Mostrar el registro sencillo del ítem
dc.contributor.author | Escorihuela, Jorge![]() |
es_ES |
dc.contributor.author | Olvera-Mancilla, Jessica![]() |
es_ES |
dc.contributor.author | Alexandrova, Larissa![]() |
es_ES |
dc.contributor.author | del Castillo, L. Felipe![]() |
es_ES |
dc.contributor.author | Compañ Moreno, Vicente![]() |
es_ES |
dc.date.accessioned | 2021-03-01T08:08:18Z | |
dc.date.available | 2021-03-01T08:08:18Z | |
dc.date.issued | 2020-09 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/162564 | |
dc.description.abstract | [EN] The rapid increasing of the population in combination with the emergence of new energy-consuming technologies has risen worldwide total energy consumption towards unprecedent values. Furthermore, fossil fuel reserves are running out very quickly and the polluting greenhouse gases emitted during their utilization need to be reduced. In this scenario, a few alternative energy sources have been proposed and, among these, proton exchange membrane (PEM) fuel cells are promising. Recently, polybenzimidazole-based polymers, featuring high chemical and thermal stability, in combination with fillers that can regulate the proton mobility, have attracted tremendous attention for their roles as PEMs in fuel cells. Recent advances in composite membranes based on polybenzimidazole (PBI) for high temperature PEM fuel cell applications are summarized and highlighted in this review. In addition, the challenges, future trends, and prospects of composite membranes based on PBI for solid electrolytes are also discussed. | es_ES |
dc.description.sponsorship | The authors acknowledge the Spanish Ministerio de Economía y Competitividad (MINECO) for the financial support under the project ENE/2015-69203-R. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Polymers | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Fuel cells | es_ES |
dc.subject | Proton exchange membrane | es_ES |
dc.subject | Polymer | es_ES |
dc.subject | Polybenzimidazole | es_ES |
dc.subject | Composite membranes | es_ES |
dc.subject | Conductivity | es_ES |
dc.subject | Carbon nanotubes | es_ES |
dc.subject | Graphene oxide | es_ES |
dc.subject | Ionic liquids | es_ES |
dc.subject | Metal organic frameworks | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Recent Progress in the Development of Composite Membranes Based on Polybenzimidazole for High Temperature Proton Exchange Membrane (PEM) Fuel Cell Applications | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/polym12091861 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//ENE2015-69203-R/ES/DESARROLLO Y EVALUACION DE NUEVAS MEMBRANAS POLIMERICAS REFORZADAS CON NANOFIBRAS PARA SU APLICACION EN PILAS DE COMBUSTIBLE CON ELEVADA ESTABILIDAD TERMICA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada | es_ES |
dc.description.bibliographicCitation | Escorihuela, J.; Olvera-Mancilla, J.; Alexandrova, L.; Del Castillo, LF.; Compañ Moreno, V. (2020). Recent Progress in the Development of Composite Membranes Based on Polybenzimidazole for High Temperature Proton Exchange Membrane (PEM) Fuel Cell Applications. Polymers. 12(9):1-41. https://doi.org/10.3390/polym12091861 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/polym12091861 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 41 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 9 | es_ES |
dc.identifier.eissn | 2073-4360 | es_ES |
dc.identifier.pmid | 32825111 | es_ES |
dc.identifier.pmcid | PMC7564738 | es_ES |
dc.relation.pasarela | S\425651 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Kraytsberg, A., & Ein-Eli, Y. (2014). Review of Advanced Materials for Proton Exchange Membrane Fuel Cells. Energy & Fuels, 28(12), 7303-7330. doi:10.1021/ef501977k | es_ES |
dc.description.references | Li, Q., Jensen, J. O., Savinell, R. F., & Bjerrum, N. J. (2009). High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Progress in Polymer Science, 34(5), 449-477. doi:10.1016/j.progpolymsci.2008.12.003 | es_ES |
dc.description.references | CLEGHORN, S. (1997). Pem fuel cells for transportation and stationary power generation applications. International Journal of Hydrogen Energy, 22(12), 1137-1144. doi:10.1016/s0360-3199(97)00016-5 | es_ES |
dc.description.references | Scott, K., & Shukla, A. K. (2004). Polymer electrolyte membrane fuel cells: Principles and advances. Reviews in Environmental Science and Bio/Technology, 3(3), 273-280. doi:10.1007/s11157-004-6884-z | es_ES |
dc.description.references | Zhang, H., & Shen, P. K. (2012). Recent Development of Polymer Electrolyte Membranes for Fuel Cells. Chemical Reviews, 112(5), 2780-2832. doi:10.1021/cr200035s | es_ES |
dc.description.references | Cano, Z. P., Banham, D., Ye, S., Hintennach, A., Lu, J., Fowler, M., & Chen, Z. (2018). Batteries and fuel cells for emerging electric vehicle markets. Nature Energy, 3(4), 279-289. doi:10.1038/s41560-018-0108-1 | es_ES |
dc.description.references | Campanari, S., Manzolini, G., & Garcia de la Iglesia, F. (2009). Energy analysis of electric vehicles using batteries or fuel cells through well-to-wheel driving cycle simulations. Journal of Power Sources, 186(2), 464-477. doi:10.1016/j.jpowsour.2008.09.115 | es_ES |
dc.description.references | Merle, G., Wessling, M., & Nijmeijer, K. (2011). Anion exchange membranes for alkaline fuel cells: A review. Journal of Membrane Science, 377(1-2), 1-35. doi:10.1016/j.memsci.2011.04.043 | es_ES |
dc.description.references | Wang, Y., Chen, K. S., Mishler, J., Cho, S. C., & Adroher, X. C. (2011). A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Applied Energy, 88(4), 981-1007. doi:10.1016/j.apenergy.2010.09.030 | es_ES |
dc.description.references | Ormerod, R. M. (2002). Solid oxide fuel cells. Chemical Society Reviews, 32(1), 17-28. doi:10.1039/b105764m | es_ES |
dc.description.references | Dresp, S., Luo, F., Schmack, R., Kühl, S., Gliech, M., & Strasser, P. (2016). An efficient bifunctional two-component catalyst for oxygen reduction and oxygen evolution in reversible fuel cells, electrolyzers and rechargeable air electrodes. Energy & Environmental Science, 9(6), 2020-2024. doi:10.1039/c6ee01046f | es_ES |
dc.description.references | Haile, S. M., Boysen, D. A., Chisholm, C. R. I., & Merle, R. B. (2001). Solid acids as fuel cell electrolytes. Nature, 410(6831), 910-913. doi:10.1038/35073536 | es_ES |
dc.description.references | Pourcelly, G. (2011). Membranes for low and medium temperature fuel cells. State-of-the-art and new trends. Petroleum Chemistry, 51(7), 480-491. doi:10.1134/s0965544111070103 | es_ES |
dc.description.references | Scott, K., Xu, C., & Wu, X. (2013). Intermediate temperature proton-conducting membrane electrolytes for fuel cells. Wiley Interdisciplinary Reviews: Energy and Environment, 3(1), 24-41. doi:10.1002/wene.64 | es_ES |
dc.description.references | Dupuis, A.-C. (2011). Proton exchange membranes for fuel cells operated at medium temperatures: Materials and experimental techniques. Progress in Materials Science, 56(3), 289-327. doi:10.1016/j.pmatsci.2010.11.001 | es_ES |
dc.description.references | Park, C. H., Lee, C. H., Guiver, M. D., & Lee, Y. M. (2011). Sulfonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs). Progress in Polymer Science, 36(11), 1443-1498. doi:10.1016/j.progpolymsci.2011.06.001 | es_ES |
dc.description.references | Sun, X., Simonsen, S., Norby, T., & Chatzitakis, A. (2019). Composite Membranes for High Temperature PEM Fuel Cells and Electrolysers: A Critical Review. Membranes, 9(7), 83. doi:10.3390/membranes9070083 | es_ES |
dc.description.references | Lee, K.-S., Maurya, S., Kim, Y. S., Kreller, C. R., Wilson, M. S., Larsen, D., … Mukundan, R. (2018). Intermediate temperature fuel cells via an ion-pair coordinated polymer electrolyte. Energy & Environmental Science, 11(4), 979-987. doi:10.1039/c7ee03595k | es_ES |
dc.description.references | Mauritz, K. A., & Moore, R. B. (2004). State of Understanding of Nafion. Chemical Reviews, 104(10), 4535-4586. doi:10.1021/cr0207123 | es_ES |
dc.description.references | Casciola, M., Alberti, G., Sganappa, M., & Narducci, R. (2006). On the decay of Nafion proton conductivity at high temperature and relative humidity. Journal of Power Sources, 162(1), 141-145. doi:10.1016/j.jpowsour.2006.06.023 | es_ES |
dc.description.references | Alberti, G., Narducci, R., Di Vona, M. L., & Giancola, S. (2013). More on Nafion Conductivity Decay at Temperatures Higher than 80 °C: Preparation and First Characterization of In-Plane Oriented Layered Morphologies. Industrial & Engineering Chemistry Research, 52(31), 10418-10424. doi:10.1021/ie303628c | es_ES |
dc.description.references | Li, Q., He, R., Jensen, J. O., & Bjerrum, N. J. (2003). Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100 °C. Chemistry of Materials, 15(26), 4896-4915. doi:10.1021/cm0310519 | es_ES |
dc.description.references | Alberti, G., Narducci, R., & Sganappa, M. (2008). Effects of hydrothermal/thermal treatments on the water-uptake of Nafion membranes and relations with changes of conformation, counter-elastic force and tensile modulus of the matrix. Journal of Power Sources, 178(2), 575-583. doi:10.1016/j.jpowsour.2007.09.034 | es_ES |
dc.description.references | Subianto, S., Choudhury, N., & Dutta, N. (2013). Composite Electrolyte Membranes from Partially Fluorinated Polymer and Hyperbranched, Sulfonated Polysulfone. Nanomaterials, 4(1), 1-18. doi:10.3390/nano4010001 | es_ES |
dc.description.references | Zhang, J., Xie, Z., Zhang, J., Tang, Y., Song, C., Navessin, T., … Holdcroft, S. (2006). High temperature PEM fuel cells. Journal of Power Sources, 160(2), 872-891. doi:10.1016/j.jpowsour.2006.05.034 | es_ES |
dc.description.references | Neburchilov, V., Martin, J., Wang, H., & Zhang, J. (2007). A review of polymer electrolyte membranes for direct methanol fuel cells. Journal of Power Sources, 169(2), 221-238. doi:10.1016/j.jpowsour.2007.03.044 | es_ES |
dc.description.references | Zeis, R. (2015). Materials and characterization techniques for high-temperature polymer electrolyte membrane fuel cells. Beilstein Journal of Nanotechnology, 6, 68-83. doi:10.3762/bjnano.6.8 | es_ES |
dc.description.references | Abdul Rasheed, R. K., Liao, Q., Caizhi, Z., & Chan, S. H. (2017). A review on modelling of high temperature proton exchange membrane fuel cells (HT-PEMFCs). International Journal of Hydrogen Energy, 42(5), 3142-3165. doi:10.1016/j.ijhydene.2016.10.078 | es_ES |
dc.description.references | Rikukawa, M., & Sanui, K. (2000). Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Progress in Polymer Science, 25(10), 1463-1502. doi:10.1016/s0079-6700(00)00032-0 | es_ES |
dc.description.references | Kurdakova, V., Quartarone, E., Mustarelli, P., Magistris, A., Caponetti, E., & Saladino, M. L. (2010). PBI-based composite membranes for polymer fuel cells. Journal of Power Sources, 195(23), 7765-7769. doi:10.1016/j.jpowsour.2009.09.064 | es_ES |
dc.description.references | Wang, S., Zhang, G., Han, M., Li, H., Zhang, Y., Ni, J., … Na, H. (2011). Novel epoxy-based cross-linked polybenzimidazole for high temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 36(14), 8412-8421. doi:10.1016/j.ijhydene.2011.03.147 | es_ES |
dc.description.references | Lipman, T. E., Edwards, J. L., & Kammen, D. M. (2004). Fuel cell system economics: comparing the costs of generating power with stationary and motor vehicle PEM fuel cell systems. Energy Policy, 32(1), 101-125. doi:10.1016/s0301-4215(02)00286-0 | es_ES |
dc.description.references | Savinell, R., Yeager, E., Tryk, D., Landau, U., Wainright, J., Weng, D., … Rogers, C. (1994). A Polymer Electrolyte for Operation at Temperatures up to 200°C. Journal of The Electrochemical Society, 141(4), L46-L48. doi:10.1149/1.2054875 | es_ES |
dc.description.references | Asensio, J. A., Sánchez, E. M., & Gómez-Romero, P. (2010). Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest. Chemical Society Reviews, 39(8), 3210. doi:10.1039/b922650h | es_ES |
dc.description.references | Araya, S. S., Zhou, F., Liso, V., Sahlin, S. L., Vang, J. R., Thomas, S., … Kær, S. K. (2016). A comprehensive review of PBI-based high temperature PEM fuel cells. International Journal of Hydrogen Energy, 41(46), 21310-21344. doi:10.1016/j.ijhydene.2016.09.024 | es_ES |
dc.description.references | Vogel, H., & Marvel, C. S. (1961). Polybenzimidazoles, new thermally stable polymers. Journal of Polymer Science, 50(154), 511-539. doi:10.1002/pol.1961.1205015419 | es_ES |
dc.description.references | Mack, F., Klages, M., Scholta, J., Jörissen, L., Morawietz, T., Hiesgen, R., … Zeis, R. (2014). Morphology studies on high-temperature polymer electrolyte membrane fuel cell electrodes. Journal of Power Sources, 255, 431-438. doi:10.1016/j.jpowsour.2014.01.032 | es_ES |
dc.description.references | A. Perry, K., L. More, K., Andrew Payzant, E., Meisner, R. A., Sumpter, B. G., & Benicewicz, B. C. (2013). A comparative study of phosphoric acid-dopedm-PBI membranes. Journal of Polymer Science Part B: Polymer Physics, 52(1), 26-35. doi:10.1002/polb.23403 | es_ES |
dc.description.references | Quartarone, E., Angioni, S., & Mustarelli, P. (2017). Polymer and Composite Membranes for Proton-Conducting, High-Temperature Fuel Cells: A Critical Review. Materials, 10(7), 687. doi:10.3390/ma10070687 | es_ES |
dc.description.references | Kirubakaran, A., Jain, S., & Nema, R. K. (2009). A review on fuel cell technologies and power electronic interface. Renewable and Sustainable Energy Reviews, 13(9), 2430-2440. doi:10.1016/j.rser.2009.04.004 | es_ES |
dc.description.references | Ponomarev, I. I., Goryunov, E. I., Petrovskii, P. V., Ponomarev, I. I., Volkova, Y. A., Razorenov, D. Y., & Khokhlov, A. R. (2009). Synthesis of new monomer 3,3′-diamino-4,4′-bis{p-[(diethoxyphosphoryl)methyl]phenylamino}diphenyl sulfone and polybenzimidazoles on its basis. Doklady Chemistry, 429(2), 315-320. doi:10.1134/s0012500809120040 | es_ES |
dc.description.references | Ng, F., Péron, J., Jones, D. J., & Rozière, J. (2011). Synthesis of novel proton‐conducting highly sulfonated polybenzimidazoles for PEMFC and the effect of the type of bisphenyl bridge on polymer and membrane properties. Journal of Polymer Science Part A: Polymer Chemistry, 49(10), 2107-2117. doi:10.1002/pola.24630 | es_ES |
dc.description.references | Carollo, A., Quartarone, E., Tomasi, C., Mustarelli, P., Belotti, F., Magistris, A., … Righetti, P. P. (2006). Developments of new proton conducting membranes based on different polybenzimidazole structures for fuel cells applications. Journal of Power Sources, 160(1), 175-180. doi:10.1016/j.jpowsour.2006.01.081 | es_ES |
dc.description.references | Mustarelli, P., Quartarone, E., Grandi, S., Angioni, S., & Magistris, A. (2012). Increasing the permanent conductivity of PBI membranes for HT-PEMs. Solid State Ionics, 225, 228-231. doi:10.1016/j.ssi.2012.04.007 | es_ES |
dc.description.references | Conti, F., Majerus, A., Di Noto, V., Korte, C., Lehnert, W., & Stolten, D. (2012). Raman study of the polybenzimidazole–phosphoric acid interactions in membranes for fuel cells. Physical Chemistry Chemical Physics, 14(28), 10022. doi:10.1039/c2cp40553a | es_ES |
dc.description.references | Wippermann, K., Wannek, C., Oetjen, H.-F., Mergel, J., & Lehnert, W. (2010). Cell resistances of poly(2,5-benzimidazole)-based high temperature polymer membrane fuel cell membrane electrode assemblies: Time dependence and influence of operating parameters. Journal of Power Sources, 195(9), 2806-2809. doi:10.1016/j.jpowsour.2009.10.100 | es_ES |
dc.description.references | Mack, F., Aniol, K., Ellwein, C., Kerres, J., & Zeis, R. (2015). Novel phosphoric acid-doped PBI-blends as membranes for high-temperature PEM fuel cells. Journal of Materials Chemistry A, 3(20), 10864-10874. doi:10.1039/c5ta01337b | es_ES |
dc.description.references | Li, Z., He, G., Zhang, B., Cao, Y., Wu, H., Jiang, Z., & Tiantian, Z. (2014). Enhanced Proton Conductivity of Nafion Hybrid Membrane under Different Humidities by Incorporating Metal–Organic Frameworks With High Phytic Acid Loading. ACS Applied Materials & Interfaces, 6(12), 9799-9807. doi:10.1021/am502236v | es_ES |
dc.description.references | Zhou, Y., Yang, J., Su, H., Zeng, J., Jiang, S. P., & Goddard, W. A. (2014). Insight into Proton Transfer in Phosphotungstic Acid Functionalized Mesoporous Silica-Based Proton Exchange Membrane Fuel Cells. Journal of the American Chemical Society, 136(13), 4954-4964. doi:10.1021/ja411268q | es_ES |
dc.description.references | Zeng, J., Zhou, Y., Li, L., & Jiang, S. P. (2011). Phosphotungstic acid functionalized silica nanocomposites with tunable bicontinuous mesoporous structure and superior proton conductivity and stability for fuel cells. Physical Chemistry Chemical Physics, 13(21), 10249. doi:10.1039/c1cp20076c | es_ES |
dc.description.references | Liu, X., Li, Y., Xue, J., Zhu, W., Zhang, J., Yin, Y., … Guiver, M. D. (2019). Magnetic field alignment of stable proton-conducting channels in an electrolyte membrane. Nature Communications, 10(1). doi:10.1038/s41467-019-08622-2 | es_ES |
dc.description.references | Zhai, & Li. (2019). Polyoxometalate–Polymer Hybrid Materials as Proton Exchange Membranes for Fuel Cell Applications. Molecules, 24(19), 3425. doi:10.3390/molecules24193425 | es_ES |
dc.description.references | Escorihuela, J., García-Bernabé, A., & Compañ, V. (2020). A Deep Insight into Different Acidic Additives as Doping Agents for Enhancing Proton Conductivity on Polybenzimidazole Membranes. Polymers, 12(6), 1374. doi:10.3390/polym12061374 | es_ES |
dc.description.references | Yang, J. S., Cleemann, L. N., Steenberg, T., Terkelsen, C., Li, Q. F., Jensen, J. O., … He, R. H. (2013). High Molecular Weight Polybenzimidazole Membranes for High Temperature PEMFC. Fuel Cells, 14(1), 7-15. doi:10.1002/fuce.201300070 | es_ES |
dc.description.references | Chaudhari, H. D., Illathvalappil, R., Kurungot, S., & Kharul, U. K. (2018). Preparation and investigations of ABPBI membrane for HT-PEMFC by immersion precipitation method. Journal of Membrane Science, 564, 211-217. doi:10.1016/j.memsci.2018.07.026 | es_ES |
dc.description.references | Shigematsu, A., Yamada, T., & Kitagawa, H. (2011). Wide Control of Proton Conductivity in Porous Coordination Polymers. Journal of the American Chemical Society, 133(7), 2034-2036. doi:10.1021/ja109810w | es_ES |
dc.description.references | Agmon, N. (1995). The Grotthuss mechanism. Chemical Physics Letters, 244(5-6), 456-462. doi:10.1016/0009-2614(95)00905-j | es_ES |
dc.description.references | Bouchet, R. (1999). Proton conduction in acid doped polybenzimidazole. Solid State Ionics, 118(3-4), 287-299. doi:10.1016/s0167-2738(98)00466-4 | es_ES |
dc.description.references | Gebbie, M. A., Smith, A. M., Dobbs, H. A., Lee, A. A., Warr, G. G., Banquy, X., … Atkin, R. (2017). Long range electrostatic forces in ionic liquids. Chemical Communications, 53(7), 1214-1224. doi:10.1039/c6cc08820a | es_ES |
dc.description.references | Weingärtner, H. (2008). Understanding Ionic Liquids at the Molecular Level: Facts, Problems, and Controversies. Angewandte Chemie International Edition, 47(4), 654-670. doi:10.1002/anie.200604951 | es_ES |
dc.description.references | Wang, C., Li, Z., Sun, P., Pei, H., & Yin, X. (2020). Preparation and Properties of Covalently Crosslinked Polybenzimidazole High Temperature Proton Exchange Membranes Doped with High Sulfonated Polyphosphazene. Journal of The Electrochemical Society, 167(10), 104517. doi:10.1149/1945-7111/ab9d60 | es_ES |
dc.description.references | Rajabi, Z., Javanbakht, M., Hooshyari, K., Badiei, A., & Adibi, M. (2020). High temperature composite membranes based on polybenzimidazole and dendrimer amine functionalized SBA-15 mesoporous silica for fuel cells. New Journal of Chemistry, 44(13), 5001-5018. doi:10.1039/c9nj05369g | es_ES |
dc.description.references | Escorihuela, García-Bernabé, Montero, Andrio, Sahuquillo, Giménez, & Compañ. (2019). Proton Conductivity through Polybenzimidazole Composite Membranes Containing Silica Nanofiber Mats. Polymers, 11(7), 1182. doi:10.3390/polym11071182 | es_ES |
dc.description.references | Escorihuela, J., Sahuquillo, Ó., García-Bernabé, A., Giménez, E., & Compañ, V. (2018). Phosphoric Acid Doped Polybenzimidazole (PBI)/Zeolitic Imidazolate Framework Composite Membranes with Significantly Enhanced Proton Conductivity under Low Humidity Conditions. Nanomaterials, 8(10), 775. doi:10.3390/nano8100775 | es_ES |
dc.description.references | Abouzari-Lotf, E., Zakeri, M., Nasef, M. M., Miyake, M., Mozarmnia, P., Bazilah, N. A., … Ahmad, A. (2019). Highly durable polybenzimidazole composite membranes with phosphonated graphene oxide for high temperature polymer electrolyte membrane fuel cells. Journal of Power Sources, 412, 238-245. doi:10.1016/j.jpowsour.2018.11.057 | es_ES |
dc.description.references | Quartarone, E., & Mustarelli, P. (2012). Polymer fuel cells based on polybenzimidazole/H3PO4. Energy & Environmental Science, 5(4), 6436. doi:10.1039/c2ee03055a | es_ES |
dc.description.references | Samms, S. R., Wasmus, S., & Savinell, R. F. (1996). Thermal Stability of Proton Conducting Acid Doped Polybenzimidazole in Simulated Fuel Cell Environments. Journal of The Electrochemical Society, 143(4), 1225-1232. doi:10.1149/1.1836621 | es_ES |
dc.description.references | Yang, J., Li, Q., Cleemann, L. N., Xu, C., Jensen, J. O., Pan, C., … He, R. (2012). Synthesis and properties of poly(aryl sulfone benzimidazole) and its copolymers for high temperature membrane electrolytes for fuel cells. Journal of Materials Chemistry, 22(22), 11185. doi:10.1039/c2jm30217a | es_ES |
dc.description.references | Yang, J., Aili, D., Li, Q., Xu, Y., Liu, P., Che, Q., … He, R. (2013). Benzimidazole grafted polybenzimidazoles for proton exchange membrane fuel cells. Polymer Chemistry, 4(17), 4768. doi:10.1039/c3py00408b | es_ES |
dc.description.references | Li, J., Li, X., Zhao, Y., Lu, W., Shao, Z., & Yi, B. (2012). High-Temperature Proton-Exchange-Membrane Fuel Cells Using an Ether-Containing Polybenzimidazole Membrane as Electrolyte. ChemSusChem, 5(5), 896-900. doi:10.1002/cssc.201100725 | es_ES |
dc.description.references | Berber, M. R., & Nakashima, N. (2019). Bipyridine-based polybenzimidazole membranes with outstanding hydrogen fuel cell performance at high temperature and non-humidifying conditions. Journal of Membrane Science, 591, 117354. doi:10.1016/j.memsci.2019.117354 | es_ES |
dc.description.references | Kang, Y., Zou, J., Sun, Z., Wang, F., Zhu, H., Han, K., … Meng, Q. (2013). Polybenzimidazole containing ether units as electrolyte for high temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 38(15), 6494-6502. doi:10.1016/j.ijhydene.2013.03.051 | es_ES |
dc.description.references | Ou, T., Chen, H., Hu, B., Zheng, H., Li, W., & Wang, Y. (2018). A facile method of asymmetric ether-containing polybenzimidazole membrane for high temperature proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 43(27), 12337-12345. doi:10.1016/j.ijhydene.2018.04.166 | es_ES |
dc.description.references | Bruma, M., Fitch, J. W., & Cassidy, P. E. (1996). Hexafluoroisopropylidene-Containing Polymers for High-Performance Applications. Journal of Macromolecular Science, Part C: Polymer Reviews, 36(1), 119-159. doi:10.1080/15321799608009644 | es_ES |
dc.description.references | Qian, G., & Benicewicz, B. C. (2009). Synthesis and characterization of high molecular weight hexafluoroisopropylidene-containing polybenzimidazole for high-temperature polymer electrolyte membrane fuel cells. Journal of Polymer Science Part A: Polymer Chemistry, 47(16), 4064-4073. doi:10.1002/pola.23467 | es_ES |
dc.description.references | Yang, J., Xu, Y., Liu, P., Gao, L., Che, Q., & He, R. (2015). Epoxides cross-linked hexafluoropropylidene polybenzimidazole membranes for application as high temperature proton exchange membranes. Electrochimica Acta, 160, 281-287. doi:10.1016/j.electacta.2015.01.094 | es_ES |
dc.description.references | Kolb, H. C., Finn, M. G., & Sharpless, K. B. (2001). Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angewandte Chemie International Edition, 40(11), 2004-2021. doi:10.1002/1521-3773(20010601)40:11<2004::aid-anie2004>3.0.co;2-5 | es_ES |
dc.description.references | Escorihuela, J., Marcelis, A. T. M., & Zuilhof, H. (2015). Metal‐Free Click Chemistry Reactions on Surfaces. Advanced Materials Interfaces, 2(13), 1500135. doi:10.1002/admi.201500135 | es_ES |
dc.description.references | Sen, R., Escorihuela, J., Smulders, M. M. J., & Zuilhof, H. (2016). Use of Ambient Ionization High-Resolution Mass Spectrometry for the Kinetic Analysis of Organic Surface Reactions. Langmuir, 32(14), 3412-3419. doi:10.1021/acs.langmuir.6b00427 | es_ES |
dc.description.references | Lowe, A. B. (2010). Thiol-ene «click» reactions and recent applications in polymer and materials synthesis. Polym. Chem., 1(1), 17-36. doi:10.1039/b9py00216b | es_ES |
dc.description.references | Escorihuela, J., Bañuls, M.-J., Grijalvo, S., Eritja, R., Puchades, R., & Maquieira, Á. (2014). Direct Covalent Attachment of DNA Microarrays by Rapid Thiol–Ene «Click» Chemistry. Bioconjugate Chemistry, 25(3), 618-627. doi:10.1021/bc500033d | es_ES |
dc.description.references | Yao, B., Mei, J., Li, J., Wang, J., Wu, H., Sun, J. Z., … Tang, B. Z. (2014). Catalyst-Free Thiol–Yne Click Polymerization: A Powerful and Facile Tool for Preparation of Functional Poly(vinylene sulfide)s. Macromolecules, 47(4), 1325-1333. doi:10.1021/ma402559a | es_ES |
dc.description.references | Escorihuela, J., Bañuls, M.-J., Puchades, R., & Maquieira, Á. (2014). Site-specific immobilization of DNA on silicon surfaces by using the thiol–yne reaction. J. Mater. Chem. B, 2(48), 8510-8517. doi:10.1039/c4tb01108b | es_ES |
dc.description.references | Sen, R., Gahtory, D., Escorihuela, J., Firet, J., Pujari, S. P., & Zuilhof, H. (2017). Approach Matters: The Kinetics of Interfacial Inverse-Electron Demand Diels-Alder Reactions. Chemistry - A European Journal, 23(53), 13015-13022. doi:10.1002/chem.201703103 | es_ES |
dc.description.references | MacKenzie, D. A., Sherratt, A. R., Chigrinova, M., Cheung, L. L., & Pezacki, J. P. (2014). Strain-promoted cycloadditions involving nitrones and alkynes—rapid tunable reactions for bioorthogonal labeling. Current Opinion in Chemical Biology, 21, 81-88. doi:10.1016/j.cbpa.2014.05.023 | es_ES |
dc.description.references | Ning, X., Temming, R. P., Dommerholt, J., Guo, J., Ania, D. B., Debets, M. F., … van Delft, F. L. (2010). Protein Modification by Strain-Promoted Alkyne-Nitrone Cycloaddition. Angewandte Chemie International Edition, 49(17), 3065-3068. doi:10.1002/anie.201000408 | es_ES |
dc.description.references | Sen, R., Escorihuela, J., van Delft, F., & Zuilhof, H. (2017). Rapid and Complete Surface Modification with Strain-Promoted Oxidation-Controlled Cyclooctyne-1,2-Quinone Cycloaddition (SPOCQ). Angewandte Chemie International Edition, 56(12), 3299-3303. doi:10.1002/anie.201612037 | es_ES |
dc.description.references | Escorihuela, J., Das, A., Looijen, W. J. E., van Delft, F. L., Aquino, A. J. A., Lischka, H., & Zuilhof, H. (2017). Kinetics of the Strain-Promoted Oxidation-Controlled Cycloalkyne-1,2-quinone Cycloaddition: Experimental and Theoretical Studies. The Journal of Organic Chemistry, 83(1), 244-252. doi:10.1021/acs.joc.7b02614 | es_ES |
dc.description.references | Gahtory, D., Sen, R., Kuzmyn, A. R., Escorihuela, J., & Zuilhof, H. (2018). Strain-Promoted Cycloaddition of Cyclopropenes with o -Quinones: A Rapid Click Reaction. Angewandte Chemie International Edition, 57(32), 10118-10122. doi:10.1002/anie.201800937 | es_ES |
dc.description.references | Leophairatana, P., De Silva, C. C., & Koberstein, J. T. (2017). How good is CuAAC «click» chemistry for polymer coupling reactions? Journal of Polymer Science Part A: Polymer Chemistry, 56(1), 75-84. doi:10.1002/pola.28872 | es_ES |
dc.description.references | Kumar B., S., Sana, B., Unnikrishnan, G., Jana, T., & Kumar K. S., S. (2020). Polybenzimidazole co-polymers: their synthesis, morphology and high temperature fuel cell membrane properties. Polymer Chemistry, 11(5), 1043-1054. doi:10.1039/c9py01403a | es_ES |
dc.description.references | Kulkarni, M. P., Peckham, T. J., Thomas, O. D., & Holdcroft, S. (2013). Synthesis of highly sulfonated polybenzimidazoles by direct copolymerization and grafting. Journal of Polymer Science Part A: Polymer Chemistry, 51(17), 3654-3666. doi:10.1002/pola.26764 | es_ES |
dc.description.references | Aili, D., Javakhishvili, I., Han, J., Jankova, K., Pan, C., Hvilsted, S., … Li, Q. (2016). Amino-Functional Polybenzimidazole Blends with Enhanced Phosphoric Acid Mediated Proton Conductivity as Fuel Cell Electrolytes. Macromolecular Chemistry and Physics, 217(10), 1161-1168. doi:10.1002/macp.201600059 | es_ES |
dc.description.references | Zhao, B., Cheng, L., Bei, Y., Wang, S., Cui, J., Zhu, H., … Zhu, Q. (2017). Grafted polybenzimidazole copolymers bearing polyhedral oligosilsesquioxane pendant moieties. European Polymer Journal, 94, 99-110. doi:10.1016/j.eurpolymj.2017.05.024 | es_ES |
dc.description.references | Lee, H.-S., Roy, A., Lane, O., & McGrath, J. E. (2008). Synthesis and characterization of poly(arylene ether sulfone)-b-polybenzimidazole copolymers for high temperature low humidity proton exchange membrane fuel cells. Polymer, 49(25), 5387-5396. doi:10.1016/j.polymer.2008.09.019 | es_ES |
dc.description.references | Kim, T.-H., Kim, S.-K., Lim, T.-W., & Lee, J.-C. (2008). Synthesis and properties of poly(aryl ether benzimidazole) copolymers for high-temperature fuel cell membranes. Journal of Membrane Science, 323(2), 362-370. doi:10.1016/j.memsci.2008.06.040 | es_ES |
dc.description.references | Mader, J. A., & Benicewicz, B. C. (2011). Synthesis and Properties of Random Copolymers of Functionalised Polybenzimidazoles for High Temperature Fuel Cells. Fuel Cells, 11(2), 212-221. doi:10.1002/fuce.201000080 | es_ES |
dc.description.references | Seel, D. C., & Benicewicz, B. C. (2012). Polyphenylquinoxaline-based proton exchange membranes synthesized via the PPA Process for high temperature fuel cell systems. Journal of Membrane Science, 405-406, 57-67. doi:10.1016/j.memsci.2012.02.044 | es_ES |
dc.description.references | Molleo, M. A., Chen, X., Ploehn, H. J., Fishel, K. J., & Benicewicz, B. C. (2014). High Polymer Content 3,5-Pyridine-Polybenzimidazole Copolymer Membranes with Improved Compressive Properties. Fuel Cells, 14(1), 16-25. doi:10.1002/fuce.201300202 | es_ES |
dc.description.references | Molleo, M. A., Chen, X., Ploehn, H. J., & Benicewicz, B. C. (2014). High Polymer Content 2,5-Pyridine-Polybenzimidazole Copolymer Membranes with Improved Compressive Properties. Fuel Cells, 15(1), 150-155. doi:10.1002/fuce.201400129 | es_ES |
dc.description.references | Schönberger, F., Qian, G., & Benicewicz, B. C. (2017). Polybenzimidazole-based block copolymers: From monomers to membrane electrode assemblies for high temperature polymer electrolyte membrane fuel cells. Journal of Polymer Science Part A: Polymer Chemistry, 55(11), 1831-1843. doi:10.1002/pola.28530 | es_ES |
dc.description.references | Maity, S., & Jana, T. (2014). Polybenzimidazole Block Copolymers for Fuel Cell: Synthesis and Studies of Block Length Effects on Nanophase Separation, Mechanical Properties, and Proton Conductivity of PEM. ACS Applied Materials & Interfaces, 6(9), 6851-6864. doi:10.1021/am500668c | es_ES |
dc.description.references | Chen, S., Pan, H., Chang, Z., Jin, M., & Pu, H. (2018). Synthesis and study of pyridine-containing sulfonated polybenzimidazole multiblock copolymer for proton exchange membrane fuel cells. Ionics, 25(5), 2255-2265. doi:10.1007/s11581-018-2610-7 | es_ES |
dc.description.references | Yuan, Q., Sun, G.-H., Han, K.-F., Yu, J.-H., Zhu, H., & Wang, Z.-M. (2016). Copolymerization of 4-(3,4-diamino-phenoxy)-benzoic acid and 3,4-diaminobenzoic acid towards H3PO4-doped PBI membranes for proton conductor with better processability. European Polymer Journal, 85, 175-186. doi:10.1016/j.eurpolymj.2016.10.002 | es_ES |
dc.description.references | Kim, S.-K., Choi, S.-W., Jeon, W. S., Park, J. O., Ko, T., Chang, H., & Lee, J.-C. (2012). Cross-Linked Benzoxazine–Benzimidazole Copolymer Electrolyte Membranes for Fuel Cells at Elevated Temperature. Macromolecules, 45(3), 1438-1446. doi:10.1021/ma202694p | es_ES |
dc.description.references | Dechnik, J., Gascon, J., Doonan, C. J., Janiak, C., & Sumby, C. J. (2017). Mixed‐Matrix Membranes. Angewandte Chemie International Edition, 56(32), 9292-9310. doi:10.1002/anie.201701109 | es_ES |
dc.description.references | Devrim, Y., Devrim, H., & Eroglu, I. (2016). Polybenzimidazole/SiO2 hybrid membranes for high temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 41(23), 10044-10052. doi:10.1016/j.ijhydene.2016.02.043 | es_ES |
dc.description.references | Pinar, F. J., Cañizares, P., Rodrigo, M. A., Úbeda, D., & Lobato, J. (2015). Long-term testing of a high-temperature proton exchange membrane fuel cell short stack operated with improved polybenzimidazole-based composite membranes. Journal of Power Sources, 274, 177-185. doi:10.1016/j.jpowsour.2014.08.136 | es_ES |
dc.description.references | Nawn, G., Pace, G., Lavina, S., Vezzù, K., Negro, E., Bertasi, F., … Di Noto, V. (2015). Nanocomposite Membranes based on Polybenzimidazole and ZrO2for High-Temperature Proton Exchange Membrane Fuel Cells. ChemSusChem, 8(8), 1381-1393. doi:10.1002/cssc.201403049 | es_ES |
dc.description.references | Zhang, S., Davaajargal, T., Aiba, M., Akasaka, S., Ashizawa, M., Tsuruoka, S., … Matsumoto, H. (2017). Enhancing water flux through semipermeable polybenzimidazole membranes by adding surfactant‐treated CNT s. Journal of Applied Polymer Science, 135(7), 45875. doi:10.1002/app.45875 | es_ES |
dc.description.references | Xu, C., Cao, Y., Kumar, R., Wu, X., Wang, X., & Scott, K. (2011). A polybenzimidazole/sulfonated graphite oxide composite membrane for high temperature polymer electrolyte membrane fuel cells. Journal of Materials Chemistry, 21(30), 11359. doi:10.1039/c1jm11159k | es_ES |
dc.description.references | Cai, Y., Yue, Z., & Xu, S. (2017). A novel polybenzimidazole composite modified by sulfonated graphene oxide for high temperature proton exchange membrane fuel cells in anhydrous atmosphere. Journal of Applied Polymer Science, 134(25). doi:10.1002/app.44986 | es_ES |
dc.description.references | Gupta, C., Maheshwari, P. H., & Dhakate, S. R. (2016). Development of multiwalled carbon nanotubes platinum nanocomposite as efficient PEM fuel cell catalyst. Materials for Renewable and Sustainable Energy, 5(1). doi:10.1007/s40243-015-0066-5 | es_ES |
dc.description.references | Díaz, M., Ortiz, A., & Ortiz, I. (2014). Progress in the use of ionic liquids as electrolyte membranes in fuel cells. Journal of Membrane Science, 469, 379-396. doi:10.1016/j.memsci.2014.06.033 | es_ES |
dc.description.references | Kallem, P., Yanar, N., & Choi, H. (2018). Nanofiber-Based Proton Exchange Membranes: Development of Aligned Electrospun Nanofibers for Polymer Electrolyte Fuel Cell Applications. ACS Sustainable Chemistry & Engineering, 7(2), 1808-1825. doi:10.1021/acssuschemeng.8b03601 | es_ES |
dc.description.references | Lobato, J., Cañizares, P., Rodrigo, M. A., Úbeda, D., & Pinar, F. J. (2011). A novel titanium PBI-based composite membrane for high temperature PEMFCs. Journal of Membrane Science, 369(1-2), 105-111. doi:10.1016/j.memsci.2010.11.051 | es_ES |
dc.description.references | Tahrim, A. A., & Amin, I. N. H. M. (2018). Advancement in Phosphoric Acid Doped Polybenzimidazole Membrane for High Temperature PEM Fuel Cells: A Review. Journal of Applied Membrane Science & Technology, 23(1). doi:10.11113/amst.v23n1.136 | es_ES |
dc.description.references | Pu, H., Liu, L., Chang, Z., & Yuan, J. (2009). Organic/inorganic composite membranes based on polybenzimidazole and nano-SiO2. Electrochimica Acta, 54(28), 7536-7541. doi:10.1016/j.electacta.2009.08.011 | es_ES |
dc.description.references | Özdemir, Y., Üregen, N., & Devrim, Y. (2017). Polybenzimidazole based nanocomposite membranes with enhanced proton conductivity for high temperature PEM fuel cells. International Journal of Hydrogen Energy, 42(4), 2648-2657. doi:10.1016/j.ijhydene.2016.04.132 | es_ES |
dc.description.references | Seo, K., Seo, J., Nam, K.-H., & Han, H. (2015). Polybenzimidazole/inorganic composite membrane with advanced performance for high temperature polymer electrolyte membrane fuel cells. Polymer Composites, 38(1), 87-95. doi:10.1002/pc.23563 | es_ES |
dc.description.references | Lysova, A. A., Ponomarev, I. I., & Yaroslavtsev, A. B. (2011). Composite materials based on polybenzimidazole and inorganic oxides. Solid State Ionics, 188(1), 132-134. doi:10.1016/j.ssi.2010.10.010 | es_ES |
dc.description.references | Zhang, Q., Liu, H., Li, X., Xu, R., Zhong, J., Chen, R., & Gu, X. (2016). Synthesis and characterization of polybenzimidazole/α-zirconium phosphate composites as proton exchange membrane. Polymer Engineering & Science, 56(6), 622-628. doi:10.1002/pen.24287 | es_ES |
dc.description.references | Lobato, J., Cañizares, P., Rodrigo, M. A., Úbeda, D., & Pinar, F. J. (2011). Enhancement of the fuel cell performance of a high temperature proton exchange membrane fuel cell running with titanium composite polybenzimidazole-based membranes. Journal of Power Sources, 196(20), 8265-8271. doi:10.1016/j.jpowsour.2011.06.011 | es_ES |
dc.description.references | Shabanikia, A., Javanbakht, M., Amoli, H. S., Hooshyari, K., & Enhessari, M. (2015). Novel nanocomposite membranes based on polybenzimidazole and Fe2TiO5 nanoparticles for proton exchange membrane fuel cells. Ionics, 21(8), 2227-2236. doi:10.1007/s11581-015-1392-4 | es_ES |
dc.description.references | Qiu, G., Jiang, T., Li, H., & Wang, D. (2003). Functions and molecular structure of organic binders for iron ore pelletization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 224(1-3), 11-22. doi:10.1016/s0927-7757(03)00264-4 | es_ES |
dc.description.references | Mohammadi, G., Jahanshahi, M., & Rahimpour, A. (2013). Fabrication and evaluation of Nafion nanocomposite membrane based on ZrO2–TiO2 binary nanoparticles as fuel cell MEA. International Journal of Hydrogen Energy, 38(22), 9387-9394. doi:10.1016/j.ijhydene.2012.09.096 | es_ES |
dc.description.references | He, R. (2003). Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors. Journal of Membrane Science, 226(1-2), 169-184. doi:10.1016/j.memsci.2003.09.002 | es_ES |
dc.description.references | Di, S., Yan, L., Han, S., Yue, B., Feng, Q., Xie, L., … Sun, C. (2012). Enhancing the high-temperature proton conductivity of phosphoric acid doped poly(2,5-benzimidazole) by preblending boron phosphate nanoparticles to the raw materials. Journal of Power Sources, 211, 161-168. doi:10.1016/j.jpowsour.2012.03.091 | es_ES |
dc.description.references | Xu, C., Wu, X., Wang, X., Mamlouk, M., & Scott, K. (2011). Composite membranes of polybenzimidazole and caesium-salts-of-heteropolyacids for intermediate temperature fuel cells. Journal of Materials Chemistry, 21(16), 6014. doi:10.1039/c1jm10093a | es_ES |
dc.description.references | Hooshyari, K., Javanbakht, M., Shabanikia, A., & Enhessari, M. (2015). Fabrication BaZrO3/PBI-based nanocomposite as a new proton conducting membrane for high temperature proton exchange membrane fuel cells. Journal of Power Sources, 276, 62-72. doi:10.1016/j.jpowsour.2014.11.083 | es_ES |
dc.description.references | Shabanikia, A., Javanbakht, M., Amoli, H. S., Hooshyari, K., & Enhessari, M. (2015). Polybenzimidazole/strontium cerate nanocomposites with enhanced proton conductivity for proton exchange membrane fuel cells operating at high temperature. Electrochimica Acta, 154, 370-378. doi:10.1016/j.electacta.2014.12.025 | es_ES |
dc.description.references | Fuentes, I., Andrio, A., Teixidor, F., Viñas, C., & Compañ, V. (2017). Enhanced conductivity of sodium versus lithium salts measured by impedance spectroscopy. Sodium cobaltacarboranes as electrolytes of choice. Physical Chemistry Chemical Physics, 19(23), 15177-15186. doi:10.1039/c7cp02526b | es_ES |
dc.description.references | Fuentes, I., Andrio, A., García-Bernabé, A., Escorihuela, J., Viñas, C., Teixidor, F., & Compañ, V. (2018). Structural and dielectric properties of cobaltacarborane composite polybenzimidazole membranes as solid polymer electrolytes at high temperature. Physical Chemistry Chemical Physics, 20(15), 10173-10184. doi:10.1039/c8cp00372f | es_ES |
dc.description.references | Olvera-Mancilla, J., Escorihuela, J., Alexandrova, L., Andrio, A., García-Bernabé, A., del Castillo, L. F., & Compañ, V. (2020). Effect of metallacarborane salt H[COSANE] doping on the performance properties of polybenzimidazole membranes for high temperature PEMFCs. Soft Matter, 16(32), 7624-7635. doi:10.1039/d0sm00743a | es_ES |
dc.description.references | Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., … Ruoff, R. S. (2006). Graphene-based composite materials. Nature, 442(7100), 282-286. doi:10.1038/nature04969 | es_ES |
dc.description.references | Chee, W. K., Lim, H. N., Huang, N. M., & Harrison, I. (2015). Nanocomposites of graphene/polymers: a review. RSC Advances, 5(83), 68014-68051. doi:10.1039/c5ra07989f | es_ES |
dc.description.references | Xu, C., Liu, X., Cheng, J., & Scott, K. (2015). A polybenzimidazole/ionic-liquid-graphite-oxide composite membrane for high temperature polymer electrolyte membrane fuel cells. Journal of Power Sources, 274, 922-927. doi:10.1016/j.jpowsour.2014.10.134 | es_ES |
dc.description.references | Chen, D., Tang, L., & Li, J. (2010). Graphene-based materials in electrochemistry. Chemical Society Reviews, 39(8), 3157. doi:10.1039/b923596e | es_ES |
dc.description.references | Yang, Y.-H., Bolling, L., Priolo, M. A., & Grunlan, J. C. (2012). Super Gas Barrier and Selectivity of Graphene Oxide-Polymer Multilayer Thin Films. Advanced Materials, 25(4), 503-508. doi:10.1002/adma.201202951 | es_ES |
dc.description.references | Thebo, K. H., Qian, X., Zhang, Q., Chen, L., Cheng, H.-M., & Ren, W. (2018). Highly stable graphene-oxide-based membranes with superior permeability. Nature Communications, 9(1). doi:10.1038/s41467-018-03919-0 | es_ES |
dc.description.references | Ma, M., Guo, L., Anderson, D. G., & Langer, R. (2013). Bio-Inspired Polymer Composite Actuator and Generator Driven by Water Gradients. Science, 339(6116), 186-189. doi:10.1126/science.1230262 | es_ES |
dc.description.references | Chee, W. K., Lim, H. N., Harrison, I., Chong, K. F., Zainal, Z., Ng, C. H., & Huang, N. M. (2015). Performance of Flexible and Binderless Polypyrrole/Graphene Oxide/Zinc Oxide Supercapacitor Electrode in a Symmetrical Two-Electrode Configuration. Electrochimica Acta, 157, 88-94. doi:10.1016/j.electacta.2015.01.080 | es_ES |
dc.description.references | Cao, J., Chen, C., Zhao, Q., Zhang, N., Lu, Q., Wang, X., … Chen, J. (2016). A Flexible Nanostructured Paper of a Reduced Graphene Oxide-Sulfur Composite for High-Performance Lithium-Sulfur Batteries with Unconventional Configurations. Advanced Materials, 28(43), 9629-9636. doi:10.1002/adma.201602262 | es_ES |
dc.description.references | Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., … Hong, B. H. (2009). Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457(7230), 706-710. doi:10.1038/nature07719 | es_ES |
dc.description.references | Yang, J., Liu, C., Gao, L., Wang, J., Xu, Y., & He, R. (2015). Novel composite membranes of triazole modified graphene oxide and polybenzimidazole for high temperature polymer electrolyte membrane fuel cell applications. RSC Advances, 5(122), 101049-101054. doi:10.1039/c5ra16554g | es_ES |
dc.description.references | Adeli, M., Soleyman, R., Beiranvand, Z., & Madani, F. (2013). Carbon nanotubes in cancer therapy: a more precise look at the role of carbon nanotube–polymer interactions. Chemical Society Reviews, 42(12), 5231. doi:10.1039/c3cs35431h | es_ES |
dc.description.references | Saito, N., Haniu, H., Usui, Y., Aoki, K., Hara, K., Takanashi, S., … Endo, M. (2014). Safe Clinical Use of Carbon Nanotubes as Innovative Biomaterials. Chemical Reviews, 114(11), 6040-6079. doi:10.1021/cr400341h | es_ES |
dc.description.references | Rajabi, M., Mahanpoor, K., & Moradi, O. (2017). Removal of dye molecules from aqueous solution by carbon nanotubes and carbon nanotube functional groups: critical review. RSC Adv., 7(74), 47083-47090. doi:10.1039/c7ra09377b | es_ES |
dc.description.references | Yan, Y., Miao, J., Yang, Z., Xiao, F.-X., Yang, H. B., Liu, B., & Yang, Y. (2015). Carbon nanotube catalysts: recent advances in synthesis, characterization and applications. Chemical Society Reviews, 44(10), 3295-3346. doi:10.1039/c4cs00492b | es_ES |
dc.description.references | Hu, L., Hecht, D. S., & Grüner, G. (2010). Carbon Nanotube Thin Films: Fabrication, Properties, and Applications. Chemical Reviews, 110(10), 5790-5844. doi:10.1021/cr9002962 | es_ES |
dc.description.references | Che, Y., Chen, H., Gui, H., Liu, J., Liu, B., & Zhou, C. (2014). Review of carbon nanotube nanoelectronics and macroelectronics. Semiconductor Science and Technology, 29(7), 073001. doi:10.1088/0268-1242/29/7/073001 | es_ES |
dc.description.references | Dillon, A. C. (2010). Carbon Nanotubes for Photoconversion and Electrical Energy Storage. Chemical Reviews, 110(11), 6856-6872. doi:10.1021/cr9003314 | es_ES |
dc.description.references | Wang, L., Liu, H., Konik, R. M., Misewich, J. A., & Wong, S. S. (2013). Carbon nanotube-based heterostructures for solar energy applications. Chemical Society Reviews, 42(20), 8134. doi:10.1039/c3cs60088b | es_ES |
dc.description.references | Yu, L., Shearer, C., & Shapter, J. (2016). Recent Development of Carbon Nanotube Transparent Conductive Films. Chemical Reviews, 116(22), 13413-13453. doi:10.1021/acs.chemrev.6b00179 | es_ES |
dc.description.references | Valitova, I., Amato, M., Mahvash, F., Cantele, G., Maffucci, A., Santato, C., … Cicoira, F. (2013). Carbon nanotube electrodes in organic transistors. Nanoscale, 5(11), 4638. doi:10.1039/c3nr33727h | es_ES |
dc.description.references | Cao, Z., & Wei, B. (B. Q. . (2013). A perspective: carbon nanotube macro-films for energy storage. Energy Environ. Sci., 6(11), 3183-3201. doi:10.1039/c3ee42261e | es_ES |
dc.description.references | De Volder, M. F. L., Tawfick, S. H., Baughman, R. H., & Hart, A. J. (2013). Carbon Nanotubes: Present and Future Commercial Applications. Science, 339(6119), 535-539. doi:10.1126/science.1222453 | es_ES |
dc.description.references | Zadehnazari, A., & Takassi, M. A. (2016). Synthesis of modified multi-walled carbon nanotube poly(benzimidazole-imide) composites: assessment of morphological and thermo-mechanical properties. Composite Interfaces, 23(9), 909-924. doi:10.1080/09276440.2016.1180500 | es_ES |
dc.description.references | Chang, C.-M., & Liu, Y.-L. (2010). Functionalization of multi-walled carbon nanotubes with non-reactive polymers through an ozone-mediated process for the preparation of a wide range of high performance polymer/carbon nanotube composites. Carbon, 48(4), 1289-1297. doi:10.1016/j.carbon.2009.12.002 | es_ES |
dc.description.references | Suryani, Chang, C.-M., Liu, Y.-L., & Lee, Y. M. (2011). Polybenzimidazole membranes modified with polyelectrolyte-functionalized multiwalled carbon nanotubes for proton exchange membrane fuel cells. Journal of Materials Chemistry, 21(20), 7480. doi:10.1039/c1jm10439j | es_ES |
dc.description.references | Kannan, R., Kagalwala, H. N., Chaudhari, H. D., Kharul, U. K., Kurungot, S., & Pillai, V. K. (2011). Improved performance of phosphonated carbon nanotube–polybenzimidazole composite membranes in proton exchange membrane fuel cells. Journal of Materials Chemistry, 21(20), 7223. doi:10.1039/c0jm04265j | es_ES |
dc.description.references | Jheng, L., Huang, C., & Hsu, S. L. (2013). Sulfonated MWNT and imidazole functionalized MWNT/polybenzimidazole composite membranes for high-temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 38(3), 1524-1534. doi:10.1016/j.ijhydene.2012.10.111 | es_ES |
dc.description.references | Du, C. Y., Zhao, T. S., & Liang, Z. X. (2008). Sulfonation of carbon-nanotube supported platinum catalysts for polymer electrolyte fuel cells. Journal of Power Sources, 176(1), 9-15. doi:10.1016/j.jpowsour.2007.10.016 | es_ES |
dc.description.references | Park, M. J., Lee, J. K., Lee, B. S., Lee, Y.-W., Choi, I. S., & Lee, S. (2006). Covalent Modification of Multiwalled Carbon Nanotubes with Imidazolium-Based Ionic Liquids: Effect of Anions on Solubility. Chemistry of Materials, 18(6), 1546-1551. doi:10.1021/cm0511421 | es_ES |
dc.description.references | Guerrero Moreno, N., Gervasio, D., Godínez García, A., & Pérez Robles, J. F. (2015). Polybenzimidazole-multiwall carbon nanotubes composite membranes for polymer electrolyte membrane fuel cells. Journal of Power Sources, 300, 229-237. doi:10.1016/j.jpowsour.2015.09.070 | es_ES |
dc.description.references | Escorihuela, J., Narducci, R., Compañ, V., & Costantino, F. (2018). Proton Conductivity of Composite Polyelectrolyte Membranes with Metal‐Organic Frameworks for Fuel Cell Applications. Advanced Materials Interfaces, 1801146. doi:10.1002/admi.201801146 | es_ES |
dc.description.references | Ramaswamy, P., Wong, N. E., Gelfand, B. S., & Shimizu, G. K. H. (2015). A Water Stable Magnesium MOF That Conducts Protons over 10–2 S cm–1. Journal of the American Chemical Society, 137(24), 7640-7643. doi:10.1021/jacs.5b04399 | es_ES |
dc.description.references | Diercks, C. S., & Yaghi, O. M. (2017). The atom, the molecule, and the covalent organic framework. Science, 355(6328). doi:10.1126/science.aal1585 | es_ES |
dc.description.references | Lim, D.-W., & Kitagawa, H. (2020). Proton Transport in Metal–Organic Frameworks. Chemical Reviews, 120(16), 8416-8467. doi:10.1021/acs.chemrev.9b00842 | es_ES |
dc.description.references | Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O’Keeffe, M., & Yaghi, O. M. (2002). Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science, 295(5554), 469-472. doi:10.1126/science.1067208 | es_ES |
dc.description.references | Huang, Y.-B., Liang, J., Wang, X.-S., & Cao, R. (2017). Multifunctional metal–organic framework catalysts: synergistic catalysis and tandem reactions. Chemical Society Reviews, 46(1), 126-157. doi:10.1039/c6cs00250a | es_ES |
dc.description.references | Banerjee, D., Cairns, A. J., Liu, J., Motkuri, R. K., Nune, S. K., Fernandez, C. A., … Thallapally, P. K. (2014). Potential of Metal–Organic Frameworks for Separation of Xenon and Krypton. Accounts of Chemical Research, 48(2), 211-219. doi:10.1021/ar5003126 | es_ES |
dc.description.references | Wen, X., Zhang, Q., & Guan, J. (2020). Applications of metal–organic framework-derived materials in fuel cells and metal-air batteries. Coordination Chemistry Reviews, 409, 213214. doi:10.1016/j.ccr.2020.213214 | es_ES |
dc.description.references | Shi, G. M., Yang, T., & Chung, T. S. (2012). Polybenzimidazole (PBI)/zeolitic imidazolate frameworks (ZIF-8) mixed matrix membranes for pervaporation dehydration of alcohols. Journal of Membrane Science, 415-416, 577-586. doi:10.1016/j.memsci.2012.05.052 | es_ES |
dc.description.references | Fei, F., Cseri, L., Szekely, G., & Blanford, C. F. (2018). Robust Covalently Cross-linked Polybenzimidazole/Graphene Oxide Membranes for High-Flux Organic Solvent Nanofiltration. ACS Applied Materials & Interfaces, 10(18), 16140-16147. doi:10.1021/acsami.8b03591 | es_ES |
dc.description.references | Zhang, Z., Nguyen, H. T. H., Miller, S. A., Ploskonka, A. M., DeCoste, J. B., & Cohen, S. M. (2016). Polymer–Metal–Organic Frameworks (polyMOFs) as Water Tolerant Materials for Selective Carbon Dioxide Separations. Journal of the American Chemical Society, 138(3), 920-925. doi:10.1021/jacs.5b11034 | es_ES |
dc.description.references | DeCoste, J. B., Denny, Jr., M. S., Peterson, G. W., Mahle, J. J., & Cohen, S. M. (2016). Enhanced aging properties of HKUST-1 in hydrophobic mixed-matrix membranes for ammonia adsorption. Chemical Science, 7(4), 2711-2716. doi:10.1039/c5sc04368a | es_ES |
dc.description.references | Didaskalou, C., Kupai, J., Cseri, L., Barabas, J., Vass, E., Holtzl, T., & Szekely, G. (2018). Membrane-Grafted Asymmetric Organocatalyst for an Integrated Synthesis–Separation Platform. ACS Catalysis, 8(8), 7430-7438. doi:10.1021/acscatal.8b01706 | es_ES |
dc.description.references | Sun, Y., Sun, L., Feng, D., & Zhou, H. (2016). An In Situ One‐Pot Synthetic Approach towards Multivariate Zirconium MOFs. Angewandte Chemie International Edition, 55(22), 6471-6475. doi:10.1002/anie.201602274 | es_ES |
dc.description.references | Donnadio, A., Narducci, R., Casciola, M., Marmottini, F., D’Amato, R., Jazestani, M., … Costantino, F. (2017). Mixed Membrane Matrices Based on Nafion/UiO-66/SO3H-UiO-66 Nano-MOFs: Revealing the Effect of Crystal Size, Sulfonation, and Filler Loading on the Mechanical and Conductivity Properties. ACS Applied Materials & Interfaces, 9(48), 42239-42246. doi:10.1021/acsami.7b14847 | es_ES |
dc.description.references | Rao, Z., Feng, K., Tang, B., & Wu, P. (2017). Construction of well interconnected metal-organic framework structure for effectively promoting proton conductivity of proton exchange membrane. Journal of Membrane Science, 533, 160-170. doi:10.1016/j.memsci.2017.03.031 | es_ES |
dc.description.references | Cai, K., Sun, F., Liang, X., Liu, C., Zhao, N., Zou, X., & Zhu, G. (2017). An acid-stable hexaphosphate ester based metal–organic framework and its polymer composite as proton exchange membrane. Journal of Materials Chemistry A, 5(25), 12943-12950. doi:10.1039/c7ta00169j | es_ES |
dc.description.references | Tsai, C.-H., Wang, C.-C., Chang, C.-Y., Lin, C.-H., & Chen-Yang, Y. W. (2014). Enhancing performance of Nafion ® -based PEMFC by 1-D channel metal-organic frameworks as PEM filler. International Journal of Hydrogen Energy, 39(28), 15696-15705. doi:10.1016/j.ijhydene.2014.07.134 | es_ES |
dc.description.references | Kim, H. J., Talukdar, K., & Choi, S.-J. (2016). Tuning of Nafion® by HKUST-1 as coordination network to enhance proton conductivity for fuel cell applications. Journal of Nanoparticle Research, 18(2). doi:10.1007/s11051-016-3346-9 | es_ES |
dc.description.references | Sun, H., Tang, B., & Wu, P. (2017). Rational Design of S-UiO-66@GO Hybrid Nanosheets for Proton Exchange Membranes with Significantly Enhanced Transport Performance. ACS Applied Materials & Interfaces, 9(31), 26077-26087. doi:10.1021/acsami.7b07651 | es_ES |
dc.description.references | Han, R., & Wu, P. (2018). Composite Proton-Exchange Membrane with Highly Improved Proton Conductivity Prepared by in Situ Crystallization of Porous Organic Cage. ACS Applied Materials & Interfaces, 10(21), 18351-18358. doi:10.1021/acsami.8b04311 | es_ES |
dc.description.references | Patel, H. A., Mansor, N., Gadipelli, S., Brett, D. J. L., & Guo, Z. (2016). Superacidity in Nafion/MOF Hybrid Membranes Retains Water at Low Humidity to Enhance Proton Conduction for Fuel Cells. ACS Applied Materials & Interfaces, 8(45), 30687-30691. doi:10.1021/acsami.6b12240 | es_ES |
dc.description.references | Li, Z., He, G., Zhao, Y., Cao, Y., Wu, H., Li, Y., & Jiang, Z. (2014). Enhanced proton conductivity of proton exchange membranes by incorporating sulfonated metal-organic frameworks. Journal of Power Sources, 262, 372-379. doi:10.1016/j.jpowsour.2014.03.123 | es_ES |
dc.description.references | Wu, B., Pan, J., Ge, L., Wu, L., Wang, H., & Xu, T. (2014). Oriented MOF-polymer Composite Nanofiber Membranes for High Proton Conductivity at High Temperature and Anhydrous Condition. Scientific Reports, 4(1). doi:10.1038/srep04334 | es_ES |
dc.description.references | Ru, C., Li, Z., Zhao, C., Duan, Y., Zhuang, Z., Bu, F., & Na, H. (2018). Enhanced Proton Conductivity of Sulfonated Hybrid Poly(arylene ether ketone) Membranes by Incorporating an Amino–Sulfo Bifunctionalized Metal–Organic Framework for Direct Methanol Fuel Cells. ACS Applied Materials & Interfaces, 10(9), 7963-7973. doi:10.1021/acsami.7b17299 | es_ES |
dc.description.references | Zhang, B., Cao, Y., Li, Z., Wu, H., Yin, Y., Cao, L., … Jiang, Z. (2017). Proton exchange nanohybrid membranes with high phosphotungstic acid loading within metal-organic frameworks for PEMFC applications. Electrochimica Acta, 240, 186-194. doi:10.1016/j.electacta.2017.04.087 | es_ES |
dc.description.references | Ahmadian-Alam, L., & Mahdavi, H. (2018). A novel polysulfone-based ternary nanocomposite membrane consisting of metal-organic framework and silica nanoparticles: As proton exchange membrane for polymer electrolyte fuel cells. Renewable Energy, 126, 630-639. doi:10.1016/j.renene.2018.03.075 | es_ES |
dc.description.references | Vega, J., Andrio, A., Lemus, A. A., del Castillo, L. F., & Compañ, V. (2017). Conductivity study of Zeolitic Imidazolate Frameworks, Tetrabutylammonium hydroxide doped with Zeolitic Imidazolate Frameworks, and mixed matrix membranes of Polyetherimide/Tetrabutylammonium hydroxide doped with Zeolitic Imidazolate Frameworks for proton conducting applications. Electrochimica Acta, 258, 153-166. doi:10.1016/j.electacta.2017.10.095 | es_ES |
dc.description.references | Wu, B., Lin, X., Ge, L., Wu, L., & Xu, T. (2013). A novel route for preparing highly proton conductive membrane materials with metal-organic frameworks. Chem. Commun., 49(2), 143-145. doi:10.1039/c2cc37045j | es_ES |
dc.description.references | Fadzallah, I. A., Majid, S. R., Careem, M. A., & Arof, A. K. (2014). A study on ionic interactions in chitosan–oxalic acid polymer electrolyte membranes. Journal of Membrane Science, 463, 65-72. doi:10.1016/j.memsci.2014.03.044 | es_ES |
dc.description.references | Erkartal, M., Usta, H., Citir, M., & Sen, U. (2016). Proton conducting poly(vinyl alcohol) (PVA)/ poly(2-acrylamido-2-methylpropane sulfonic acid) (PAMPS)/ zeolitic imidazolate framework (ZIF) ternary composite membrane. Journal of Membrane Science, 499, 156-163. doi:10.1016/j.memsci.2015.10.032 | es_ES |
dc.description.references | Liang, X., Zhang, F., Feng, W., Zou, X., Zhao, C., Na, H., … Zhu, G. (2013). From metal–organic framework (MOF) to MOF–polymer composite membrane: enhancement of low-humidity proton conductivity. Chem. Sci., 4(3), 983-992. doi:10.1039/c2sc21927a | es_ES |
dc.description.references | Park, K. S., Ni, Z., Cote, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., … Yaghi, O. M. (2006). Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences, 103(27), 10186-10191. doi:10.1073/pnas.0602439103 | es_ES |
dc.description.references | Erkartal, M., Erkilic, U., Tam, B., Usta, H., Yazaydin, O., Hupp, J. T., … Sen, U. (2017). From 2-methylimidazole to 1,2,3-triazole: a topological transformation of ZIF-8 and ZIF-67 by post-synthetic modification. Chemical Communications, 53(12), 2028-2031. doi:10.1039/c6cc08746a | es_ES |
dc.description.references | Plechkova, N. V., & Seddon, K. R. (2008). Applications of ionic liquids in the chemical industry. Chem. Soc. Rev., 37(1), 123-150. doi:10.1039/b006677j | es_ES |
dc.description.references | Earle, M. J., & Seddon, K. R. (2000). Ionic liquids. Green solvents for the future. Pure and Applied Chemistry, 72(7), 1391-1398. doi:10.1351/pac200072071391 | es_ES |
dc.description.references | Dai, C., Zhang, J., Huang, C., & Lei, Z. (2017). Ionic Liquids in Selective Oxidation: Catalysts and Solvents. Chemical Reviews, 117(10), 6929-6983. doi:10.1021/acs.chemrev.7b00030 | es_ES |
dc.description.references | González, L., Escorihuela, J., Altava, B., Burguete, M. I., & Luis, S. V. (2014). Chiral Room Temperature Ionic Liquids as Enantioselective Promoters for the Asymmetric Aldol Reaction. European Journal of Organic Chemistry, 2014(24), 5356-5363. doi:10.1002/ejoc.201402436 | es_ES |
dc.description.references | Chen, D., Ying, W., Guo, Y., Ying, Y., & Peng, X. (2017). Enhanced Gas Separation through Nanoconfined Ionic Liquid in Laminated MoS2 Membrane. ACS Applied Materials & Interfaces, 9(50), 44251-44257. doi:10.1021/acsami.7b15762 | es_ES |
dc.description.references | González-Mendoza, L., Escorihuela, J., Altava, B., Burguete, M. I., & Luis, S. V. (2015). Application of optically active chiral bis(imidazolium) salts as potential receptors of chiral dicarboxylate salts of biological relevance. Organic & Biomolecular Chemistry, 13(19), 5450-5459. doi:10.1039/c5ob00348b | es_ES |
dc.description.references | Valls, A., Altava, B., Burguete, M. I., Escorihuela, J., Martí-Centelles, V., & Luis, S. V. (2019). Supramolecularly assisted synthesis of chiral tripodal imidazolium compounds. Organic Chemistry Frontiers, 6(8), 1214-1225. doi:10.1039/c9qo00163h | es_ES |
dc.description.references | González-Mendoza, L., Altava, B., Burguete, M. I., Escorihuela, J., Hernando, E., Luis, S. V., … Vicent, C. (2015). Bis(imidazolium) salts derived from amino acids as receptors and transport agents for chloride anions. RSC Advances, 5(43), 34415-34423. doi:10.1039/c5ra05880e | es_ES |
dc.description.references | Marrucho, I. M., Branco, L. C., & Rebelo, L. P. N. (2014). Ionic Liquids in Pharmaceutical Applications. Annual Review of Chemical and Biomolecular Engineering, 5(1), 527-546. doi:10.1146/annurev-chembioeng-060713-040024 | es_ES |
dc.description.references | Egorova, K. S., Gordeev, E. G., & Ananikov, V. P. (2017). Biological Activity of Ionic Liquids and Their Application in Pharmaceutics and Medicine. Chemical Reviews, 117(10), 7132-7189. doi:10.1021/acs.chemrev.6b00562 | es_ES |
dc.description.references | Ye, Y.-S., Rick, J., & Hwang, B.-J. (2013). Ionic liquid polymer electrolytes. J. Mater. Chem. A, 1(8), 2719-2743. doi:10.1039/c2ta00126h | es_ES |
dc.description.references | Wang, J. T.-W., & Hsu, S. L.-C. (2011). Enhanced high-temperature polymer electrolyte membrane for fuel cells based on polybenzimidazole and ionic liquids. Electrochimica Acta, 56(7), 2842-2846. doi:10.1016/j.electacta.2010.12.069 | es_ES |
dc.description.references | Van de Ven, E., Chairuna, A., Merle, G., Benito, S. P., Borneman, Z., & Nijmeijer, K. (2013). Ionic liquid doped polybenzimidazole membranes for high temperature Proton Exchange Membrane fuel cell applications. Journal of Power Sources, 222, 202-209. doi:10.1016/j.jpowsour.2012.07.112 | es_ES |
dc.description.references | Escorihuela, J., García-Bernabé, A., Montero, Á., Sahuquillo, Ó., Giménez, E., & Compañ, V. (2019). Ionic Liquid Composite Polybenzimidazol Membranes for High Temperature PEMFC Applications. Polymers, 11(4), 732. doi:10.3390/polym11040732 | es_ES |
dc.description.references | Compañ, V., Escorihuela, J., Olvera, J., García-Bernabé, A., & Andrio, A. (2020). Influence of the anion on diffusivity and mobility of ionic liquids composite polybenzimidazol membranes. Electrochimica Acta, 354, 136666. doi:10.1016/j.electacta.2020.136666 | es_ES |
dc.description.references | Liu, S., Zhou, L., Wang, P., Zhang, F., Yu, S., Shao, Z., & Yi, B. (2014). Ionic-Liquid-Based Proton Conducting Membranes for Anhydrous H2/Cl2 Fuel-Cell Applications. ACS Applied Materials & Interfaces, 6(5), 3195-3200. doi:10.1021/am404645c | es_ES |
dc.description.references | Song, X., Ding, L., Wang, L., He, M., & Han, X. (2019). Polybenzimidazole membranes embedded with ionic liquids for use in high proton selectivity vanadium redox flow batteries. Electrochimica Acta, 295, 1034-1043. doi:10.1016/j.electacta.2018.11.123 | es_ES |
dc.description.references | Liao, Y., Loh, C.-H., Tian, M., Wang, R., & Fane, A. G. (2018). Progress in electrospun polymeric nanofibrous membranes for water treatment: Fabrication, modification and applications. Progress in Polymer Science, 77, 69-94. doi:10.1016/j.progpolymsci.2017.10.003 | es_ES |
dc.description.references | Lee, C., Jo, S. M., Choi, J., Baek, K.-Y., Truong, Y. B., Kyratzis, I. L., & Shul, Y.-G. (2013). SiO2/sulfonated poly ether ether ketone (SPEEK) composite nanofiber mat supported proton exchange membranes for fuel cells. Journal of Materials Science, 48(10), 3665-3671. doi:10.1007/s10853-013-7162-7 | es_ES |
dc.description.references | Reyes-Rodriguez, J. L., Escorihuela, J., García-Bernabé, A., Giménez, E., Solorza-Feria, O., & Compañ, V. (2017). Proton conducting electrospun sulfonated polyether ether ketone graphene oxide composite membranes. RSC Advances, 7(84), 53481-53491. doi:10.1039/c7ra10484g | es_ES |
dc.description.references | Yu, D. M., Yoon, S., Kim, T.-H., Lee, J. Y., Lee, J., & Hong, Y. T. (2013). Properties of sulfonated poly(arylene ether sulfone)/electrospun nonwoven polyacrylonitrile composite membrane for proton exchange membrane fuel cells. Journal of Membrane Science, 446, 212-219. doi:10.1016/j.memsci.2013.06.028 | es_ES |
dc.description.references | Laforgue, A., Robitaille, L., Mokrini, A., & Ajji, A. (2007). Fabrication and Characterization of Ionic Conducting Nanofibers. Macromolecular Materials and Engineering, 292(12), 1229-1236. doi:10.1002/mame.200700200 | es_ES |
dc.description.references | Wang, L., Zhu, J., Zheng, J., Zhang, S., & dou, L. (2014). Nanofiber mats electrospun from composite proton exchange membranes prepared from poly(aryl ether sulfone)s with pendant sulfonated aliphatic side chains. RSC Adv., 4(48), 25195-25200. doi:10.1039/c4ra02286f | es_ES |
dc.description.references | Dong, B., Gwee, L., Salas-de la Cruz, D., Winey, K. I., & Elabd, Y. A. (2010). Super Proton Conductive High-Purity Nafion Nanofibers. Nano Letters, 10(9), 3785-3790. doi:10.1021/nl102581w | es_ES |
dc.description.references | Li, H.-Y., & Liu, Y.-L. (2013). Polyelectrolyte composite membranes of polybenzimidazole and crosslinked polybenzimidazole-polybenzoxazine electrospun nanofibers for proton exchange membrane fuel cells. J. Mater. Chem. A, 1(4), 1171-1178. doi:10.1039/c2ta00270a | es_ES |
dc.description.references | Muthuraja, P., Prakash, S., Shanmugam, V. M., & Manisankar, P. (2018). Stable nanofibrous poly(aryl sulfone ether benzimidazole) membrane with high conductivity for high temperature PEM fuel cells. Solid State Ionics, 317, 201-209. doi:10.1016/j.ssi.2018.01.012 | es_ES |
dc.description.references | Jahangiri, S., Aravi, İ., Işıkel Şanlı, L., Menceloğlu, Y. Z., & Özden-Yenigün, E. (2017). Fabrication and optimization of proton conductive polybenzimidazole electrospun nanofiber membranes. Polymers for Advanced Technologies, 29(1), 594-602. doi:10.1002/pat.4169 | es_ES |
dc.description.references | Escorihuela, J., Pujari, S. P., & Zuilhof, H. (2017). Organic Monolayers by B(C6F5)3-Catalyzed Siloxanation of Oxidized Silicon Surfaces. Langmuir, 33(9), 2185-2193. doi:10.1021/acs.langmuir.7b00110 | es_ES |
dc.description.references | Escorihuela, J., & Zuilhof, H. (2017). Rapid Surface Functionalization of Hydrogen-Terminated Silicon by Alkyl Silanols. Journal of the American Chemical Society, 139(16), 5870-5876. doi:10.1021/jacs.7b01106 | es_ES |
dc.description.references | Escorihuela, J., Bañuls, M. J., Castelló, J. G., Toccafondo, V., García-Rupérez, J., Puchades, R., & Maquieira, Á. (2012). Chemical silicon surface modification and bioreceptor attachment to develop competitive integrated photonic biosensors. Analytical and Bioanalytical Chemistry, 404(10), 2831-2840. doi:10.1007/s00216-012-6280-4 | es_ES |
dc.description.references | https://www.mordorintelligence.com/industry-reports/global-polymer-electrolyte-membrane-pem-fuel-cells-market-industry | es_ES |
dc.description.references | https://www.advent.energy/products-high-temperature-meas/ | es_ES |