- -

Electromagnetic pulse generation in laser-proton acceleration from conductive and dielectric targets

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Electromagnetic pulse generation in laser-proton acceleration from conductive and dielectric targets

Mostrar el registro completo del ítem

Seimetz, M.; Bellido, P.; Mur, P.; Lera, R.; Ruiz-De La Cruz, A.; Sánchez, I.; Zaffino, R.... (2020). Electromagnetic pulse generation in laser-proton acceleration from conductive and dielectric targets. Plasma Physics and Controlled Fusion. 62(11):1-9. https://doi.org/10.1088/1361-6587/abb2e5

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162566

Ficheros en el ítem

Metadatos del ítem

Título: Electromagnetic pulse generation in laser-proton acceleration from conductive and dielectric targets
Autor: Seimetz, Michael Bellido, P. Mur, P. Lera, R. Ruiz-de la Cruz, A. Sánchez, I. Zaffino, R. Benlliure, J. Ruiz, C. Roso, L. Benlloch Baviera, Jose María
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular
Fecha difusión:
Resumen:
[EN] Laser-plasma interactions at high intensities are often accompanied by emission of a strong electromagnetic pulse (EMP) interfering with particle detectors or other electronic equipment. We present experimental evidence ...[+]
Palabras clave: Laser-ion acceleration , Laser-plasma interaction , Electromagnetic pulse , Radio frequency
Derechos de uso: Reserva de todos los derechos
Fuente:
Plasma Physics and Controlled Fusion. (issn: 0741-3335 )
DOI: 10.1088/1361-6587/abb2e5
Editorial:
IOP Publishing
Versión del editor: https://doi.org/10.1088/1361-6587/abb2e5
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//RTC-2015-3278-1/ES/PROYECTO PARA LA INVESTIGACIÓN, DESARROLLO Y VALIDACIÓN DE UN SISTEMA, QUE MEDIANTE EL USO DE BLANCOS PRIMARIOS Y SECUNDARIOS, GENERE RADIOFÁRMACOS POR ACELERACIÓN LÁSER/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101578-B-C22/ES/EFECTOS RADIOBIOLOGICOS DE PULSOS DE PARTICULAS ULTRA-INTENSOS EN CELULAS VIVAS/
Agradecimientos:
This project has been funded by Ministerio de Economia y Competitividad, reference RTC-2015-3278-1, with further support by Ministerio de Ciencia, Innovacion y Universidades, reference RTI2018-101578-B-C22.
Tipo: Artículo

References

Daido, H., Nishiuchi, M., & Pirozhkov, A. S. (2012). Review of laser-driven ion sources and their applications. Reports on Progress in Physics, 75(5), 056401. doi:10.1088/0034-4885/75/5/056401

Macchi, A., Borghesi, M., & Passoni, M. (2013). Ion acceleration by superintense laser-plasma interaction. Reviews of Modern Physics, 85(2), 751-793. doi:10.1103/revmodphys.85.751

Wilks, S. C., Langdon, A. B., Cowan, T. E., Roth, M., Singh, M., Hatchett, S., … Snavely, R. A. (2001). Energetic proton generation in ultra-intense laser–solid interactions. Physics of Plasmas, 8(2), 542-549. doi:10.1063/1.1333697 [+]
Daido, H., Nishiuchi, M., & Pirozhkov, A. S. (2012). Review of laser-driven ion sources and their applications. Reports on Progress in Physics, 75(5), 056401. doi:10.1088/0034-4885/75/5/056401

Macchi, A., Borghesi, M., & Passoni, M. (2013). Ion acceleration by superintense laser-plasma interaction. Reviews of Modern Physics, 85(2), 751-793. doi:10.1103/revmodphys.85.751

Wilks, S. C., Langdon, A. B., Cowan, T. E., Roth, M., Singh, M., Hatchett, S., … Snavely, R. A. (2001). Energetic proton generation in ultra-intense laser–solid interactions. Physics of Plasmas, 8(2), 542-549. doi:10.1063/1.1333697

Ledingham, K., Bolton, P., Shikazono, N., & Ma, C.-M. (2014). Towards Laser Driven Hadron Cancer Radiotherapy: A Review of Progress. Applied Sciences, 4(3), 402-443. doi:10.3390/app4030402

Remo, J. L., Adams, R. G., & Jones, M. C. (2007). Atmospheric electromagnetic pulse propagation effects from thick targets in a terawatt laser target chamber. Applied Optics, 46(24), 6166. doi:10.1364/ao.46.006166

Aspiotis, J. A., Barbieri, N., Bernath, R., Brown, C. G., Richardson, M., & Cooper, B. Y. (2006). Detection and analysis of RF emission generated by laser-matter interactions. Enabling Technologies and Design of Nonlethal Weapons. doi:10.1117/12.663822

Yang, J., Li, T., Yi, T., Wang, C., Yang, M., Yang, W., … Ding, Y. (2016). Electromagnetic Pulses Generated From Laser Target Interactions at Shenguang II Laser Facility. Plasma Science and Technology, 18(10), 1044-1048. doi:10.1088/1009-0630/18/10/13

Rączka, P., Dubois, J.-L., Hulin, S., Tikhonchuk, V., Rosiński, M., Zaraś-Szydłowska, A., & Badziak, J. (2017). Strong electromagnetic pulses generated in high-intensity short-pulse laser interactions with thin foil targets. Laser and Particle Beams, 35(4), 677-686. doi:10.1017/s026303461700074x

Robinson, T. S., Consoli, F., Giltrap, S., Eardley, S. J., Hicks, G. S., Ditter, E. J., … Smith, R. A. (2017). Low-noise time-resolved optical sensing of electromagnetic pulses from petawatt laser-matter interactions. Scientific Reports, 7(1). doi:10.1038/s41598-017-01063-1

Consoli, F., De Angelis, R., Robinson, T. S., Giltrap, S., Hicks, G. S., Ditter, E. J., … Smith, R. A. (2019). Generation of intense quasi-electrostatic fields due to deposition of particles accelerated by petawatt-range laser-matter interactions. Scientific Reports, 9(1). doi:10.1038/s41598-019-44937-2

Stoeckl, C., Glebov, V. Y., Jaanimagi, P. A., Knauer, J. P., Meyerhofer, D. D., Sangster, T. C., … Norreys, P. A. (2006). Operation of target diagnostics in a petawatt laser environment (invited). Review of Scientific Instruments, 77(10), 10F506. doi:10.1063/1.2217922

Bourgade, J. L., Marmoret, R., Darbon, S., Rosch, R., Troussel, P., Villette, B., … Zuber, C. (2008). Diagnostics hardening for harsh environment in Laser Mégajoule (invited). Review of Scientific Instruments, 79(10), 10F301. doi:10.1063/1.2991161

Eder, D., Throop, A., Kimbrough, J., Stowell, M., White, D., … Patel, P. (2009). Mitigation of Electromagnetic Pulse (EMP) Effects from Short-Pulse Lasers and Fusion Neutrons. doi:10.2172/950076

Kar, S., Ahmed, H., Prasad, R., Cerchez, M., Brauckmann, S., Aurand, B., … Borghesi, M. (2016). Guided post-acceleration of laser-driven ions by a miniature modular structure. Nature Communications, 7(1). doi:10.1038/ncomms10792

Mead, M. J., Neely, D., Gauoin, J., Heathcote, R., & Patel, P. (2004). Electromagnetic pulse generation within a petawatt laser target chamber. Review of Scientific Instruments, 75(10), 4225-4227. doi:10.1063/1.1787606

Felber, F. S. (2005). Dipole radio-frequency power from laser plasmas with no dipole moment. Applied Physics Letters, 86(23), 231501. doi:10.1063/1.1947911

Dubois, J.-L., Lubrano-Lavaderci, F., Raffestin, D., Ribolzi, J., Gazave, J., Fontaine, A. C. L., … Tikhonchuk, V. T. (2014). Target charging in short-pulse-laser–plasma experiments. Physical Review E, 89(1). doi:10.1103/physreve.89.013102

Cikhardt, J., Krása, J., De Marco, M., Pfeifer, M., Velyhan, A., Krouský, E., … Kravárik, J. (2014). Measurement of the target current by inductive probe during laser interaction on terawatt laser system PALS. Review of Scientific Instruments, 85(10), 103507. doi:10.1063/1.4898016

Poyé, A., Hulin, S., Bailly-Grandvaux, M., Dubois, J.-L., Ribolzi, J., Raffestin, D., … Tikhonchuk, V. (2015). Physics of giant electromagnetic pulse generation in short-pulse laser experiments. Physical Review E, 91(4). doi:10.1103/physreve.91.043106

Sprangle, P., Peñano, J. R., Hafizi, B., & Kapetanakos, C. A. (2004). Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces. Physical Review E, 69(6). doi:10.1103/physreve.69.066415

Poyé, A., Dubois, J.-L., Lubrano-Lavaderci, F., D’Humières, E., Bardon, M., Hulin, S., … Tikhonchuk, V. (2015). Dynamic model of target charging by short laser pulse interactions. Physical Review E, 92(4). doi:10.1103/physreve.92.043107

Poyé, A., Hulin, S., Ribolzi, J., Bailly-Grandvaux, M., Lubrano-Lavaderci, F., Bardon, M., … Tikhonchuk, V. (2018). Thin target charging in short laser pulse interactions. Physical Review E, 98(3). doi:10.1103/physreve.98.033201

De Marco, M., Pfeifer, M., Krousky, E., Krasa, J., Cikhardt, J., Klir, D., & Nassisi, V. (2014). Basic features of electromagnetic pulse generated in a laser-target chamber at 3-TW laser facility PALS. Journal of Physics: Conference Series, 508, 012007. doi:10.1088/1742-6596/508/1/012007

Miragliotta, J. A., Brawley, B., Sailor, C., Spicer, J. B., & Spicer, J. W. M. (2011). Detection of microwave emission from solid targets ablated with an ultrashort pulsed laser. Laser Radar Technology and Applications XVI. doi:10.1117/12.884003

Varma, S., Spicer, J., Brawley, B., & Miragliotta, J. (2014). Plasma enhancement of femtosecond laser-induced electromagnetic pulses at metal and dielectric surfaces. Optical Engineering, 53(5), 051515. doi:10.1117/1.oe.53.5.051515

Krása, J., De Marco, M., Cikhardt, J., Pfeifer, M., Velyhan, A., Klír, D., … Dudžák, R. (2017). Spectral and temporal characteristics of target current and electromagnetic pulse induced by nanosecond laser ablation. Plasma Physics and Controlled Fusion, 59(6), 065007. doi:10.1088/1361-6587/aa6805

De Marco, M., Krása, J., Cikhardt, J., Velyhan, A., Pfeifer, M., Dudžák, R., … Margarone, D. (2017). Electromagnetic pulse (EMP) radiation by laser interaction with a solid H2 ribbon. Physics of Plasmas, 24(8), 083103. doi:10.1063/1.4995475

Kugland, N. L., Aurand, B., Brown, C. G., Constantin, C. G., Everson, E. T., Glenzer, S. H., … Niemann, C. (2012). Demonstration of a low electromagnetic pulse laser-driven argon gas jet x-ray source. Applied Physics Letters, 101(2), 024102. doi:10.1063/1.4734506

Bradford, P., Woolsey, N. C., Scott, G. G., Liao, G., Liu, H., Zhang, Y., … Neely, D. (2018). EMP control and characterization on high-power laser systems. High Power Laser Science and Engineering, 6. doi:10.1017/hpl.2018.21

Lera, R., Bellido, P., Sanchez, I., Mur, P., Seimetz, M., Benlloch, J. M., … Ruiz-de-la-Cruz, A. (2018). Development of a few TW Ti:Sa laser system at 100 Hz for proton acceleration. Applied Physics B, 125(1). doi:10.1007/s00340-018-7113-8

Bellido, P., Lera, R., Seimetz, M., Cruz, A. R. la, Torres-Peirò, S., Galán, M., … Benlloch, J. M. (2017). Characterization of protons accelerated from a 3 TW table-top laser system. Journal of Instrumentation, 12(05), T05001-T05001. doi:10.1088/1748-0221/12/05/t05001

Seimetz, M., Bellido, P., Soriano, A., Garcia Lopez, J., Jimenez-Ramos, M. C., Fernandez, B., … Benlloch, J. M. (2015). Calibration and Performance Tests of Detectors for Laser-Accelerated Protons. IEEE Transactions on Nuclear Science, 62(6), 3216-3224. doi:10.1109/tns.2015.2480682

Consoli, F., De Angelis, R., De Marco, M., Krasa, J., Cikhardt, J., Pfeifer, M., … Dudzak, R. (2018). EMP characterization at PALS on solid-target experiments. Plasma Physics and Controlled Fusion, 60(10), 105006. doi:10.1088/1361-6587/aad709

Price, C. J., Donnelly, T. D., Giltrap, S., Stuart, N. H., Parker, S., Patankar, S., … Smith, R. A. (2015). An in-vacuo optical levitation trap for high-intensity laser interaction experiments with isolated microtargets. Review of Scientific Instruments, 86(3), 033502. doi:10.1063/1.4908285

Brun, R., & Rademakers, F. (1997). ROOT — An object oriented data analysis framework. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 389(1-2), 81-86. doi:10.1016/s0168-9002(97)00048-x

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem