- -

Injection-Molded Parts of Partially Biobased Polyamide 610 and Biobased Halloysite Nanotubes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Injection-Molded Parts of Partially Biobased Polyamide 610 and Biobased Halloysite Nanotubes

Mostrar el registro completo del ítem

Marset, D.; Dolza, C.; Boronat, T.; Montanes, N.; Balart, R.; Sanchez-Nacher, L.; Quiles-Carrillo, L. (2020). Injection-Molded Parts of Partially Biobased Polyamide 610 and Biobased Halloysite Nanotubes. Polymers. 12(7):1-14. https://doi.org/10.3390/polym12071503

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162567

Ficheros en el ítem

Metadatos del ítem

Título: Injection-Molded Parts of Partially Biobased Polyamide 610 and Biobased Halloysite Nanotubes
Autor: Marset, David Dolza, Celia Boronat, Teodomiro Montanes, Nestor Balart, Rafael Sanchez-Nacher, Lourdes Quiles-Carrillo, Luis
Entidad UPV: Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials
Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Fecha difusión:
Resumen:
[EN] This works focuses on the development of environmentally friendly composites with a partially biobased polyamide 610 (PA610), containing 63% biobased content, and a natural inorganic filler at the nanoscale, namely, ...[+]
Palabras clave: PA610 , Halloysite nanotubes (HNTs) , Flame retardant , Thermomechanical resistance
Derechos de uso: Reconocimiento (by)
Fuente:
Polymers. (eissn: 2073-4360 )
DOI: 10.3390/polym12071503
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/polym12071503
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//AGL2015-63855-C2-1-R/ES/DESARROLLO DE UN CONCEPTO DE ENVASE MULTICAPA ALIMENTARIO DE ALTA BARRERA Y CON CARACTER ACTIVO Y BIOACTIVO DERIVADO DE SUBPRODUCTOS ALIMENTARIOS/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84909-C2-2-R/ES/PROCESADO Y OPTIMIZACION DE MATERIALES AVANZADOS DERIVADOS DE ESTRUCTURAS PROTEICAS Y COMPONENTES LIGNOCELULOSICOS/
Agradecimientos:
This research was funded by the Ministry of Science, Innovation, and Universities (MICIU) project numbers MAT2017-84909-C2-2-R and AGL2015-63855-C2-1-R.
Tipo: Artículo

References

Ahmann, D., & Dorgan, J. R. (2007). Bioengineering for pollution prevention through development of biobased energy and materials state of the science report. Industrial Biotechnology, 3(3), 218-259. doi:10.1089/ind.2007.3.218

Stafford, R., & Jones, P. J. S. (2019). Viewpoint – Ocean plastic pollution: A convenient but distracting truth? Marine Policy, 103, 187-191. doi:10.1016/j.marpol.2019.02.003

Liu, W., Chen, T., Fei, M., Qiu, R., Yu, D., Fu, T., & Qiu, J. (2019). Properties of natural fiber-reinforced biobased thermoset biocomposites: Effects of fiber type and resin composition. Composites Part B: Engineering, 171, 87-95. doi:10.1016/j.compositesb.2019.04.048 [+]
Ahmann, D., & Dorgan, J. R. (2007). Bioengineering for pollution prevention through development of biobased energy and materials state of the science report. Industrial Biotechnology, 3(3), 218-259. doi:10.1089/ind.2007.3.218

Stafford, R., & Jones, P. J. S. (2019). Viewpoint – Ocean plastic pollution: A convenient but distracting truth? Marine Policy, 103, 187-191. doi:10.1016/j.marpol.2019.02.003

Liu, W., Chen, T., Fei, M., Qiu, R., Yu, D., Fu, T., & Qiu, J. (2019). Properties of natural fiber-reinforced biobased thermoset biocomposites: Effects of fiber type and resin composition. Composites Part B: Engineering, 171, 87-95. doi:10.1016/j.compositesb.2019.04.048

Garcia, D., Balart, R., Sánchez, L., & López, J. (2007). Compatibility of recycled PVC/ABS blends. Effect of previous degradation. Polymer Engineering & Science, 47(6), 789-796. doi:10.1002/pen.20755

Mohan, T. P., & Kanny, K. (2019). Compressive characteristics of unmodified and nanoclay treated banana fiber reinforced epoxy composite cylinders. Composites Part B: Engineering, 169, 118-125. doi:10.1016/j.compositesb.2019.03.071

Fombuena, V., L, S.-N., MD, S., D, J., & R, B. (2012). Study of the Properties of Thermoset Materials Derived from Epoxidized Soybean Oil and Protein Fillers. Journal of the American Oil Chemists’ Society, 90(3), 449-457. doi:10.1007/s11746-012-2171-2

Moran, C. S., Barthelon, A., Pearsall, A., Mittal, V., & Dorgan, J. R. (2016). Biorenewable blends of polyamide-4,10 and polyamide-6,10. Journal of Applied Polymer Science, 133(45). doi:10.1002/app.43626

Stewart, R. (2011). Rebounding automotive industry welcome news for FRP. Reinforced Plastics, 55(1), 38-44. doi:10.1016/s0034-3617(11)70036-4

Horrocks, A. R., Kandola, B. K., Davies, P. J., Zhang, S., & Padbury, S. A. (2005). Developments in flame retardant textiles – a review. Polymer Degradation and Stability, 88(1), 3-12. doi:10.1016/j.polymdegradstab.2003.10.024

Jacob, A. (2014). Carbon fibre and cars – 2013 in review. Reinforced Plastics, 58(1), 18-19. doi:10.1016/s0034-3617(14)70036-0

Marchildon, K. (2010). Polyamides - Still Strong After Seventy Years. Macromolecular Reaction Engineering, 5(1), 22-54. doi:10.1002/mren.201000017

Torres-Giner, S., Montanes, N., Fenollar, O., García-Sanoguera, D., & Balart, R. (2016). Development and optimization of renewable vinyl plastisol/wood flour composites exposed to ultraviolet radiation. Materials & Design, 108, 648-658. doi:10.1016/j.matdes.2016.07.037

Feldmann, M., & Bledzki, A. K. (2014). Bio-based polyamides reinforced with cellulosic fibres – Processing and properties. Composites Science and Technology, 100, 113-120. doi:10.1016/j.compscitech.2014.06.008

OGUNNIYI, D. (2006). Castor oil: A vital industrial raw material. Bioresource Technology, 97(9), 1086-1091. doi:10.1016/j.biortech.2005.03.028

Desroches, M., Escouvois, M., Auvergne, R., Caillol, S., & Boutevin, B. (2012). From Vegetable Oils to Polyurethanes: Synthetic Routes to Polyols and Main Industrial Products. Polymer Reviews, 52(1), 38-79. doi:10.1080/15583724.2011.640443

Ogunsona, E. O., Misra, M., & Mohanty, A. K. (2016). Sustainable biocomposites from biobased polyamide 6,10 and biocarbon from pyrolyzed miscanthus fibers. Journal of Applied Polymer Science, 134(4). doi:10.1002/app.44221

Carbonell-Verdu, A., Bernardi, L., Garcia-Garcia, D., Sanchez-Nacher, L., & Balart, R. (2015). Development of environmentally friendly composite matrices from epoxidized cottonseed oil. European Polymer Journal, 63, 1-10. doi:10.1016/j.eurpolymj.2014.11.043

Sabatini, V., Farina, H., Basilissi, L., Di Silvestro, G., & Ortenzi, M. A. (2015). The Use of Epoxy Silanes on Montmorillonite: An Effective Way to Improve Thermal and Rheological Properties of PLA/MMT Nanocomposites Obtained via «In Situ» Polymerization. Journal of Nanomaterials, 2015, 1-16. doi:10.1155/2015/418418

Wu, G., Li, B., & Jiang, J. (2010). Carbon black self-networking induced co-continuity of immiscible polymer blends. Polymer, 51(9), 2077-2083. doi:10.1016/j.polymer.2010.03.007

Šehić, A., Vasiljević, J., Demšar, A., Leskovšek, M., Bukošek, V., Medved, J., … Simončič, B. (2018). Polyamide 6 composite fibers with incorporated mixtures of melamine cyanurate, carbon nanotubes, and carbon black. Journal of Applied Polymer Science, 136(5), 47007. doi:10.1002/app.47007

Uhl, F. M., Yao, Q., Nakajima, H., Manias, E., & Wilkie, C. A. (2005). Expandable graphite/polyamide-6 nanocomposites. Polymer Degradation and Stability, 89(1), 70-84. doi:10.1016/j.polymdegradstab.2005.01.004

Ho, Q. B., Osazuwa, O., Modler, R., Daymond, M., Gallerneault, M. T., & Kontopoulou, M. (2019). Exfoliation of graphite and expanded graphite by melt compounding to prepare reinforced, thermally and electrically conducting polyamide composites. Composites Science and Technology, 176, 111-120. doi:10.1016/j.compscitech.2019.03.024

Xu, Z., & Gao, C. (2010). In situ Polymerization Approach to Graphene-Reinforced Nylon-6 Composites. Macromolecules, 43(16), 6716-6723. doi:10.1021/ma1009337

Tapper, R. J., Longana, M. L., Hamerton, I., & Potter, K. D. (2019). A closed-loop recycling process for discontinuous carbon fibre polyamide 6 composites. Composites Part B: Engineering, 179, 107418. doi:10.1016/j.compositesb.2019.107418

Mazur, K., Kuciel, S., & Salasinska, K. (2019). Mechanical, fire, and smoke behaviour of hybrid composites based on polyamide 6 with basalt/carbon fibres. Journal of Composite Materials, 53(28-30), 3979-3991. doi:10.1177/0021998319853015

España, J. M., Samper, M. D., Fages, E., Sánchez-Nácher, L., & Balart, R. (2013). Investigation of the effect of different silane coupling agents on mechanical performance of basalt fiber composite laminates with biobased epoxy matrices. Polymer Composites, 34(3), 376-381. doi:10.1002/pc.22421

Lascano, D., Valcárcel, J., Balart, R., Quiles-Carrillo, L., & Boronat, T. (2019). Manufacturing of composite materials with high environmental efficiency using epoxy resin of renewable origin and permeable light cores for vacuum-assisted infusion molding. Ingenius, (23), 62-73. doi:10.17163/ings.n23.2020.06

Mittal, V. (2009). Polymer Layered Silicate Nanocomposites: A Review. Materials, 2(3), 992-1057. doi:10.3390/ma2030992

Choudalakis, G., & Gotsis, A. D. (2009). Permeability of polymer/clay nanocomposites: A review. European Polymer Journal, 45(4), 967-984. doi:10.1016/j.eurpolymj.2009.01.027

Yuan, Q., Awate, S., & Misra, R. D. K. (2006). Nonisothermal crystallization behavior of polypropylene–clay nanocomposites. European Polymer Journal, 42(9), 1994-2003. doi:10.1016/j.eurpolymj.2006.03.012

Pandey, J. K., Raghunatha Reddy, K., Pratheep Kumar, A., & Singh, R. P. (2005). An overview on the degradability of polymer nanocomposites. Polymer Degradation and Stability, 88(2), 234-250. doi:10.1016/j.polymdegradstab.2004.09.013

Du, M., Guo, B., & Jia, D. (2010). Newly emerging applications of halloysite nanotubes: a review. Polymer International, 59(5), 574-582. doi:10.1002/pi.2754

Zhong, B., Lin, J., Liu, M., Jia, Z., Luo, Y., Jia, D., & Liu, F. (2017). Preparation of halloysite nanotubes loaded antioxidant and its antioxidative behaviour in natural rubber. Polymer Degradation and Stability, 141, 19-25. doi:10.1016/j.polymdegradstab.2017.05.009

Prashantha, K., Lacrampe, M. F., & Krawczak, P. (2011). Processing and characterization of halloysite nanotubes filled polypropylene nanocomposites based on a masterbatch route: effect of halloysites treatment on structural and mechanical properties. Express Polymer Letters, 5(4), 295-307. doi:10.3144/expresspolymlett.2011.30

Lecouvet, B., Gutierrez, J. G., Sclavons, M., & Bailly, C. (2011). Structure–property relationships in polyamide 12/halloysite nanotube nanocomposites. Polymer Degradation and Stability, 96(2), 226-235. doi:10.1016/j.polymdegradstab.2010.11.006

Vahabi, H., Saeb, M. R., Formela, K., & Cuesta, J.-M. L. (2018). Flame retardant epoxy/halloysite nanotubes nanocomposite coatings: Exploring low-concentration threshold for flammability compared to expandable graphite as superior fire retardant. Progress in Organic Coatings, 119, 8-14. doi:10.1016/j.porgcoat.2018.02.005

Boonkongkaew, M., & Sirisinha, K. (2018). Halloysite nanotubes loaded with liquid organophosphate for enhanced flame retardancy and mechanical properties of polyamide 6. Journal of Materials Science, 53(14), 10181-10193. doi:10.1007/s10853-018-2351-z

Gorrasi, G., Senatore, V., Vigliotta, G., Belviso, S., & Pucciariello, R. (2014). PET–halloysite nanotubes composites for packaging application: Preparation, characterization and analysis of physical properties. European Polymer Journal, 61, 145-156. doi:10.1016/j.eurpolymj.2014.10.004

Makaremi, M., Pasbakhsh, P., Cavallaro, G., Lazzara, G., Aw, Y. K., Lee, S. M., & Milioto, S. (2017). Effect of Morphology and Size of Halloysite Nanotubes on Functional Pectin Bionanocomposites for Food Packaging Applications. ACS Applied Materials & Interfaces, 9(20), 17476-17488. doi:10.1021/acsami.7b04297

Senthilvel, K., & Prabu, B. (2019). Novel Carbon Black-Halloysite Nanotube Reinforced NBR-PVC Hybrid Oil Seals for Automotive Applications. Recent Patents on Materials Science, 11(2), 83-90. doi:10.2174/2212797612666181213130010

Haw, T. T., Hart, F., Rashidi, A., & Pasbakhsh, P. (2020). Sustainable cementitious composites reinforced with metakaolin and halloysite nanotubes for construction and building applications. Applied Clay Science, 188, 105533. doi:10.1016/j.clay.2020.105533

Goda, E. S., Yoon, K. R., El-sayed, S. H., & Hong, S. E. (2018). Halloysite nanotubes as smart flame retardant and economic reinforcing materials: A review. Thermochimica Acta, 669, 173-184. doi:10.1016/j.tca.2018.09.017

Massaro, M., Lazzara, G., Milioto, S., Noto, R., & Riela, S. (2017). Covalently modified halloysite clay nanotubes: synthesis, properties, biological and medical applications. Journal of Materials Chemistry B, 5(16), 2867-2882. doi:10.1039/c7tb00316a

Elzein, T., Brogly, M., & Schultz, J. (2002). Crystallinity measurements of polyamides adsorbed as thin films. Polymer, 43(17), 4811-4822. doi:10.1016/s0032-3861(02)00239-2

Handge, U. A., Hedicke-Höchstötter, K., & Altstädt, V. (2010). Composites of polyamide 6 and silicate nanotubes of the mineral halloysite: Influence of molecular weight on thermal, mechanical and rheological properties. Polymer, 51(12), 2690-2699. doi:10.1016/j.polymer.2010.04.041

Da Silva, T. F., de Melo Morgado, G. F., do Amaral Montanheiro, T. L., Montagna, L. S., Albers, A. P. F., & Passador, F. R. (2020). A simple mixing method for polyamide 12/attapulgite nanocomposites: structural and mechanical characterization. SN Applied Sciences, 2(3). doi:10.1007/s42452-020-2153-1

Quiles‐Carrillo, L., Montanes, N., Fombuena, V., Balart, R., & Torres‐Giner, S. (2019). Enhancement of the processing window and performance of polyamide 1010/bio‐based high‐density polyethylene blends by melt mixing with natural additives. Polymer International, 69(1), 61-71. doi:10.1002/pi.5919

Kausar, A. (2017). In-situ modified graphene reinforced polyamide 1010/poly(ether amide): mechanical, thermal, and barrier properties. Materials Research Innovations, 23(4), 191-199. doi:10.1080/14328917.2017.1409392

Boonkongkaew, M., Hornsby, P., & Sirisinha, K. (2017). Structural effect of secondary antioxidants on mechanical properties and stabilization efficiency of polyamide 6/halloysite nanotube composites during heat ageing. Journal of Applied Polymer Science, 134(39), 45360. doi:10.1002/app.45360

Sahnoune, M., Taguet, A., Otazaghine, B., Kaci, M., & Lopez-Cuesta, J.-M. (2017). Effects of functionalized halloysite on morphology and properties of polyamide-11/SEBS-g-MA blends. European Polymer Journal, 90, 418-430. doi:10.1016/j.eurpolymj.2017.03.008

Frost, R. L. (1997). Raman Microprobe Spectroscopy of Halloysite. Clays and Clay Minerals, 45(1), 68-72. doi:10.1346/ccmn.1997.0450107

Du, M., Guo, B., Cai, X., Jia, Z., Liu, M., & Jia, D. (2008). Morphology and properties of halloysite nanotubes reinforced polypropylene nanocomposites. e-Polymers, 8(1). doi:10.1515/epoly.2008.8.1.1490

Wu, J., Huang, Y., Li, H., Runt, J., & Yeh, J. (2018). Properties of polyamide 6,10/poly(vinyl alcohol) blends and impact on oxygen barrier performance. Polymer International, 67(4), 453-462. doi:10.1002/pi.5528

Logakis, E., Pandis, C., Peoglos, V., Pissis, P., Stergiou, C., Pionteck, J., … Omastová, M. (2009). Structure-property relationships in polyamide 6/multi-walled carbon nanotubes nanocomposites. Journal of Polymer Science Part B: Polymer Physics, 47(8), 764-774. doi:10.1002/polb.21681

Pai, F.-C., Lai, S.-M., & Chu, H.-H. (2013). Characterization and Properties of Reactive Poly(lactic acid)/Polyamide 610 Biomass Blends. Journal of Applied Polymer Science, 130(4), 2563-2571. doi:10.1002/app.39473

Jeong, J.-Y., Lee, H.-J., Kang, S.-W., Tan, L.-S., & Baek, J.-B. (2008). Nylon 610/functionalized multiwalled carbon nanotube composite prepared fromin-situinterfacial polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 46(18), 6041-6050. doi:10.1002/pola.22916

Zhang, G., & Yan, D. (2003). Crystallization kinetics and melting behavior of nylon 10,10 in nylon 10,10-montmorillonite nanocomposites. Journal of Applied Polymer Science, 88(9), 2181-2188. doi:10.1002/app.11879

Quiles-Carrillo, L., Montanes, N., Boronat, T., Balart, R., & Torres-Giner, S. (2017). Evaluation of the engineering performance of different bio-based aliphatic homopolyamide tubes prepared by profile extrusion. Polymer Testing, 61, 421-429. doi:10.1016/j.polymertesting.2017.06.004

Xiuwei, F., Xiaohong, L., Laigui, Y., & Zhijun, Z. (2010). Effect ofin situsurface-modified nano-SiO2on the thermal and mechanical properties and crystallization behavior of nylon 1010. Journal of Applied Polymer Science, 115(6), 3339-3347. doi:10.1002/app.30457

Ghaffari Mosanenzadeh, S., Liu, M. W., Osia, A., & Naguib, H. E. (2015). Thermal Composites of Biobased Polyamide with Boron Nitride Micro Networks. Journal of Polymers and the Environment, 23(4), 566-579. doi:10.1007/s10924-015-0733-8

Botelho, E. C., & Rezende, M. C. (2006). Monitoring of Carbon Fiber/Polyamide Composites Processing by Rheological and Thermal Analyses. Polymer-Plastics Technology and Engineering, 45(1), 61-69. doi:10.1080/03602550500373618

SHEN, Z., BATEMAN, S., WU, D., MCMAHON, P., DELLOLIO, M., & GOTAMA, J. (2009). The effects of carbon nanotubes on mechanical and thermal properties of woven glass fibre reinforced polyamide-6 nanocomposites. Composites Science and Technology, 69(2), 239-244. doi:10.1016/j.compscitech.2008.10.017

Ruehle, D. A., Perbix, C., Castañeda, M., Dorgan, J. R., Mittal, V., Halley, P., & Martin, D. (2013). Blends of biorenewable polyamide-11 and polyamide-6,10. Polymer, 54(26), 6961-6970. doi:10.1016/j.polymer.2013.10.013

Vieira Marques, M. de F., da Silva Rosa, J. L., & da Silva, M. C. V. (2016). Nanocomposites of polypropylene with halloysite nanotubes employing in situ polymerization. Polymer Bulletin, 74(7), 2447-2464. doi:10.1007/s00289-016-1848-3

Guo, B., Zou, Q., Lei, Y., & Jia, D. (2009). Structure and Performance of Polyamide 6/Halloysite Nanotubes Nanocomposites. Polymer Journal, 41(10), 835-842. doi:10.1295/polymj.pj2009110

Liu, M., Guo, B., Du, M., Lei, Y., & Jia, D. (2007). Natural inorganic nanotubes reinforced epoxy resin nanocomposites. Journal of Polymer Research, 15(3), 205-212. doi:10.1007/s10965-007-9160-4

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem