Mostrar el registro sencillo del ítem
dc.contributor.author | Seimetz, Michael | es_ES |
dc.contributor.author | Bellido, P. | es_ES |
dc.contributor.author | Mur, P. | es_ES |
dc.contributor.author | Lera, R. | es_ES |
dc.contributor.author | Ruiz-de la Cruz, A. | es_ES |
dc.contributor.author | Sánchez, I. | es_ES |
dc.contributor.author | Zaffino, R. | es_ES |
dc.contributor.author | Benlliure, J. | es_ES |
dc.contributor.author | Ruiz, C. | es_ES |
dc.contributor.author | Roso, L. | es_ES |
dc.contributor.author | Benlloch Baviera, Jose María | es_ES |
dc.date.accessioned | 2021-03-01T08:08:27Z | |
dc.date.available | 2021-03-01T08:08:27Z | |
dc.date.issued | 2020-11 | es_ES |
dc.identifier.issn | 0741-3335 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/162566 | |
dc.description.abstract | [EN] Laser-plasma interactions at high intensities are often accompanied by emission of a strong electromagnetic pulse (EMP) interfering with particle detectors or other electronic equipment. We present experimental evidence for significant differences in noise amplitudes in laser-proton acceleration from aluminium as compared to mylar target foils. Such dissimilarities have been consistently observed throughout two series of measurements indicating that, under otherwise identical conditions, the target conductivity is the principal parameter related to EMP generation. In addition, the lateral size of the target foils correlates with the absolute noise levels. A frequency analysis combined with numerical simulations allows for an identification of several sources of radiofrequency emission in the MHz-GHz regime. Further, the temporal evolution of single frequencies on the nanosecond scale provides information on distinct excitation mechanisms. | es_ES |
dc.description.sponsorship | This project has been funded by Ministerio de Economia y Competitividad, reference RTC-2015-3278-1, with further support by Ministerio de Ciencia, Innovacion y Universidades, reference RTI2018-101578-B-C22. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | IOP Publishing | es_ES |
dc.relation.ispartof | Plasma Physics and Controlled Fusion | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Laser-ion acceleration | es_ES |
dc.subject | Laser-plasma interaction | es_ES |
dc.subject | Electromagnetic pulse | es_ES |
dc.subject | Radio frequency | es_ES |
dc.title | Electromagnetic pulse generation in laser-proton acceleration from conductive and dielectric targets | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1088/1361-6587/abb2e5 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//RTC-2015-3278-1/ES/PROYECTO PARA LA INVESTIGACIÓN, DESARROLLO Y VALIDACIÓN DE UN SISTEMA, QUE MEDIANTE EL USO DE BLANCOS PRIMARIOS Y SECUNDARIOS, GENERE RADIOFÁRMACOS POR ACELERACIÓN LÁSER/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101578-B-C22/ES/EFECTOS RADIOBIOLOGICOS DE PULSOS DE PARTICULAS ULTRA-INTENSOS EN CELULAS VIVAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular | es_ES |
dc.description.bibliographicCitation | Seimetz, M.; Bellido, P.; Mur, P.; Lera, R.; Ruiz-De La Cruz, A.; Sánchez, I.; Zaffino, R.... (2020). Electromagnetic pulse generation in laser-proton acceleration from conductive and dielectric targets. Plasma Physics and Controlled Fusion. 62(11):1-9. https://doi.org/10.1088/1361-6587/abb2e5 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1088/1361-6587/abb2e5 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 9 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 62 | es_ES |
dc.description.issue | 11 | es_ES |
dc.relation.pasarela | S\418577 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Daido, H., Nishiuchi, M., & Pirozhkov, A. S. (2012). Review of laser-driven ion sources and their applications. Reports on Progress in Physics, 75(5), 056401. doi:10.1088/0034-4885/75/5/056401 | es_ES |
dc.description.references | Macchi, A., Borghesi, M., & Passoni, M. (2013). Ion acceleration by superintense laser-plasma interaction. Reviews of Modern Physics, 85(2), 751-793. doi:10.1103/revmodphys.85.751 | es_ES |
dc.description.references | Wilks, S. C., Langdon, A. B., Cowan, T. E., Roth, M., Singh, M., Hatchett, S., … Snavely, R. A. (2001). Energetic proton generation in ultra-intense laser–solid interactions. Physics of Plasmas, 8(2), 542-549. doi:10.1063/1.1333697 | es_ES |
dc.description.references | Ledingham, K., Bolton, P., Shikazono, N., & Ma, C.-M. (2014). Towards Laser Driven Hadron Cancer Radiotherapy: A Review of Progress. Applied Sciences, 4(3), 402-443. doi:10.3390/app4030402 | es_ES |
dc.description.references | Remo, J. L., Adams, R. G., & Jones, M. C. (2007). Atmospheric electromagnetic pulse propagation effects from thick targets in a terawatt laser target chamber. Applied Optics, 46(24), 6166. doi:10.1364/ao.46.006166 | es_ES |
dc.description.references | Aspiotis, J. A., Barbieri, N., Bernath, R., Brown, C. G., Richardson, M., & Cooper, B. Y. (2006). Detection and analysis of RF emission generated by laser-matter interactions. Enabling Technologies and Design of Nonlethal Weapons. doi:10.1117/12.663822 | es_ES |
dc.description.references | Yang, J., Li, T., Yi, T., Wang, C., Yang, M., Yang, W., … Ding, Y. (2016). Electromagnetic Pulses Generated From Laser Target Interactions at Shenguang II Laser Facility. Plasma Science and Technology, 18(10), 1044-1048. doi:10.1088/1009-0630/18/10/13 | es_ES |
dc.description.references | Rączka, P., Dubois, J.-L., Hulin, S., Tikhonchuk, V., Rosiński, M., Zaraś-Szydłowska, A., & Badziak, J. (2017). Strong electromagnetic pulses generated in high-intensity short-pulse laser interactions with thin foil targets. Laser and Particle Beams, 35(4), 677-686. doi:10.1017/s026303461700074x | es_ES |
dc.description.references | Robinson, T. S., Consoli, F., Giltrap, S., Eardley, S. J., Hicks, G. S., Ditter, E. J., … Smith, R. A. (2017). Low-noise time-resolved optical sensing of electromagnetic pulses from petawatt laser-matter interactions. Scientific Reports, 7(1). doi:10.1038/s41598-017-01063-1 | es_ES |
dc.description.references | Consoli, F., De Angelis, R., Robinson, T. S., Giltrap, S., Hicks, G. S., Ditter, E. J., … Smith, R. A. (2019). Generation of intense quasi-electrostatic fields due to deposition of particles accelerated by petawatt-range laser-matter interactions. Scientific Reports, 9(1). doi:10.1038/s41598-019-44937-2 | es_ES |
dc.description.references | Stoeckl, C., Glebov, V. Y., Jaanimagi, P. A., Knauer, J. P., Meyerhofer, D. D., Sangster, T. C., … Norreys, P. A. (2006). Operation of target diagnostics in a petawatt laser environment (invited). Review of Scientific Instruments, 77(10), 10F506. doi:10.1063/1.2217922 | es_ES |
dc.description.references | Bourgade, J. L., Marmoret, R., Darbon, S., Rosch, R., Troussel, P., Villette, B., … Zuber, C. (2008). Diagnostics hardening for harsh environment in Laser Mégajoule (invited). Review of Scientific Instruments, 79(10), 10F301. doi:10.1063/1.2991161 | es_ES |
dc.description.references | Eder, D., Throop, A., Kimbrough, J., Stowell, M., White, D., … Patel, P. (2009). Mitigation of Electromagnetic Pulse (EMP) Effects from Short-Pulse Lasers and Fusion Neutrons. doi:10.2172/950076 | es_ES |
dc.description.references | Kar, S., Ahmed, H., Prasad, R., Cerchez, M., Brauckmann, S., Aurand, B., … Borghesi, M. (2016). Guided post-acceleration of laser-driven ions by a miniature modular structure. Nature Communications, 7(1). doi:10.1038/ncomms10792 | es_ES |
dc.description.references | Mead, M. J., Neely, D., Gauoin, J., Heathcote, R., & Patel, P. (2004). Electromagnetic pulse generation within a petawatt laser target chamber. Review of Scientific Instruments, 75(10), 4225-4227. doi:10.1063/1.1787606 | es_ES |
dc.description.references | Felber, F. S. (2005). Dipole radio-frequency power from laser plasmas with no dipole moment. Applied Physics Letters, 86(23), 231501. doi:10.1063/1.1947911 | es_ES |
dc.description.references | Dubois, J.-L., Lubrano-Lavaderci, F., Raffestin, D., Ribolzi, J., Gazave, J., Fontaine, A. C. L., … Tikhonchuk, V. T. (2014). Target charging in short-pulse-laser–plasma experiments. Physical Review E, 89(1). doi:10.1103/physreve.89.013102 | es_ES |
dc.description.references | Cikhardt, J., Krása, J., De Marco, M., Pfeifer, M., Velyhan, A., Krouský, E., … Kravárik, J. (2014). Measurement of the target current by inductive probe during laser interaction on terawatt laser system PALS. Review of Scientific Instruments, 85(10), 103507. doi:10.1063/1.4898016 | es_ES |
dc.description.references | Poyé, A., Hulin, S., Bailly-Grandvaux, M., Dubois, J.-L., Ribolzi, J., Raffestin, D., … Tikhonchuk, V. (2015). Physics of giant electromagnetic pulse generation in short-pulse laser experiments. Physical Review E, 91(4). doi:10.1103/physreve.91.043106 | es_ES |
dc.description.references | Sprangle, P., Peñano, J. R., Hafizi, B., & Kapetanakos, C. A. (2004). Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces. Physical Review E, 69(6). doi:10.1103/physreve.69.066415 | es_ES |
dc.description.references | Poyé, A., Dubois, J.-L., Lubrano-Lavaderci, F., D’Humières, E., Bardon, M., Hulin, S., … Tikhonchuk, V. (2015). Dynamic model of target charging by short laser pulse interactions. Physical Review E, 92(4). doi:10.1103/physreve.92.043107 | es_ES |
dc.description.references | Poyé, A., Hulin, S., Ribolzi, J., Bailly-Grandvaux, M., Lubrano-Lavaderci, F., Bardon, M., … Tikhonchuk, V. (2018). Thin target charging in short laser pulse interactions. Physical Review E, 98(3). doi:10.1103/physreve.98.033201 | es_ES |
dc.description.references | De Marco, M., Pfeifer, M., Krousky, E., Krasa, J., Cikhardt, J., Klir, D., & Nassisi, V. (2014). Basic features of electromagnetic pulse generated in a laser-target chamber at 3-TW laser facility PALS. Journal of Physics: Conference Series, 508, 012007. doi:10.1088/1742-6596/508/1/012007 | es_ES |
dc.description.references | Miragliotta, J. A., Brawley, B., Sailor, C., Spicer, J. B., & Spicer, J. W. M. (2011). Detection of microwave emission from solid targets ablated with an ultrashort pulsed laser. Laser Radar Technology and Applications XVI. doi:10.1117/12.884003 | es_ES |
dc.description.references | Varma, S., Spicer, J., Brawley, B., & Miragliotta, J. (2014). Plasma enhancement of femtosecond laser-induced electromagnetic pulses at metal and dielectric surfaces. Optical Engineering, 53(5), 051515. doi:10.1117/1.oe.53.5.051515 | es_ES |
dc.description.references | Krása, J., De Marco, M., Cikhardt, J., Pfeifer, M., Velyhan, A., Klír, D., … Dudžák, R. (2017). Spectral and temporal characteristics of target current and electromagnetic pulse induced by nanosecond laser ablation. Plasma Physics and Controlled Fusion, 59(6), 065007. doi:10.1088/1361-6587/aa6805 | es_ES |
dc.description.references | De Marco, M., Krása, J., Cikhardt, J., Velyhan, A., Pfeifer, M., Dudžák, R., … Margarone, D. (2017). Electromagnetic pulse (EMP) radiation by laser interaction with a solid H2 ribbon. Physics of Plasmas, 24(8), 083103. doi:10.1063/1.4995475 | es_ES |
dc.description.references | Kugland, N. L., Aurand, B., Brown, C. G., Constantin, C. G., Everson, E. T., Glenzer, S. H., … Niemann, C. (2012). Demonstration of a low electromagnetic pulse laser-driven argon gas jet x-ray source. Applied Physics Letters, 101(2), 024102. doi:10.1063/1.4734506 | es_ES |
dc.description.references | Bradford, P., Woolsey, N. C., Scott, G. G., Liao, G., Liu, H., Zhang, Y., … Neely, D. (2018). EMP control and characterization on high-power laser systems. High Power Laser Science and Engineering, 6. doi:10.1017/hpl.2018.21 | es_ES |
dc.description.references | Lera, R., Bellido, P., Sanchez, I., Mur, P., Seimetz, M., Benlloch, J. M., … Ruiz-de-la-Cruz, A. (2018). Development of a few TW Ti:Sa laser system at 100 Hz for proton acceleration. Applied Physics B, 125(1). doi:10.1007/s00340-018-7113-8 | es_ES |
dc.description.references | Bellido, P., Lera, R., Seimetz, M., Cruz, A. R. la, Torres-Peirò, S., Galán, M., … Benlloch, J. M. (2017). Characterization of protons accelerated from a 3 TW table-top laser system. Journal of Instrumentation, 12(05), T05001-T05001. doi:10.1088/1748-0221/12/05/t05001 | es_ES |
dc.description.references | Seimetz, M., Bellido, P., Soriano, A., Garcia Lopez, J., Jimenez-Ramos, M. C., Fernandez, B., … Benlloch, J. M. (2015). Calibration and Performance Tests of Detectors for Laser-Accelerated Protons. IEEE Transactions on Nuclear Science, 62(6), 3216-3224. doi:10.1109/tns.2015.2480682 | es_ES |
dc.description.references | Consoli, F., De Angelis, R., De Marco, M., Krasa, J., Cikhardt, J., Pfeifer, M., … Dudzak, R. (2018). EMP characterization at PALS on solid-target experiments. Plasma Physics and Controlled Fusion, 60(10), 105006. doi:10.1088/1361-6587/aad709 | es_ES |
dc.description.references | Price, C. J., Donnelly, T. D., Giltrap, S., Stuart, N. H., Parker, S., Patankar, S., … Smith, R. A. (2015). An in-vacuo optical levitation trap for high-intensity laser interaction experiments with isolated microtargets. Review of Scientific Instruments, 86(3), 033502. doi:10.1063/1.4908285 | es_ES |
dc.description.references | Brun, R., & Rademakers, F. (1997). ROOT — An object oriented data analysis framework. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 389(1-2), 81-86. doi:10.1016/s0168-9002(97)00048-x | es_ES |