., Aniol, K., Ellwein, C., Kerres, J., & Zeis, R. (2015). Novel phosphoric acid-doped PBI-blends as membranes for high-temperature PEM fuel cells. Journal of Materials Chemistry A, 3(20), 10864-10874. doi:10.1039/c5ta01337b es_ES
dc.description.references Li, Z., He, G., Zhang, B., Cao, Y., Wu, H., Jiang, Z., & Tiantian, Z. (2014). Enhanced Proton Conductivity of Nafion Hybrid Membrane under Different Humidities by Incorporating Metal–Organic Frameworks With High Phytic Acid Loading. ACS Applied Materials & Interfaces, 6(12), 9799-9807. doi:10.1021/am502236v es_ES
dc.description.references Zhou, Y., Yang, J., Su, H., Zeng, J., Jiang, S. P., & Goddard, W. A. (2014). Insight into Proton Transfer in Phosphotungstic Acid Functionalized Mesoporous Silica-Based Proton Exchange Membrane Fuel Cells. Journal of the American Chemical Society, 136(13), 4954-4964. doi:10.1021/ja411268q es_ES
dc.description.references Zeng, J., Zhou, Y., Li, L., & Jiang, S. P. (2011). Phosphotungstic acid functionalized silica nanocomposites with tunable bicontinuous mesoporous structure and superior proton conductivity and stability for fuel cells. Physical Chemistry Chemical Physics, 13(21), 10249. doi:10.1039/c1cp20076c es_ES
dc.description.references Liu, X., Li, Y., Xue, J., Zhu, W., Zhang, J., Yin, Y., … Guiver, M. D. (2019). Magnetic field alignment of stable proton-conducting channels in an electrolyte membrane. Nature Communications, 10(1). doi:10.1038/s41467-019-08622-2 es_ES
dc.description.references Zhai, & Li. (2019). Polyoxometalate–Polymer Hybrid Materials as Proton Exchange Membranes for Fuel Cell Applications. Molecules, 24(19), 3425. doi:10.3390/molecules24193425 es_ES
dc.description.references Escorihuela, J., García-Bernabé, A., & Compañ, V. (2020). A Deep Insight into Different Acidic Additives as Doping Agents for Enhancing Proton Conductivity on Polybenzimidazole Membranes. Polymers, 12(6), 1374. doi:10.3390/polym12061374 es_ES
dc.description.references Yang, J. S., Cleemann, L. N., Steenberg, T., Terkelsen, C., Li, Q. F., Jensen, J. O., … He, R. H. (2013). High Molecular Weight Polybenzimidazole Membranes for High Temperature PEMFC. Fuel Cells, 14(1), 7-15. doi:10.1002/fuce.201300070 es_ES
dc.description.references Chaudhari, H. D., Illathvalappil, R., Kurungot, S., & Kharul, U. K. (2018). Preparation and investigations of ABPBI membrane for HT-PEMFC by immersion precipitation method. Journal of Membrane Science, 564, 211-217. doi:10.1016/j.memsci.2018.07.026 es_ES
dc.description.references Shigematsu, A., Yamada, T., & Kitagawa, H. (2011). Wide Control of Proton Conductivity in Porous Coordination Polymers. Journal of the American Chemical Society, 133(7), 2034-2036. doi:10.1021/ja109810w es_ES
dc.description.references Agmon, N. (1995). The Grotthuss mechanism. Chemical Physics Letters, 244(5-6), 456-462. doi:10.1016/0009-2614(95)00905-j es_ES
dc.description.references Bouchet, R. (1999). Proton conduction in acid doped polybenzimidazole. Solid State Ionics, 118(3-4), 287-299. doi:10.1016/s0167-2738(98)00466-4 es_ES
dc.description.references Gebbie, M. A., Smith, A. M., Dobbs, H. A., Lee, A. A., Warr, G. G., Banquy, X., … Atkin, R. (2017). Long range electrostatic forces in ionic liquids. Chemical Communications, 53(7), 1214-1224. doi:10.1039/c6cc08820a es_ES
dc.description.references Weingärtner, H. (2008). Understanding Ionic Liquids at the Molecular Level: Facts, Problems, and Controversies. Angewandte Chemie International Edition, 47(4), 654-670. doi:10.1002/anie.200604951 es_ES
dc.description.references Wang, C., Li, Z., Sun, P., Pei, H., & Yin, X. (2020). Preparation and Properties of Covalently Crosslinked Polybenzimidazole High Temperature Proton Exchange Membranes Doped with High Sulfonated Polyphosphazene. Journal of The Electrochemical Society, 167(10), 104517. doi:10.1149/1945-7111/ab9d60 es_ES
dc.description.references Rajabi, Z., Javanbakht, M., Hooshyari, K., Badiei, A., & Adibi, M. (2020). High temperature composite membranes based on polybenzimidazole and dendrimer amine functionalized SBA-15 mesoporous silica for fuel cells. New Journal of Chemistry, 44(13), 5001-5018. doi:10.1039/c9nj05369g es_ES
dc.description.references Escorihuela, García-Bernabé, Montero, Andrio, Sahuquillo, Giménez, & Compañ. (2019). Proton Conductivity through Polybenzimidazole Composite Membranes Containing Silica Nanofiber Mats. Polymers, 11(7), 1182. doi:10.3390/polym11071182 es_ES
dc.description.references Escorihuela, J., Sahuquillo, Ó., García-Bernabé, A., Giménez, E., & Compañ, V. (2018). Phosphoric Acid Doped Polybenzimidazole (PBI)/Zeolitic Imidazolate Framework Composite Membranes with Significantly Enhanced Proton Conductivity under Low Humidity Conditions. Nanomaterials, 8(10), 775. doi:10.3390/nano8100775 es_ES
dc.description.references Abouzari-Lotf, E., Zakeri, M., Nasef, M. M., Miyake, M., Mozarmnia, P., Bazilah, N. A., … Ahmad, A. (2019). Highly durable polybenzimidazole composite membranes with phosphonated graphene oxide for high temperature polymer electrolyte membrane fuel cells. Journal of Power Sources, 412, 238-245. doi:10.1016/j.jpowsour.2018.11.057 es_ES
dc.description.references Quartarone, E., & Mustarelli, P. (2012). Polymer fuel cells based on polybenzimidazole/H3PO4. Energy & Environmental Science, 5(4), 6436. doi:10.1039/c2ee03055a es_ES
dc.description.references Samms, S. R., Wasmus, S., & Savinell, R. F. (1996). Thermal Stability of Proton Conducting Acid Doped Polybenzimidazole in Simulated Fuel Cell Environments. Journal of The Electrochemical Society, 143(4), 1225-1232. doi:10.1149/1.1836621 es_ES
dc.description.references Yang, J., Li, Q., Cleemann, L. N., Xu, C., Jensen, J. O., Pan, C., … He, R. (2012). Synthesis and properties of poly(aryl sulfone benzimidazole) and its copolymers for high temperature membrane electrolytes for fuel cells. Journal of Materials Chemistry, 22(22), 11185. doi:10.1039/c2jm30217a es_ES
dc.description.references Yang, J., Aili, D., Li, Q., Xu, Y., Liu, P., Che, Q., … He, R. (2013). Benzimidazole grafted polybenzimidazoles for proton exchange membrane fuel cells. Polymer Chemistry, 4(17), 4768. doi:10.1039/c3py00408b es_ES
dc.description.references Li, J., Li, X., Zhao, Y., Lu, W., Shao, Z., & Yi, B. (2012). High-Temperature Proton-Exchange-Membrane Fuel Cells Using an Ether-Containing Polybenzimidazole Membrane as Electrolyte. ChemSusChem, 5(5), 896-900. doi:10.1002/cssc.201100725 es_ES
dc.description.references Berber, M. R., & Nakashima, N. (2019). Bipyridine-based polybenzimidazole membranes with outstanding hydrogen fuel cell performance at high temperature and non-humidifying conditions. Journal of Membrane Science, 591, 117354. doi:10.1016/j.memsci.2019.117354 es_ES
dc.description.references Kang, Y., Zou, J., Sun, Z., Wang, F., Zhu, H., Han, K., … Meng, Q. (2013). Polybenzimidazole containing ether units as electrolyte for high temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 38(15), 6494-6502. doi:10.1016/j.ijhydene.2013.03.051 es_ES
dc.description.references Ou, T., Chen, H., Hu, B., Zheng, H., Li, W., & Wang, Y. (2018). A facile method of asymmetric ether-containing polybenzimidazole membrane for high temperature proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 43(27), 12337-12345. doi:10.1016/j.ijhydene.2018.04.166 es_ES
dc.description.references Bruma, M., Fitch, J. W., & Cassidy, P. E. (1996). Hexafluoroisopropylidene-Containing Polymers for High-Performance Applications. Journal of Macromolecular Science, Part C: Polymer Reviews, 36(1), 119-159. doi:10.1080/15321799608009644 es_ES
dc.description.references Qian, G., & Benicewicz, B. C. (2009). Synthesis and characterization of high molecular weight hexafluoroisopropylidene-containing polybenzimidazole for high-temperature polymer electrolyte membrane fuel cells. Journal of Polymer Science Part A: Polymer Chemistry, 47(16), 4064-4073. doi:10.1002/pola.23467 es_ES
dc.description.references Yang, J., Xu, Y., Liu, P., Gao, L., Che, Q., & He, R. (2015). Epoxides cross-linked hexafluoropropylidene polybenzimidazole membranes for application as high temperature proton exchange membranes. Electrochimica Acta, 160, 281-287. doi:10.1016/j.electacta.2015.01.094 es_ES
dc.description.references Kolb, H. C., Finn, M. G., & Sharpless, K. B. (2001). Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angewandte Chemie International Edition, 40(11), 2004-2021. doi:10.1002/1521-3773(20010601)40:11<2004::aid-anie2004>3.0.co;2-5 es_ES
dc.description.references Escorihuela, J., Marcelis, A. T. M., & Zuilhof, H. (2015). Metal‐Free Click Chemistry Reactions on Surfaces. Advanced Materials Interfaces, 2(13), 1500135. doi:10.1002/admi.201500135 es_ES
dc.description.references Sen, R., Escorihuela, J., Smulders, M. M. J., & Zuilhof, H. (2016). Use of Ambient Ionization High-Resolution Mass Spectrometry for the Kinetic Analysis of Organic Surface Reactions. Langmuir, 32(14), 3412-3419. doi:10.1021/acs.langmuir.6b00427 es_ES
dc.description.references Lowe, A. B. (2010). Thiol-ene «click» reactions and recent applications in polymer and materials synthesis. Polym. Chem., 1(1), 17-36. doi:10.1039/b9py00216b es_ES
dc.description.references Escorihuela, J., Bañuls, M.-J., Grijalvo, S., Eritja, R., Puchades, R., & Maquieira, Á. (2014). Direct Covalent Attachment of DNA Microarrays by Rapid Thiol–Ene «Click» Chemistry. Bioconjugate Chemistry, 25(3), 618-627. doi:10.1021/bc500033d es_ES
dc.description.references Yao, B., Mei, J., Li, J., Wang, J., Wu, H., Sun, J. Z., … Tang, B. Z. (2014). Catalyst-Free Thiol–Yne Click Polymerization: A Powerful and Facile Tool for Preparation of Functional Poly(vinylene sulfide)s. Macromolecules, 47(4), 1325-1333. doi:10.1021/ma402559a es_ES
dc.description.references Escorihuela, J., Bañuls, M.-J., Puchades, R., & Maquieira, Á. (2014). Site-specific immobilization of DNA on silicon surfaces by using the thiol–yne reaction. J. Mater. Chem. B, 2(48), 8510-8517. doi:10.1039/c4tb01108b es_ES
dc.description.references Sen, R., Gahtory, D., Escorihuela, J., Firet, J., Pujari, S. P., & Zuilhof, H. (2017). Approach Matters: The Kinetics of Interfacial Inverse-Electron Demand Diels-Alder Reactions. Chemistry - A European Journal, 23(53), 13015-13022. doi:10.1002/chem.201703103 es_ES
dc.description.references MacKenzie, D. A., Sherratt, A. R., Chigrinova, M., Cheung, L. L., & Pezacki, J. P. (2014). Strain-promoted cycloadditions involving nitrones and alkynes—rapid tunable reactions for bioorthogonal labeling. Current Opinion in Chemical Biology, 21, 81-88. doi:10.1016/j.cbpa.2014.05.023 es_ES
dc.description.references Ning, X., Temming, R. P., Dommerholt, J., Guo, J., Ania, D. B., Debets, M. F., … van Delft, F. L. (2010). Protein Modification by Strain-Promoted Alkyne-Nitrone Cycloaddition. Angewandte Chemie International Edition, 49(17), 3065-3068. doi:10.1002/anie.201000408 es_ES
dc.description.references Sen, R., Escorihuela, J., van Delft, F., & Zuilhof, H. (2017). Rapid and Complete Surface Modification with Strain-Promoted Oxidation-Controlled Cyclooctyne-1,2-Quinone Cycloaddition (SPOCQ). Angewandte Chemie International Edition, 56(12), 3299-3303. doi:10.1002/anie.201612037 es_ES
dc.description.references Escorihuela, J., Das, A., Looijen, W. J. E., van Delft, F. L., Aquino, A. J. A., Lischka, H., & Zuilhof, H. (2017). Kinetics of the Strain-Promoted Oxidation-Controlled Cycloalkyne-1,2-quinone Cycloaddition: Experimental and Theoretical Studies. The Journal of Organic Chemistry, 83(1), 244-252. doi:10.1021/acs.joc.7b02614 es_ES
dc.description.references Gahtory, D., Sen, R., Kuzmyn, A. R., Escorihuela, J., & Zuilhof, H. (2018). Strain-Promoted Cycloaddition of Cyclopropenes with o -Quinones: A Rapid Click Reaction. Angewandte Chemie International Edition, 57(32), 10118-10122. doi:10.1002/anie.201800937 es_ES
dc.description.references Leophairatana, P., De Silva, C. C., & Koberstein, J. T. (2017). How good is CuAAC «click» chemistry for polymer coupling reactions? Journal of Polymer Science Part A: Polymer Chemistry, 56(1), 75-84. doi:10.1002/pola.28872 es_ES
dc.description.references Kumar B., S., Sana, B., Unnikrishnan, G., Jana, T., & Kumar K. S., S. (2020). Polybenzimidazole co-polymers: their synthesis, morphology and high temperature fuel cell membrane properties. Polymer Chemistry, 11(5), 1043-1054. doi:10.1039/c9py01403a es_ES
dc.description.references Kulkarni, M. P., Peckham, T. J., Thomas, O. D., & Holdcroft, S. (2013). Synthesis of highly sulfonated polybenzimidazoles by direct copolymerization and grafting. Journal of Polymer Science Part A: Polymer Chemistry, 51(17), 3654-3666. doi:10.1002/pola.26764 es_ES
dc.description.references Aili, D., Javakhishvili, I., Han, J., Jankova, K., Pan, C., Hvilsted, S., … Li, Q. (2016). Amino-Functional Polybenzimidazole Blends with Enhanced Phosphoric Acid Mediated Proton Conductivity as Fuel Cell Electrolytes. Macromolecular Chemistry and Physics, 217(10), 1161-1168. doi:10.1002/macp.201600059 es_ES
dc.description.references Zhao, B., Cheng, L., Bei, Y., Wang, S., Cui, J., Zhu, H., … Zhu, Q. (2017). Grafted polybenzimidazole copolymers bearing polyhedral oligosilsesquioxane pendant moieties. European Polymer Journal, 94, 99-110. doi:10.1016/j.eurpolymj.2017.05.024 es_ES
dc.description.references Lee, H.-S., Roy, A., Lane, O., & McGrath, J. E. (2008). Synthesis and characterization of poly(arylene ether sulfone)-b-polybenzimidazole copolymers for high temperature low humidity proton exchange membrane fuel cells. Polymer, 49(25), 5387-5396. doi:10.1016/j.polymer.2008.09.019 es_ES
dc.description.references Kim, T.-H., Kim, S.-K., Lim, T.-W., & Lee, J.-C. (2008). Synthesis and properties of poly(aryl ether benzimidazole) copolymers for high-temperature fuel cell membranes. Journal of Membrane Science, 323(2), 362-370. doi:10.1016/j.memsci.2008.06.040 es_ES
dc.description.references Mader, J. A., & Benicewicz, B. C. (2011). Synthesis and Properties of Random Copolymers of Functionalised Polybenzimidazoles for High Temperature Fuel Cells. Fuel Cells, 11(2), 212-221. doi:10.1002/fuce.201000080 es_ES
dc.description.references Seel, D. C., & Benicewicz, B. C. (2012). Polyphenylquinoxaline-based proton exchange membranes synthesized via the PPA Process for high temperature fuel cell systems. Journal of Membrane Science, 405-406, 57-67. doi:10.1016/j.memsci.2012.02.044 es_ES
dc.description.references Molleo, M. A., Chen, X., Ploehn, H. J., Fishel, K. J., & Benicewicz, B. C. (2014). High Polymer Content 3,5-Pyridine-Polybenzimidazole Copolymer Membranes with Improved Compressive Properties. Fuel Cells, 14(1), 16-25. doi:10.1002/fuce.201300202 es_ES
dc.description.references Molleo, M. A., Chen, X., Ploehn, H. J., & Benicewicz, B. C. (2014). High Polymer Content 2,5-Pyridine-Polybenzimidazole Copolymer Membranes with Improved Compressive Properties. Fuel Cells, 15(1), 150-155. doi:10.1002/fuce.201400129 es_ES
dc.description.references Schönberger, F., Qian, G., & Benicewicz, B. C. (2017). Polybenzimidazole-based block copolymers: From monomers to membrane electrode assemblies for high temperature polymer electrolyte membrane fuel cells. Journal of Polymer Science Part A: Polymer Chemistry, 55(11), 1831-1843. doi:10.1002/pola.28530 es_ES
dc.description.references Maity, S., & Jana, T. (2014). Polybenzimidazole Block Copolymers for Fuel Cell: Synthesis and Studies of Block Length Effects on Nanophase Separation, Mechanical Properties, and Proton Conductivity of PEM. ACS Applied Materials & Interfaces, 6(9), 6851-6864. doi:10.1021/am500668c es_ES
dc.description.references Chen, S., Pan, H., Chang, Z., Jin, M., & Pu, H. (2018). Synthesis and study of pyridine-containing sulfonated polybenzimidazole multiblock copolymer for proton exchange membrane fuel cells. Ionics, 25(5), 2255-2265. doi:10.1007/s11581-018-2610-7 es_ES
dc.description.references Yuan, Q., Sun, G.-H., Han, K.-F., Yu, J.-H., Zhu, H., & Wang, Z.-M. (2016). Copolymerization of 4-(3,4-diamino-phenoxy)-benzoic acid and 3,4-diaminobenzoic acid towards H3PO4-doped PBI membranes for proton conductor with better processability. European Polymer Journal, 85, 175-186. doi:10.1016/j.eurpolymj.2016.10.002 es_ES
dc.description.references Kim, S.-K., Choi, S.-W., Jeon, W. S., Park, J. O., Ko, T., Chang, H., & Lee, J.-C. (2012). Cross-Linked Benzoxazine–Benzimidazole Copolymer Electrolyte Membranes for Fuel Cells at Elevated Temperature. Macromolecules, 45(3), 1438-1446. doi:10.1021/ma202694p es_ES
dc.description.references Dechnik, J., Gascon, J., Doonan, C. J., Janiak, C., & Sumby, C. J. (2017). Mixed‐Matrix Membranes. Angewandte Chemie International Edition, 56(32), 9292-9310. doi:10.1002/anie.201701109 es_ES
dc.description.references Devrim, Y., Devrim, H., & Eroglu, I. (2016). Polybenzimidazole/SiO2 hybrid membranes for high temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 41(23), 10044-10052. doi:10.1016/j.ijhydene.2016.02.043 es_ES
dc.description.references Pinar, F. J., Cañizares, P., Rodrigo, M. A., Úbeda, D., & Lobato, J. (2015). Long-term testing of a high-temperature proton exchange membrane fuel cell short stack operated with improved polybenzimidazole-based composite membranes. Journal of Power Sources, 274, 177-185. doi:10.1016/j.jpowsour.2014.08.136 es_ES
dc.description.references Nawn, G., Pace, G., Lavina, S., Vezzù, K., Negro, E., Bertasi, F., … Di Noto, V. (2015). Nanocomposite Membranes based on Polybenzimidazole and ZrO2for High-Temperature Proton Exchange Membrane Fuel Cells. ChemSusChem, 8(8), 1381-1393. doi:10.1002/cssc.201403049 es_ES
dc.description.references Zhang, S., Davaajargal, T., Aiba, M., Akasaka, S., Ashizawa, M., Tsuruoka, S., … Matsumoto, H. (2017). Enhancing water flux through semipermeable polybenzimidazole membranes by adding surfactant‐treated CNT s. Journal of Applied Polymer Science, 135(7), 45875. doi:10.1002/app.45875 es_ES
dc.description.references Xu, C., Cao, Y., Kumar, R., Wu, X., Wang, X., & Scott, K. (2011). A polybenzimidazole/sulfonated graphite oxide composite membrane for high temperature polymer electrolyte membrane fuel cells. Journal of Materials Chemistry, 21(30), 11359. doi:10.1039/c1jm11159k es_ES
dc.description.references Cai, Y., Yue, Z., & Xu, S. (2017). A novel polybenzimidazole composite modified by sulfonated graphene oxide for high temperature proton exchange membrane fuel cells in anhydrous atmosphere. Journal of Applied Polymer Science, 134(25). doi:10.1002/app.44986 es_ES
dc.description.references Gupta, C., Maheshwari, P. H., & Dhakate, S. R. (2016). Development of multiwalled carbon nanotubes platinum nanocomposite as efficient PEM fuel cell catalyst. Materials for Renewable and Sustainable Energy, 5(1). doi:10.1007/s40243-015-0066-5 es_ES
dc.description.references Díaz, M., Ortiz, A., & Ortiz, I. (2014). Progress in the use of ionic liquids as electrolyte membranes in fuel cells. Journal of Membrane Science, 469, 379-396. doi:10.1016/j.memsci.2014.06.033 es_ES
dc.description.references Kallem, P., Yanar, N., & Choi, H. (2018). Nanofiber-Based Proton Exchange Membranes: Development of Aligned Electrospun Nanofibers for Polymer Electrolyte Fuel Cell Applications. ACS Sustainable Chemistry & Engineering, 7(2), 1808-1825. doi:10.1021/acssuschemeng.8b03601 es_ES
dc.description.references Lobato, J., Cañizares, P., Rodrigo, M. A., Úbeda, D., & Pinar, F. J. (2011). A novel titanium PBI-based composite membrane for high temperature PEMFCs. Journal of Membrane Science, 369(1-2), 105-111. doi:10.1016/j.memsci.2010.11.051 es_ES
dc.description.references Tahrim, A. A., & Amin, I. N. H. M. (2018). Advancement in Phosphoric Acid Doped Polybenzimidazole Membrane for High Temperature PEM Fuel Cells: A Review. Journal of Applied Membrane Science & Technology, 23(1). doi:10.11113/amst.v23n1.136 es_ES
dc.description.references Pu, H., Liu, L., Chang, Z., & Yuan, J. (2009). Organic/inorganic composite membranes based on polybenzimidazole and nano-SiO2. Electrochimica Acta, 54(28), 7536-7541. doi:10.1016/j.electacta.2009.08.011 es_ES
dc.description.references Özdemir, Y., Üregen, N., & Devrim, Y. (2017). Polybenzimidazole based nanocomposite membranes with enhanced proton conductivity for high temperature PEM fuel cells. International Journal of Hydrogen Energy, 42(4), 2648-2657. doi:10.1016/j.ijhydene.2016.04.132 es_ES
dc.description.references Seo, K., Seo, J., Nam, K.-H., & Han, H. (2015). Polybenzimidazole/inorganic composite membrane with advanced performance for high temperature polymer electrolyte membrane fuel cells. Polymer Composites, 38(1), 87-95. doi:10.1002/pc.23563 es_ES
dc.description.references Lysova, A. A., Ponomarev, I. I., & Yaroslavtsev, A. B. (2011). Composite materials based on polybenzimidazole and inorganic oxides. Solid State Ionics, 188(1), 132-134. doi:10.1016/j.ssi.2010.10.010 es_ES
dc.description.references Zhang, Q., Liu, H., Li, X., Xu, R., Zhong, J., Chen, R., & Gu, X. (2016). Synthesis and characterization of polybenzimidazole/α-zirconium phosphate composites as proton exchange membrane. Polymer Engineering & Science, 56(6), 622-628. doi:10.1002/pen.24287 es_ES
dc.description.references Lobato, J., Cañizares, P., Rodrigo, M. A., Úbeda, D., & Pinar, F. J. (2011). Enhancement of the fuel cell performance of a high temperature proton exchange membrane fuel cell running with titanium composite polybenzimidazole-based membranes. Journal of Power Sources, 196(20), 8265-8271. doi:10.1016/j.jpowsour.2011.06.011 es_ES
dc.description.references Shabanikia, A., Javanbakht, M., Amoli, H. S., Hooshyari, K., & Enhessari, M. (2015). Novel nanocomposite membranes based on polybenzimidazole and Fe2TiO5 nanoparticles for proton exchange membrane fuel cells. Ionics, 21(8), 2227-2236. doi:10.1007/s11581-015-1392-4 es_ES
dc.description.references Qiu, G., Jiang, T., Li, H., & Wang, D. (2003). Functions and molecular structure of organic binders for iron ore pelletization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 224(1-3), 11-22. doi:10.1016/s0927-7757(03)00264-4 es_ES
dc.description.references Mohammadi, G., Jahanshahi, M., & Rahimpour, A. (2013). Fabrication and evaluation of Nafion nanocomposite membrane based on ZrO2–TiO2 binary nanoparticles as fuel cell MEA. International Journal of Hydrogen Energy, 38(22), 9387-9394. doi:10.1016/j.ijhydene.2012.09.096 es_ES
dc.description.references He, R. (2003). Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors. Journal of Membrane Science, 226(1-2), 169-184. doi:10.1016/j.memsci.2003.09.002 es_ES
dc.description.references Di, S., Yan, L., Han, S., Yue, B., Feng, Q., Xie, L., … Sun, C. (2012). Enhancing the high-temperature proton conductivity of phosphoric acid doped poly(2,5-benzimidazole) by preblending boron phosphate nanoparticles to the raw materials. Journal of Power Sources, 211, 161-168. doi:10.1016/j.jpowsour.2012.03.091 es_ES
dc.description.references Xu, C., Wu, X., Wang, X., Mamlouk, M., & Scott, K. (2011). Composite membranes of polybenzimidazole and caesium-salts-of-heteropolyacids for intermediate temperature fuel cells. Journal of Materials Chemistry, 21(16), 6014. doi:10.1039/c1jm10093a es_ES
dc.description.references Hooshyari, K., Javanbakht, M., Shabanikia, A., & Enhessari, M. (2015). Fabrication BaZrO3/PBI-based nanocomposite as a new proton conducting membrane for high temperature proton exchange membrane fuel cells. Journal of Power Sources, 276, 62-72. doi:10.1016/j.jpowsour.2014.11.083 es_ES
dc.description.references Shabanikia, A., Javanbakht, M., Amoli, H. S., Hooshyari, K., & Enhessari, M. (2015). Polybenzimidazole/strontium cerate nanocomposites with enhanced proton conductivity for proton exchange membrane fuel cells operating at high temperature. Electrochimica Acta, 154, 370-378. doi:10.1016/j.electacta.2014.12.025 es_ES
dc.description.references Fuentes, I., Andrio, A., Teixidor, F., Viñas, C., & Compañ, V. (2017). Enhanced conductivity of sodium versus lithium salts measured by impedance spectroscopy. Sodium cobaltacarboranes as electrolytes of choice. Physical Chemistry Chemical Physics, 19(23), 15177-15186. doi:10.1039/c7cp02526b es_ES
dc.description.references Fuentes, I., Andrio, A., García-Bernabé, A., Escorihuela, J., Viñas, C., Teixidor, F., & Compañ, V. (2018). Structural and dielectric properties of cobaltacarborane composite polybenzimidazole membranes as solid polymer electrolytes at high temperature. Physical Chemistry Chemical Physics, 20(15), 10173-10184. doi:10.1039/c8cp00372f es_ES
dc.description.references Olvera-Mancilla, J., Escorihuela, J., Alexandrova, L., Andrio, A., García-Bernabé, A., del Castillo, L. F., & Compañ, V. (2020). Effect of metallacarborane salt H[COSANE] doping on the performance properties of polybenzimidazole membranes for high temperature PEMFCs. Soft Matter, 16(32), 7624-7635. doi:10.1039/d0sm00743a es_ES
dc.description.references Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., … Ruoff, R. S. (2006). Graphene-based composite materials. Nature, 442(7100), 282-286. doi:10.1038/nature04969 es_ES
dc.description.references Chee, W. K., Lim, H. N., Huang, N. M., & Harrison, I. (2015). Nanocomposites of graphene/polymers: a review. RSC Advances, 5(83), 68014-68051. doi:10.1039/c5ra07989f es_ES
dc.description.references Xu, C., Liu, X., Cheng, J., & Scott, K. (2015). A polybenzimidazole/ionic-liquid-graphite-oxide composite membrane for high temperature polymer electrolyte membrane fuel cells. Journal of Power Sources, 274, 922-927. doi:10.1016/j.jpowsour.2014.10.134 es_ES
dc.description.references Chen, D., Tang, L., & Li, J. (2010). Graphene-based materials in electrochemistry. Chemical Society Reviews, 39(8), 3157. doi:10.1039/b923596e es_ES
dc.description.references Yang, Y.-H., Bolling, L., Priolo, M. A., & Grunlan, J. C. (2012). Super Gas Barrier and Selectivity of Graphene Oxide-Polymer Multilayer Thin Films. Advanced Materials, 25(4), 503-508. doi:10.1002/adma.201202951 es_ES
dc.description.references Thebo, K. H., Qian, X., Zhang, Q., Chen, L., Cheng, H.-M., & Ren, W. (2018). Highly stable graphene-oxide-based membranes with superior permeability. Nature Communications, 9(1). doi:10.1038/s41467-018-03919-0 es_ES
dc.description.references Ma, M., Guo, L., Anderson, D. G., & Langer, R. (2013). Bio-Inspired Polymer Composite Actuator and Generator Driven by Water Gradients. Science, 339(6116), 186-189. doi:10.1126/science.1230262 es_ES
dc.description.references Chee, W. K., Lim, H. N., Harrison, I., Chong, K. F., Zainal, Z., Ng, C. H., & Huang, N. M. (2015). Performance of Flexible and Binderless Polypyrrole/Graphene Oxide/Zinc Oxide Supercapacitor Electrode in a Symmetrical Two-Electrode Configuration. Electrochimica Acta, 157, 88-94. doi:10.1016/j.electacta.2015.01.080 es_ES
dc.description.references Cao, J., Chen, C., Zhao, Q., Zhang, N., Lu, Q., Wang, X., … Chen, J. (2016). A Flexible Nanostructured Paper of a Reduced Graphene Oxide-Sulfur Composite for High-Performance Lithium-Sulfur Batteries with Unconventional Configurations. Advanced Materials, 28(43), 9629-9636. doi:10.1002/adma.201602262 es_ES
dc.description.references Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., … Hong, B. H. (2009). Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457(7230), 706-710. doi:10.1038/nature07719 es_ES
dc.description.references Yang, J., Liu, C., Gao, L., Wang, J., Xu, Y., & He, R. (2015). Novel composite membranes of triazole modified graphene oxide and polybenzimidazole for high temperature polymer electrolyte membrane fuel cell applications. RSC Advances, 5(122), 101049-101054. doi:10.1039/c5ra16554g es_ES
dc.description.references Adeli, M., Soleyman, R., Beiranvand, Z., & Madani, F. (2013). Carbon nanotubes in cancer therapy: a more precise look at the role of carbon nanotube–polymer interactions. Chemical Society Reviews, 42(12), 5231. doi:10.1039/c3cs35431h es_ES
dc.description.references Saito, N., Haniu, H., Usui, Y., Aoki, K., Hara, K., Takanashi, S., … Endo, M. (2014). Safe Clinical Use of Carbon Nanotubes as Innovative Biomaterials. Chemical Reviews, 114(11), 6040-6079. doi:10.1021/cr400341h es_ES
dc.description.references Rajabi, M., Mahanpoor, K., & Moradi, O. (2017). Removal of dye molecules from aqueous solution by carbon nanotubes and carbon nanotube functional groups: critical review. RSC Adv., 7(74), 47083-47090. doi:10.1039/c7ra09377b es_ES
dc.description.references Yan, Y., Miao, J., Yang, Z., Xiao, F.-X., Yang, H. B., Liu, B., & Yang, Y. (2015). Carbon nanotube catalysts: recent advances in synthesis, characterization and applications. Chemical Society Reviews, 44(10), 3295-3346. doi:10.1039/c4cs00492b es_ES
dc.description.references Hu, L., Hecht, D. S., & Grüner, G. (2010). Carbon Nanotube Thin Films: Fabrication, Properties, and Applications. Chemical Reviews, 110(10), 5790-5844. doi:10.1021/cr9002962 es_ES
dc.description.references Che, Y., Chen, H., Gui, H., Liu, J., Liu, B., & Zhou, C. (2014). Review of carbon nanotube nanoelectronics and macroelectronics. Semiconductor Science and Technology, 29(7), 073001. doi:10.1088/0268-1242/29/7/073001 es_ES
dc.description.references Dillon, A. C. (2010). Carbon Nanotubes for Photoconversion and Electrical Energy Storage. Chemical Reviews, 110(11), 6856-6872. doi:10.1021/cr9003314 es_ES
dc.description.references Wang, L., Liu, H., Konik, R. M., Misewich, J. A., & Wong, S. S. (2013). Carbon nanotube-based heterostructures for solar energy applications. Chemical Society Reviews, 42(20), 8134. doi:10.1039/c3cs60088b es_ES
dc.description.references Yu, L., Shearer, C., & Shapter, J. (2016). Recent Development of Carbon Nanotube Transparent Conductive Films. Chemical Reviews, 116(22), 13413-13453. doi:10.1021/acs.chemrev.6b00179 es_ES
dc.description.references Valitova, I., Amato, M., Mahvash, F., Cantele, G., Maffucci, A., Santato, C., … Cicoira, F. (2013). Carbon nanotube electrodes in organic transistors. Nanoscale, 5(11), 4638. doi:10.1039/c3nr33727h es_ES
dc.description.references Cao, Z., & Wei, B. (B. Q. . (2013). A perspective: carbon nanotube macro-films for energy storage. Energy Environ. Sci., 6(11), 3183-3201. doi:10.1039/c3ee42261e es_ES
dc.description.references De Volder, M. F. L., Tawfick, S. H., Baughman, R. H., & Hart, A. J. (2013). Carbon Nanotubes: Present and Future Commercial Applications. Science, 339(6119), 535-539. doi:10.1126/science.1222453 es_ES
dc.description.references Zadehnazari, A., & Takassi, M. A. (2016). Synthesis of modified multi-walled carbon nanotube poly(benzimidazole-imide) composites: assessment of morphological and thermo-mechanical properties. Composite Interfaces, 23(9), 909-924. doi:10.1080/09276440.2016.1180500 es_ES
dc.description.references Chang, C.-M., & Liu, Y.-L. (2010). Functionalization of multi-walled carbon nanotubes with non-reactive polymers through an ozone-mediated process for the preparation of a wide range of high performance polymer/carbon nanotube composites. Carbon, 48(4), 1289-1297. doi:10.1016/j.carbon.2009.12.002 es_ES
dc.description.references Suryani, Chang, C.-M., Liu, Y.-L., & Lee, Y. M. (2011). Polybenzimidazole membranes modified with polyelectrolyte-functionalized multiwalled carbon nanotubes for proton exchange membrane fuel cells. Journal of Materials Chemistry, 21(20), 7480. doi:10.1039/c1jm10439j es_ES
dc.description.references Kannan, R., Kagalwala, H. N., Chaudhari, H. D., Kharul, U. K., Kurungot, S., & Pillai, V. K. (2011). Improved performance of phosphonated carbon nanotube–polybenzimidazole composite membranes in proton exchange membrane fuel cells. Journal of Materials Chemistry, 21(20), 7223. doi:10.1039/c0jm04265j es_ES
dc.description.references Jheng, L., Huang, C., & Hsu, S. L. (2013). Sulfonated MWNT and imidazole functionalized MWNT/polybenzimidazole composite membranes for high-temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 38(3), 1524-1534. doi:10.1016/j.ijhydene.2012.10.111 es_ES
dc.description.references Du, C. Y., Zhao, T. S., & Liang, Z. X. (2008). Sulfonation of carbon-nanotube supported platinum catalysts for polymer electrolyte fuel cells. Journal of Power Sources, 176(1), 9-15. doi:10.1016/j.jpowsour.2007.10.016 es_ES
dc.description.references Park, M. J., Lee, J. K., Lee, B. S., Lee, Y.-W., Choi, I. S., & Lee, S. (2006). Covalent Modification of Multiwalled Carbon Nanotubes with Imidazolium-Based Ionic Liquids:  Effect of Anions on Solubility. Chemistry of Materials, 18(6), 1546-1551. doi:10.1021/cm0511421 es_ES
dc.description.references Guerrero Moreno, N., Gervasio, D., Godínez García, A., & Pérez Robles, J. F. (2015). Polybenzimidazole-multiwall carbon nanotubes composite membranes for polymer electrolyte membrane fuel cells. Journal of Power Sources, 300, 229-237. doi:10.1016/j.jpowsour.2015.09.070 es_ES
dc.description.references Escorihuela, J., Narducci, R., Compañ, V., & Costantino, F. (2018). Proton Conductivity of Composite Polyelectrolyte Membranes with Metal‐Organic Frameworks for Fuel Cell Applications. Advanced Materials Interfaces, 1801146. doi:10.1002/admi.201801146 es_ES
dc.description.references Ramaswamy, P., Wong, N. E., Gelfand, B. S., & Shimizu, G. K. H. (2015). A Water Stable Magnesium MOF That Conducts Protons over 10–2 S cm–1. Journal of the American Chemical Society, 137(24), 7640-7643. doi:10.1021/jacs.5b04399 es_ES
dc.description.references Diercks, C. S., & Yaghi, O. M. (2017). The atom, the molecule, and the covalent organic framework. Science, 355(6328). doi:10.1126/science.aal1585 es_ES
dc.description.references Lim, D.-W., & Kitagawa, H. (2020). Proton Transport in Metal–Organic Frameworks. Chemical Reviews, 120(16), 8416-8467. doi:10.1021/acs.chemrev.9b00842 es_ES
dc.description.references Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O’Keeffe, M., & Yaghi, O. M. (2002). Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science, 295(5554), 469-472. doi:10.1126/science.1067208 es_ES
dc.description.references Huang, Y.-B., Liang, J., Wang, X.-S., & Cao, R. (2017). Multifunctional metal–organic framework catalysts: synergistic catalysis and tandem reactions. Chemical Society Reviews, 46(1), 126-157. doi:10.1039/c6cs00250a es_ES
dc.description.references Banerjee, D., Cairns, A. J., Liu, J., Motkuri, R. K., Nune, S. K., Fernandez, C. A., … Thallapally, P. K. (2014). Potential of Metal–Organic Frameworks for Separation of Xenon and Krypton. Accounts of Chemical Research, 48(2), 211-219. doi:10.1021/ar5003126 es_ES
dc.description.references Wen, X., Zhang, Q., & Guan, J. (2020). Applications of metal–organic framework-derived materials in fuel cells and metal-air batteries. Coordination Chemistry Reviews, 409, 213214. doi:10.1016/j.ccr.2020.213214 es_ES
dc.description.references Shi, G. M., Yang, T., & Chung, T. S. (2012). Polybenzimidazole (PBI)/zeolitic imidazolate frameworks (ZIF-8) mixed matrix membranes for pervaporation dehydration of alcohols. Journal of Membrane Science, 415-416, 577-586. doi:10.1016/j.memsci.2012.05.052 es_ES
dc.description.references Fei, F., Cseri, L., Szekely, G., & Blanford, C. F. (2018). Robust Covalently Cross-linked Polybenzimidazole/Graphene Oxide Membranes for High-Flux Organic Solvent Nanofiltration. ACS Applied Materials & Interfaces, 10(18), 16140-16147. doi:10.1021/acsami.8b03591 es_ES
dc.description.references Zhang, Z., Nguyen, H. T. H., Miller, S. A., Ploskonka, A. M., DeCoste, J. B., & Cohen, S. M. (2016). Polymer–Metal–Organic Frameworks (polyMOFs) as Water Tolerant Materials for Selective Carbon Dioxide Separations. Journal of the American Chemical Society, 138(3), 920-925. doi:10.1021/jacs.5b11034 es_ES
dc.description.references DeCoste, J. B., Denny, Jr., M. S., Peterson, G. W., Mahle, J. J., & Cohen, S. M. (2016). Enhanced aging properties of HKUST-1 in hydrophobic mixed-matrix membranes for ammonia adsorption. Chemical Science, 7(4), 2711-2716. doi:10.1039/c5sc04368a es_ES
dc.description.references Didaskalou, C., Kupai, J., Cseri, L., Barabas, J., Vass, E., Holtzl, T., & Szekely, G. (2018). Membrane-Grafted Asymmetric Organocatalyst for an Integrated Synthesis–Separation Platform. ACS Catalysis, 8(8), 7430-7438. doi:10.1021/acscatal.8b01706 es_ES
dc.description.references Sun, Y., Sun, L., Feng, D., & Zhou, H. (2016). An In Situ One‐Pot Synthetic Approach towards Multivariate Zirconium MOFs. Angewandte Chemie International Edition, 55(22), 6471-6475. doi:10.1002/anie.201602274 es_ES
dc.description.references Donnadio, A., Narducci, R., Casciola, M., Marmottini, F., D’Amato, R., Jazestani, M., … Costantino, F. (2017). Mixed Membrane Matrices Based on Nafion/UiO-66/SO3H-UiO-66 Nano-MOFs: Revealing the Effect of Crystal Size, Sulfonation, and Filler Loading on the Mechanical and Conductivity Properties. ACS Applied Materials & Interfaces, 9(48), 42239-42246. doi:10.1021/acsami.7b14847 es_ES
dc.description.references Rao, Z., Feng, K., Tang, B., & Wu, P. (2017). Construction of well interconnected metal-organic framework structure for effectively promoting proton conductivity of proton exchange membrane. Journal of Membrane Science, 533, 160-170. doi:10.1016/j.memsci.2017.03.031 es_ES
dc.description.references Cai, K., Sun, F., Liang, X., Liu, C., Zhao, N., Zou, X., & Zhu, G. (2017). An acid-stable hexaphosphate ester based metal–organic framework and its polymer composite as proton exchange membrane. Journal of Materials Chemistry A, 5(25), 12943-12950. doi:10.1039/c7ta00169j es_ES
dc.description.references Tsai, C.-H., Wang, C.-C., Chang, C.-Y., Lin, C.-H., & Chen-Yang, Y. W. (2014). Enhancing performance of Nafion ® -based PEMFC by 1-D channel metal-organic frameworks as PEM filler. International Journal of Hydrogen Energy, 39(28), 15696-15705. doi:10.1016/j.ijhydene.2014.07.134 es_ES
dc.description.references Kim, H. J., Talukdar, K., & Choi, S.-J. (2016). Tuning of Nafion® by HKUST-1 as coordination network to enhance proton conductivity for fuel cell applications. Journal of Nanoparticle Research, 18(2). doi:10.1007/s11051-016-3346-9 es_ES
dc.description.references Sun, H., Tang, B., & Wu, P. (2017). Rational Design of S-UiO-66@GO Hybrid Nanosheets for Proton Exchange Membranes with Significantly Enhanced Transport Performance. ACS Applied Materials & Interfaces, 9(31), 26077-26087. doi:10.1021/acsami.7b07651 es_ES
dc.description.references Han, R., & Wu, P. (2018). Composite Proton-Exchange Membrane with Highly Improved Proton Conductivity Prepared by in Situ Crystallization of Porous Organic Cage. ACS Applied Materials & Interfaces, 10(21), 18351-18358. doi:10.1021/acsami.8b04311 es_ES
dc.description.references Patel, H. A., Mansor, N., Gadipelli, S., Brett, D. J. L., & Guo, Z. (2016). Superacidity in Nafion/MOF Hybrid Membranes Retains Water at Low Humidity to Enhance Proton Conduction for Fuel Cells. ACS Applied Materials & Interfaces, 8(45), 30687-30691. doi:10.1021/acsami.6b12240 es_ES
dc.description.references Li, Z., He, G., Zhao, Y., Cao, Y., Wu, H., Li, Y., & Jiang, Z. (2014). Enhanced proton conductivity of proton exchange membranes by incorporating sulfonated metal-organic frameworks. Journal of Power Sources, 262, 372-379. doi:10.1016/j.jpowsour.2014.03.123 es_ES
dc.description.references Wu, B., Pan, J., Ge, L., Wu, L., Wang, H., & Xu, T. (2014). Oriented MOF-polymer Composite Nanofiber Membranes for High Proton Conductivity at High Temperature and Anhydrous Condition. Scientific Reports, 4(1). doi:10.1038/srep04334 es_ES
dc.description.references Ru, C., Li, Z., Zhao, C., Duan, Y., Zhuang, Z., Bu, F., & Na, H. (2018). Enhanced Proton Conductivity of Sulfonated Hybrid Poly(arylene ether ketone) Membranes by Incorporating an Amino–Sulfo Bifunctionalized Metal–Organic Framework for Direct Methanol Fuel Cells. ACS Applied Materials & Interfaces, 10(9), 7963-7973. doi:10.1021/acsami.7b17299 es_ES
dc.description.references Zhang, B., Cao, Y., Li, Z., Wu, H., Yin, Y., Cao, L., … Jiang, Z. (2017). Proton exchange nanohybrid membranes with high phosphotungstic acid loading within metal-organic frameworks for PEMFC applications. Electrochimica Acta, 240, 186-194. doi:10.1016/j.electacta.2017.04.087 es_ES
dc.description.references Ahmadian-Alam, L., & Mahdavi, H. (2018). A novel polysulfone-based ternary nanocomposite membrane consisting of metal-organic framework and silica nanoparticles: As proton exchange membrane for polymer electrolyte fuel cells. Renewable Energy, 126, 630-639. doi:10.1016/j.renene.2018.03.075 es_ES
dc.description.references Vega, J., Andrio, A., Lemus, A. A., del Castillo, L. F., & Compañ, V. (2017). Conductivity study of Zeolitic Imidazolate Frameworks, Tetrabutylammonium hydroxide doped with Zeolitic Imidazolate Frameworks, and mixed matrix membranes of Polyetherimide/Tetrabutylammonium hydroxide doped with Zeolitic Imidazolate Frameworks for proton conducting applications. Electrochimica Acta, 258, 153-166. doi:10.1016/j.electacta.2017.10.095 es_ES
dc.description.references Wu, B., Lin, X., Ge, L., Wu, L., & Xu, T. (2013). A novel route for preparing highly proton conductive membrane materials with metal-organic frameworks. Chem. Commun., 49(2), 143-145. doi:10.1039/c2cc37045j es_ES
dc.description.references Fadzallah, I. A., Majid, S. R., Careem, M. A., & Arof, A. K. (2014). A study on ionic interactions in chitosan–oxalic acid polymer electrolyte membranes. Journal of Membrane Science, 463, 65-72. doi:10.1016/j.memsci.2014.03.044 es_ES
dc.description.references Erkartal, M., Usta, H., Citir, M., & Sen, U. (2016). Proton conducting poly(vinyl alcohol) (PVA)/ poly(2-acrylamido-2-methylpropane sulfonic acid) (PAMPS)/ zeolitic imidazolate framework (ZIF) ternary composite membrane. Journal of Membrane Science, 499, 156-163. doi:10.1016/j.memsci.2015.10.032 es_ES
dc.description.references Liang, X., Zhang, F., Feng, W., Zou, X., Zhao, C., Na, H., … Zhu, G. (2013). From metal–organic framework (MOF) to MOF–polymer composite membrane: enhancement of low-humidity proton conductivity. Chem. Sci., 4(3), 983-992. doi:10.1039/c2sc21927a es_ES
dc.description.references Park, K. S., Ni, Z., Cote, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., … Yaghi, O. M. (2006). Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences, 103(27), 10186-10191. doi:10.1073/pnas.0602439103 es_ES
dc.description.references Erkartal, M., Erkilic, U., Tam, B., Usta, H., Yazaydin, O., Hupp, J. T., … Sen, U. (2017). From 2-methylimidazole to 1,2,3-triazole: a topological transformation of ZIF-8 and ZIF-67 by post-synthetic modification. Chemical Communications, 53(12), 2028-2031. doi:10.1039/c6cc08746a es_ES
dc.description.references Plechkova, N. V., & Seddon, K. R. (2008). Applications of ionic liquids in the chemical industry. Chem. Soc. Rev., 37(1), 123-150. doi:10.1039/b006677j es_ES
dc.description.references Earle, M. J., & Seddon, K. R. (2000). Ionic liquids. Green solvents for the future. Pure and Applied Chemistry, 72(7), 1391-1398. doi:10.1351/pac200072071391 es_ES
dc.description.references Dai, C., Zhang, J., Huang, C., & Lei, Z. (2017). Ionic Liquids in Selective Oxidation: Catalysts and Solvents. Chemical Reviews, 117(10), 6929-6983. doi:10.1021/acs.chemrev.7b00030 es_ES
dc.description.references González, L., Escorihuela, J., Altava, B., Burguete, M. I., & Luis, S. V. (2014). Chiral Room Temperature Ionic Liquids as Enantioselective Promoters for the Asymmetric Aldol Reaction. European Journal of Organic Chemistry, 2014(24), 5356-5363. doi:10.1002/ejoc.201402436 es_ES
dc.description.references Chen, D., Ying, W., Guo, Y., Ying, Y., & Peng, X. (2017). Enhanced Gas Separation through Nanoconfined Ionic Liquid in Laminated MoS2 Membrane. ACS Applied Materials & Interfaces, 9(50), 44251-44257. doi:10.1021/acsami.7b15762 es_ES
dc.description.references González-Mendoza, L., Escorihuela, J., Altava, B., Burguete, M. I., & Luis, S. V. (2015). Application of optically active chiral bis(imidazolium) salts as potential receptors of chiral dicarboxylate salts of biological relevance. Organic & Biomolecular Chemistry, 13(19), 5450-5459. doi:10.1039/c5ob00348b es_ES
dc.description.references Valls, A., Altava, B., Burguete, M. I., Escorihuela, J., Martí-Centelles, V., & Luis, S. V. (2019). Supramolecularly assisted synthesis of chiral tripodal imidazolium compounds. Organic Chemistry Frontiers, 6(8), 1214-1225. doi:10.1039/c9qo00163h es_ES
dc.description.references González-Mendoza, L., Altava, B., Burguete, M. I., Escorihuela, J., Hernando, E., Luis, S. V., … Vicent, C. (2015). Bis(imidazolium) salts derived from amino acids as receptors and transport agents for chloride anions. RSC Advances, 5(43), 34415-34423. doi:10.1039/c5ra05880e es_ES
dc.description.references Marrucho, I. M., Branco, L. C., & Rebelo, L. P. N. (2014). Ionic Liquids in Pharmaceutical Applications. Annual Review of Chemical and Biomolecular Engineering, 5(1), 527-546. doi:10.1146/annurev-chembioeng-060713-040024 es_ES
dc.description.references Egorova, K. S., Gordeev, E. G., & Ananikov, V. P. (2017). Biological Activity of Ionic Liquids and Their Application in Pharmaceutics and Medicine. Chemical Reviews, 117(10), 7132-7189. doi:10.1021/acs.chemrev.6b00562 es_ES
dc.description.references Ye, Y.-S., Rick, J., & Hwang, B.-J. (2013). Ionic liquid polymer electrolytes. J. Mater. Chem. A, 1(8), 2719-2743. doi:10.1039/c2ta00126h es_ES
dc.description.references Wang, J. T.-W., & Hsu, S. L.-C. (2011). Enhanced high-temperature polymer electrolyte membrane for fuel cells based on polybenzimidazole and ionic liquids. Electrochimica Acta, 56(7), 2842-2846. doi:10.1016/j.electacta.2010.12.069 es_ES
dc.description.references Van de Ven, E., Chairuna, A., Merle, G., Benito, S. P., Borneman, Z., & Nijmeijer, K. (2013). Ionic liquid doped polybenzimidazole membranes for high temperature Proton Exchange Membrane fuel cell applications. Journal of Power Sources, 222, 202-209. doi:10.1016/j.jpowsour.2012.07.112 es_ES
dc.description.references Escorihuela, J., García-Bernabé, A., Montero, Á., Sahuquillo, Ó., Giménez, E., & Compañ, V. (2019). Ionic Liquid Composite Polybenzimidazol Membranes for High Temperature PEMFC Applications. Polymers, 11(4), 732. doi:10.3390/polym11040732 es_ES
dc.description.references Compañ, V., Escorihuela, J., Olvera, J., García-Bernabé, A., & Andrio, A. (2020). Influence of the anion on diffusivity and mobility of ionic liquids composite polybenzimidazol membranes. Electrochimica Acta, 354, 136666. doi:10.1016/j.electacta.2020.136666 es_ES
dc.description.references Liu, S., Zhou, L., Wang, P., Zhang, F., Yu, S., Shao, Z., & Yi, B. (2014). Ionic-Liquid-Based Proton Conducting Membranes for Anhydrous H2/Cl2 Fuel-Cell Applications. ACS Applied Materials & Interfaces, 6(5), 3195-3200. doi:10.1021/am404645c es_ES
dc.description.references Song, X., Ding, L., Wang, L., He, M., & Han, X. (2019). Polybenzimidazole membranes embedded with ionic liquids for use in high proton selectivity vanadium redox flow batteries. Electrochimica Acta, 295, 1034-1043. doi:10.1016/j.electacta.2018.11.123 es_ES
dc.description.references Liao, Y., Loh, C.-H., Tian, M., Wang, R., & Fane, A. G. (2018). Progress in electrospun polymeric nanofibrous membranes for water treatment: Fabrication, modification and applications. Progress in Polymer Science, 77, 69-94. doi:10.1016/j.progpolymsci.2017.10.003 es_ES
dc.description.references Lee, C., Jo, S. M., Choi, J., Baek, K.-Y., Truong, Y. B., Kyratzis, I. L., & Shul, Y.-G. (2013). SiO2/sulfonated poly ether ether ketone (SPEEK) composite nanofiber mat supported proton exchange membranes for fuel cells. Journal of Materials Science, 48(10), 3665-3671. doi:10.1007/s10853-013-7162-7 es_ES
dc.description.references Reyes-Rodriguez, J. L., Escorihuela, J., García-Bernabé, A., Giménez, E., Solorza-Feria, O., & Compañ, V. (2017). Proton conducting electrospun sulfonated polyether ether ketone graphene oxide composite membranes. RSC Advances, 7(84), 53481-53491. doi:10.1039/c7ra10484g es_ES
dc.description.references Yu, D. M., Yoon, S., Kim, T.-H., Lee, J. Y., Lee, J., & Hong, Y. T. (2013). Properties of sulfonated poly(arylene ether sulfone)/electrospun nonwoven polyacrylonitrile composite membrane for proton exchange membrane fuel cells. Journal of Membrane Science, 446, 212-219. doi:10.1016/j.memsci.2013.06.028 es_ES
dc.description.references Laforgue, A., Robitaille, L., Mokrini, A., & Ajji, A. (2007). Fabrication and Characterization of Ionic Conducting Nanofibers. Macromolecular Materials and Engineering, 292(12), 1229-1236. doi:10.1002/mame.200700200 es_ES
dc.description.references Wang, L., Zhu, J., Zheng, J., Zhang, S., & dou, L. (2014). Nanofiber mats electrospun from composite proton exchange membranes prepared from poly(aryl ether sulfone)s with pendant sulfonated aliphatic side chains. RSC Adv., 4(48), 25195-25200. doi:10.1039/c4ra02286f es_ES
dc.description.references Dong, B., Gwee, L., Salas-de la Cruz, D., Winey, K. I., & Elabd, Y. A. (2010). Super Proton Conductive High-Purity Nafion Nanofibers. Nano Letters, 10(9), 3785-3790. doi:10.1021/nl102581w es_ES
dc.description.references Li, H.-Y., & Liu, Y.-L. (2013). Polyelectrolyte composite membranes of polybenzimidazole and crosslinked polybenzimidazole-polybenzoxazine electrospun nanofibers for proton exchange membrane fuel cells. J. Mater. Chem. A, 1(4), 1171-1178. doi:10.1039/c2ta00270a es_ES
dc.description.references Muthuraja, P., Prakash, S., Shanmugam, V. M., & Manisankar, P. (2018). Stable nanofibrous poly(aryl sulfone ether benzimidazole) membrane with high conductivity for high temperature PEM fuel cells. Solid State Ionics, 317, 201-209. doi:10.1016/j.ssi.2018.01.012 es_ES
dc.description.references Jahangiri, S., Aravi, İ., Işıkel Şanlı, L., Menceloğlu, Y. Z., & Özden-Yenigün, E. (2017). Fabrication and optimization of proton conductive polybenzimidazole electrospun nanofiber membranes. Polymers for Advanced Technologies, 29(1), 594-602. doi:10.1002/pat.4169 es_ES
dc.description.references Escorihuela, J., Pujari, S. P., & Zuilhof, H. (2017). Organic Monolayers by B(C6F5)3-Catalyzed Siloxanation of Oxidized Silicon Surfaces. Langmuir, 33(9), 2185-2193. doi:10.1021/acs.langmuir.7b00110 es_ES
dc.description.references Escorihuela, J., & Zuilhof, H. (2017). Rapid Surface Functionalization of Hydrogen-Terminated Silicon by Alkyl Silanols. Journal of the American Chemical Society, 139(16), 5870-5876. doi:10.1021/jacs.7b01106 es_ES
dc.description.references Escorihuela, J., Bañuls, M. J., Castelló, J. G., Toccafondo, V., García-Rupérez, J., Puchades, R., & Maquieira, Á. (2012). Chemical silicon surface modification and bioreceptor attachment to develop competitive integrated photonic biosensors. Analytical and Bioanalytical Chemistry, 404(10), 2831-2840. doi:10.1007/s00216-012-6280-4 es_ES
dc.description.references https://www.mordorintelligence.com/industry-reports/global-polymer-electrolyte-membrane-pem-fuel-cells-market-industry es_ES
dc.description.references https://www.advent.energy/products-high-temperature-meas/ es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem