- -

Electromagnetic pulse generation in laser-proton acceleration from conductive and dielectric targets

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Electromagnetic pulse generation in laser-proton acceleration from conductive and dielectric targets

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Seimetz, Michael es_ES
dc.contributor.author Bellido, P. es_ES
dc.contributor.author Mur, P. es_ES
dc.contributor.author Lera, R. es_ES
dc.contributor.author Ruiz-de la Cruz, A. es_ES
dc.contributor.author Sánchez, I. es_ES
dc.contributor.author Zaffino, R. es_ES
dc.contributor.author Benlliure, J. es_ES
dc.contributor.author Ruiz, C. es_ES
dc.contributor.author Roso, L. es_ES
dc.contributor.author Benlloch Baviera, Jose María es_ES
dc.date.accessioned 2021-03-01T08:08:27Z
dc.date.available 2021-03-01T08:08:27Z
dc.date.issued 2020-11 es_ES
dc.identifier.issn 0741-3335 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162566
dc.description.abstract [EN] Laser-plasma interactions at high intensities are often accompanied by emission of a strong electromagnetic pulse (EMP) interfering with particle detectors or other electronic equipment. We present experimental evidence for significant differences in noise amplitudes in laser-proton acceleration from aluminium as compared to mylar target foils. Such dissimilarities have been consistently observed throughout two series of measurements indicating that, under otherwise identical conditions, the target conductivity is the principal parameter related to EMP generation. In addition, the lateral size of the target foils correlates with the absolute noise levels. A frequency analysis combined with numerical simulations allows for an identification of several sources of radiofrequency emission in the MHz-GHz regime. Further, the temporal evolution of single frequencies on the nanosecond scale provides information on distinct excitation mechanisms. es_ES
dc.description.sponsorship This project has been funded by Ministerio de Economia y Competitividad, reference RTC-2015-3278-1, with further support by Ministerio de Ciencia, Innovacion y Universidades, reference RTI2018-101578-B-C22. es_ES
dc.language Inglés es_ES
dc.publisher IOP Publishing es_ES
dc.relation.ispartof Plasma Physics and Controlled Fusion es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Laser-ion acceleration es_ES
dc.subject Laser-plasma interaction es_ES
dc.subject Electromagnetic pulse es_ES
dc.subject Radio frequency es_ES
dc.title Electromagnetic pulse generation in laser-proton acceleration from conductive and dielectric targets es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1088/1361-6587/abb2e5 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTC-2015-3278-1/ES/PROYECTO PARA LA INVESTIGACIÓN, DESARROLLO Y VALIDACIÓN DE UN SISTEMA, QUE MEDIANTE EL USO DE BLANCOS PRIMARIOS Y SECUNDARIOS, GENERE RADIOFÁRMACOS POR ACELERACIÓN LÁSER/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101578-B-C22/ES/EFECTOS RADIOBIOLOGICOS DE PULSOS DE PARTICULAS ULTRA-INTENSOS EN CELULAS VIVAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular es_ES
dc.description.bibliographicCitation Seimetz, M.; Bellido, P.; Mur, P.; Lera, R.; Ruiz-De La Cruz, A.; Sánchez, I.; Zaffino, R.... (2020). Electromagnetic pulse generation in laser-proton acceleration from conductive and dielectric targets. Plasma Physics and Controlled Fusion. 62(11):1-9. https://doi.org/10.1088/1361-6587/abb2e5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1088/1361-6587/abb2e5 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 62 es_ES
dc.description.issue 11 es_ES
dc.relation.pasarela S\418577 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Daido, H., Nishiuchi, M., & Pirozhkov, A. S. (2012). Review of laser-driven ion sources and their applications. Reports on Progress in Physics, 75(5), 056401. doi:10.1088/0034-4885/75/5/056401 es_ES
dc.description.references Macchi, A., Borghesi, M., & Passoni, M. (2013). Ion acceleration by superintense laser-plasma interaction. Reviews of Modern Physics, 85(2), 751-793. doi:10.1103/revmodphys.85.751 es_ES
dc.description.references Wilks, S. C., Langdon, A. B., Cowan, T. E., Roth, M., Singh, M., Hatchett, S., … Snavely, R. A. (2001). Energetic proton generation in ultra-intense laser–solid interactions. Physics of Plasmas, 8(2), 542-549. doi:10.1063/1.1333697 es_ES
dc.description.references Ledingham, K., Bolton, P., Shikazono, N., & Ma, C.-M. (2014). Towards Laser Driven Hadron Cancer Radiotherapy: A Review of Progress. Applied Sciences, 4(3), 402-443. doi:10.3390/app4030402 es_ES
dc.description.references Remo, J. L., Adams, R. G., & Jones, M. C. (2007). Atmospheric electromagnetic pulse propagation effects from thick targets in a terawatt laser target chamber. Applied Optics, 46(24), 6166. doi:10.1364/ao.46.006166 es_ES
dc.description.references Aspiotis, J. A., Barbieri, N., Bernath, R., Brown, C. G., Richardson, M., & Cooper, B. Y. (2006). Detection and analysis of RF emission generated by laser-matter interactions. Enabling Technologies and Design of Nonlethal Weapons. doi:10.1117/12.663822 es_ES
dc.description.references Yang, J., Li, T., Yi, T., Wang, C., Yang, M., Yang, W., … Ding, Y. (2016). Electromagnetic Pulses Generated From Laser Target Interactions at Shenguang II Laser Facility. Plasma Science and Technology, 18(10), 1044-1048. doi:10.1088/1009-0630/18/10/13 es_ES
dc.description.references Rączka, P., Dubois, J.-L., Hulin, S., Tikhonchuk, V., Rosiński, M., Zaraś-Szydłowska, A., & Badziak, J. (2017). Strong electromagnetic pulses generated in high-intensity short-pulse laser interactions with thin foil targets. Laser and Particle Beams, 35(4), 677-686. doi:10.1017/s026303461700074x es_ES
dc.description.references Robinson, T. S., Consoli, F., Giltrap, S., Eardley, S. J., Hicks, G. S., Ditter, E. J., … Smith, R. A. (2017). Low-noise time-resolved optical sensing of electromagnetic pulses from petawatt laser-matter interactions. Scientific Reports, 7(1). doi:10.1038/s41598-017-01063-1 es_ES
dc.description.references Consoli, F., De Angelis, R., Robinson, T. S., Giltrap, S., Hicks, G. S., Ditter, E. J., … Smith, R. A. (2019). Generation of intense quasi-electrostatic fields due to deposition of particles accelerated by petawatt-range laser-matter interactions. Scientific Reports, 9(1). doi:10.1038/s41598-019-44937-2 es_ES
dc.description.references Stoeckl, C., Glebov, V. Y., Jaanimagi, P. A., Knauer, J. P., Meyerhofer, D. D., Sangster, T. C., … Norreys, P. A. (2006). Operation of target diagnostics in a petawatt laser environment (invited). Review of Scientific Instruments, 77(10), 10F506. doi:10.1063/1.2217922 es_ES
dc.description.references Bourgade, J. L., Marmoret, R., Darbon, S., Rosch, R., Troussel, P., Villette, B., … Zuber, C. (2008). Diagnostics hardening for harsh environment in Laser Mégajoule (invited). Review of Scientific Instruments, 79(10), 10F301. doi:10.1063/1.2991161 es_ES
dc.description.references Eder, D., Throop, A., Kimbrough, J., Stowell, M., White, D., … Patel, P. (2009). Mitigation of Electromagnetic Pulse (EMP) Effects from Short-Pulse Lasers and Fusion Neutrons. doi:10.2172/950076 es_ES
dc.description.references Kar, S., Ahmed, H., Prasad, R., Cerchez, M., Brauckmann, S., Aurand, B., … Borghesi, M. (2016). Guided post-acceleration of laser-driven ions by a miniature modular structure. Nature Communications, 7(1). doi:10.1038/ncomms10792 es_ES
dc.description.references Mead, M. J., Neely, D., Gauoin, J., Heathcote, R., & Patel, P. (2004). Electromagnetic pulse generation within a petawatt laser target chamber. Review of Scientific Instruments, 75(10), 4225-4227. doi:10.1063/1.1787606 es_ES
dc.description.references Felber, F. S. (2005). Dipole radio-frequency power from laser plasmas with no dipole moment. Applied Physics Letters, 86(23), 231501. doi:10.1063/1.1947911 es_ES
dc.description.references Dubois, J.-L., Lubrano-Lavaderci, F., Raffestin, D., Ribolzi, J., Gazave, J., Fontaine, A. C. L., … Tikhonchuk, V. T. (2014). Target charging in short-pulse-laser–plasma experiments. Physical Review E, 89(1). doi:10.1103/physreve.89.013102 es_ES
dc.description.references Cikhardt, J., Krása, J., De Marco, M., Pfeifer, M., Velyhan, A., Krouský, E., … Kravárik, J. (2014). Measurement of the target current by inductive probe during laser interaction on terawatt laser system PALS. Review of Scientific Instruments, 85(10), 103507. doi:10.1063/1.4898016 es_ES
dc.description.references Poyé, A., Hulin, S., Bailly-Grandvaux, M., Dubois, J.-L., Ribolzi, J., Raffestin, D., … Tikhonchuk, V. (2015). Physics of giant electromagnetic pulse generation in short-pulse laser experiments. Physical Review E, 91(4). doi:10.1103/physreve.91.043106 es_ES
dc.description.references Sprangle, P., Peñano, J. R., Hafizi, B., & Kapetanakos, C. A. (2004). Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces. Physical Review E, 69(6). doi:10.1103/physreve.69.066415 es_ES
dc.description.references Poyé, A., Dubois, J.-L., Lubrano-Lavaderci, F., D’Humières, E., Bardon, M., Hulin, S., … Tikhonchuk, V. (2015). Dynamic model of target charging by short laser pulse interactions. Physical Review E, 92(4). doi:10.1103/physreve.92.043107 es_ES
dc.description.references Poyé, A., Hulin, S., Ribolzi, J., Bailly-Grandvaux, M., Lubrano-Lavaderci, F., Bardon, M., … Tikhonchuk, V. (2018). Thin target charging in short laser pulse interactions. Physical Review E, 98(3). doi:10.1103/physreve.98.033201 es_ES
dc.description.references De Marco, M., Pfeifer, M., Krousky, E., Krasa, J., Cikhardt, J., Klir, D., & Nassisi, V. (2014). Basic features of electromagnetic pulse generated in a laser-target chamber at 3-TW laser facility PALS. Journal of Physics: Conference Series, 508, 012007. doi:10.1088/1742-6596/508/1/012007 es_ES
dc.description.references Miragliotta, J. A., Brawley, B., Sailor, C., Spicer, J. B., & Spicer, J. W. M. (2011). Detection of microwave emission from solid targets ablated with an ultrashort pulsed laser. Laser Radar Technology and Applications XVI. doi:10.1117/12.884003 es_ES
dc.description.references Varma, S., Spicer, J., Brawley, B., & Miragliotta, J. (2014). Plasma enhancement of femtosecond laser-induced electromagnetic pulses at metal and dielectric surfaces. Optical Engineering, 53(5), 051515. doi:10.1117/1.oe.53.5.051515 es_ES
dc.description.references Krása, J., De Marco, M., Cikhardt, J., Pfeifer, M., Velyhan, A., Klír, D., … Dudžák, R. (2017). Spectral and temporal characteristics of target current and electromagnetic pulse induced by nanosecond laser ablation. Plasma Physics and Controlled Fusion, 59(6), 065007. doi:10.1088/1361-6587/aa6805 es_ES
dc.description.references De Marco, M., Krása, J., Cikhardt, J., Velyhan, A., Pfeifer, M., Dudžák, R., … Margarone, D. (2017). Electromagnetic pulse (EMP) radiation by laser interaction with a solid H2 ribbon. Physics of Plasmas, 24(8), 083103. doi:10.1063/1.4995475 es_ES
dc.description.references Kugland, N. L., Aurand, B., Brown, C. G., Constantin, C. G., Everson, E. T., Glenzer, S. H., … Niemann, C. (2012). Demonstration of a low electromagnetic pulse laser-driven argon gas jet x-ray source. Applied Physics Letters, 101(2), 024102. doi:10.1063/1.4734506 es_ES
dc.description.references Bradford, P., Woolsey, N. C., Scott, G. G., Liao, G., Liu, H., Zhang, Y., … Neely, D. (2018). EMP control and characterization on high-power laser systems. High Power Laser Science and Engineering, 6. doi:10.1017/hpl.2018.21 es_ES
dc.description.references Lera, R., Bellido, P., Sanchez, I., Mur, P., Seimetz, M., Benlloch, J. M., … Ruiz-de-la-Cruz, A. (2018). Development of a few TW Ti:Sa laser system at 100 Hz for proton acceleration. Applied Physics B, 125(1). doi:10.1007/s00340-018-7113-8 es_ES
dc.description.references Bellido, P., Lera, R., Seimetz, M., Cruz, A. R. la, Torres-Peirò, S., Galán, M., … Benlloch, J. M. (2017). Characterization of protons accelerated from a 3 TW table-top laser system. Journal of Instrumentation, 12(05), T05001-T05001. doi:10.1088/1748-0221/12/05/t05001 es_ES
dc.description.references Seimetz, M., Bellido, P., Soriano, A., Garcia Lopez, J., Jimenez-Ramos, M. C., Fernandez, B., … Benlloch, J. M. (2015). Calibration and Performance Tests of Detectors for Laser-Accelerated Protons. IEEE Transactions on Nuclear Science, 62(6), 3216-3224. doi:10.1109/tns.2015.2480682 es_ES
dc.description.references Consoli, F., De Angelis, R., De Marco, M., Krasa, J., Cikhardt, J., Pfeifer, M., … Dudzak, R. (2018). EMP characterization at PALS on solid-target experiments. Plasma Physics and Controlled Fusion, 60(10), 105006. doi:10.1088/1361-6587/aad709 es_ES
dc.description.references Price, C. J., Donnelly, T. D., Giltrap, S., Stuart, N. H., Parker, S., Patankar, S., … Smith, R. A. (2015). An in-vacuo optical levitation trap for high-intensity laser interaction experiments with isolated microtargets. Review of Scientific Instruments, 86(3), 033502. doi:10.1063/1.4908285 es_ES
dc.description.references Brun, R., & Rademakers, F. (1997). ROOT — An object oriented data analysis framework. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 389(1-2), 81-86. doi:10.1016/s0168-9002(97)00048-x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem