Mostrar el registro sencillo del ítem
dc.contributor.author | Marset, David | es_ES |
dc.contributor.author | Dolza, Celia | es_ES |
dc.contributor.author | Boronat, Teodomiro | es_ES |
dc.contributor.author | Montanes, Nestor | es_ES |
dc.contributor.author | Balart, Rafael | es_ES |
dc.contributor.author | Sanchez-Nacher, Lourdes | es_ES |
dc.contributor.author | Quiles-Carrillo, Luis | es_ES |
dc.date.accessioned | 2021-03-01T08:08:31Z | |
dc.date.available | 2021-03-01T08:08:31Z | |
dc.date.issued | 2020-07 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/162567 | |
dc.description.abstract | [EN] This works focuses on the development of environmentally friendly composites with a partially biobased polyamide 610 (PA610), containing 63% biobased content, and a natural inorganic filler at the nanoscale, namely, halloysite nanotubes (HNTs). PA610 composites containing 10, 20, and 30 wt% HNTs were obtained by melt extrusion in a twin screw co-rotating extruder. The resulting composites were injection-molded for further characterization. The obtained materials were characterized to obtain reliable data about their mechanical, thermal, and morphological properties. The effect of the HNTs wt% on these properties was evaluated. From a mechanical standpoint, the addition of 30 wt% HNTs gave an increase in tensile modulus of twice the initial value, thus verifying how this type of natural load provides increased stiffness on injection molded parts. The materials prepared with HNTs slightly improved the thermal stability, while a noticeable improvement on thermomechanical resistance over a wide temperature range was observed with increasing HNTs content. The obtained results indicate that high biobased content composites can be obtained with an engineering thermoplastic, i.e., PA610, and a natural inorganic nanotubeshaped filler, i.e., HNTs, with balanced mechanical properties and attractive behavior against high temperature. | es_ES |
dc.description.sponsorship | This research was funded by the Ministry of Science, Innovation, and Universities (MICIU) project numbers MAT2017-84909-C2-2-R and AGL2015-63855-C2-1-R. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Polymers | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | PA610 | es_ES |
dc.subject | Halloysite nanotubes (HNTs) | es_ES |
dc.subject | Flame retardant | es_ES |
dc.subject | Thermomechanical resistance | es_ES |
dc.subject.classification | INGENIERIA DE LOS PROCESOS DE FABRICACION | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.title | Injection-Molded Parts of Partially Biobased Polyamide 610 and Biobased Halloysite Nanotubes | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/polym12071503 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//AGL2015-63855-C2-1-R/ES/DESARROLLO DE UN CONCEPTO DE ENVASE MULTICAPA ALIMENTARIO DE ALTA BARRERA Y CON CARACTER ACTIVO Y BIOACTIVO DERIVADO DE SUBPRODUCTOS ALIMENTARIOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84909-C2-2-R/ES/PROCESADO Y OPTIMIZACION DE MATERIALES AVANZADOS DERIVADOS DE ESTRUCTURAS PROTEICAS Y COMPONENTES LIGNOCELULOSICOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | Marset, D.; Dolza, C.; Boronat, T.; Montanes, N.; Balart, R.; Sanchez-Nacher, L.; Quiles-Carrillo, L. (2020). Injection-Molded Parts of Partially Biobased Polyamide 610 and Biobased Halloysite Nanotubes. Polymers. 12(7):1-14. https://doi.org/10.3390/polym12071503 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/polym12071503 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 14 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 7 | es_ES |
dc.identifier.eissn | 2073-4360 | es_ES |
dc.identifier.pmid | 32640632 | es_ES |
dc.identifier.pmcid | PMC7407294 | es_ES |
dc.relation.pasarela | S\415005 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Ahmann, D., & Dorgan, J. R. (2007). Bioengineering for pollution prevention through development of biobased energy and materials state of the science report. Industrial Biotechnology, 3(3), 218-259. doi:10.1089/ind.2007.3.218 | es_ES |
dc.description.references | Stafford, R., & Jones, P. J. S. (2019). Viewpoint – Ocean plastic pollution: A convenient but distracting truth? Marine Policy, 103, 187-191. doi:10.1016/j.marpol.2019.02.003 | es_ES |
dc.description.references | Liu, W., Chen, T., Fei, M., Qiu, R., Yu, D., Fu, T., & Qiu, J. (2019). Properties of natural fiber-reinforced biobased thermoset biocomposites: Effects of fiber type and resin composition. Composites Part B: Engineering, 171, 87-95. doi:10.1016/j.compositesb.2019.04.048 | es_ES |
dc.description.references | Garcia, D., Balart, R., Sánchez, L., & López, J. (2007). Compatibility of recycled PVC/ABS blends. Effect of previous degradation. Polymer Engineering & Science, 47(6), 789-796. doi:10.1002/pen.20755 | es_ES |
dc.description.references | Mohan, T. P., & Kanny, K. (2019). Compressive characteristics of unmodified and nanoclay treated banana fiber reinforced epoxy composite cylinders. Composites Part B: Engineering, 169, 118-125. doi:10.1016/j.compositesb.2019.03.071 | es_ES |
dc.description.references | Fombuena, V., L, S.-N., MD, S., D, J., & R, B. (2012). Study of the Properties of Thermoset Materials Derived from Epoxidized Soybean Oil and Protein Fillers. Journal of the American Oil Chemists’ Society, 90(3), 449-457. doi:10.1007/s11746-012-2171-2 | es_ES |
dc.description.references | Moran, C. S., Barthelon, A., Pearsall, A., Mittal, V., & Dorgan, J. R. (2016). Biorenewable blends of polyamide-4,10 and polyamide-6,10. Journal of Applied Polymer Science, 133(45). doi:10.1002/app.43626 | es_ES |
dc.description.references | Stewart, R. (2011). Rebounding automotive industry welcome news for FRP. Reinforced Plastics, 55(1), 38-44. doi:10.1016/s0034-3617(11)70036-4 | es_ES |
dc.description.references | Horrocks, A. R., Kandola, B. K., Davies, P. J., Zhang, S., & Padbury, S. A. (2005). Developments in flame retardant textiles – a review. Polymer Degradation and Stability, 88(1), 3-12. doi:10.1016/j.polymdegradstab.2003.10.024 | es_ES |
dc.description.references | Jacob, A. (2014). Carbon fibre and cars – 2013 in review. Reinforced Plastics, 58(1), 18-19. doi:10.1016/s0034-3617(14)70036-0 | es_ES |
dc.description.references | Marchildon, K. (2010). Polyamides - Still Strong After Seventy Years. Macromolecular Reaction Engineering, 5(1), 22-54. doi:10.1002/mren.201000017 | es_ES |
dc.description.references | Torres-Giner, S., Montanes, N., Fenollar, O., García-Sanoguera, D., & Balart, R. (2016). Development and optimization of renewable vinyl plastisol/wood flour composites exposed to ultraviolet radiation. Materials & Design, 108, 648-658. doi:10.1016/j.matdes.2016.07.037 | es_ES |
dc.description.references | Feldmann, M., & Bledzki, A. K. (2014). Bio-based polyamides reinforced with cellulosic fibres – Processing and properties. Composites Science and Technology, 100, 113-120. doi:10.1016/j.compscitech.2014.06.008 | es_ES |
dc.description.references | OGUNNIYI, D. (2006). Castor oil: A vital industrial raw material. Bioresource Technology, 97(9), 1086-1091. doi:10.1016/j.biortech.2005.03.028 | es_ES |
dc.description.references | Desroches, M., Escouvois, M., Auvergne, R., Caillol, S., & Boutevin, B. (2012). From Vegetable Oils to Polyurethanes: Synthetic Routes to Polyols and Main Industrial Products. Polymer Reviews, 52(1), 38-79. doi:10.1080/15583724.2011.640443 | es_ES |
dc.description.references | Ogunsona, E. O., Misra, M., & Mohanty, A. K. (2016). Sustainable biocomposites from biobased polyamide 6,10 and biocarbon from pyrolyzed miscanthus fibers. Journal of Applied Polymer Science, 134(4). doi:10.1002/app.44221 | es_ES |
dc.description.references | Carbonell-Verdu, A., Bernardi, L., Garcia-Garcia, D., Sanchez-Nacher, L., & Balart, R. (2015). Development of environmentally friendly composite matrices from epoxidized cottonseed oil. European Polymer Journal, 63, 1-10. doi:10.1016/j.eurpolymj.2014.11.043 | es_ES |
dc.description.references | Sabatini, V., Farina, H., Basilissi, L., Di Silvestro, G., & Ortenzi, M. A. (2015). The Use of Epoxy Silanes on Montmorillonite: An Effective Way to Improve Thermal and Rheological Properties of PLA/MMT Nanocomposites Obtained via «In Situ» Polymerization. Journal of Nanomaterials, 2015, 1-16. doi:10.1155/2015/418418 | es_ES |
dc.description.references | Wu, G., Li, B., & Jiang, J. (2010). Carbon black self-networking induced co-continuity of immiscible polymer blends. Polymer, 51(9), 2077-2083. doi:10.1016/j.polymer.2010.03.007 | es_ES |
dc.description.references | Šehić, A., Vasiljević, J., Demšar, A., Leskovšek, M., Bukošek, V., Medved, J., … Simončič, B. (2018). Polyamide 6 composite fibers with incorporated mixtures of melamine cyanurate, carbon nanotubes, and carbon black. Journal of Applied Polymer Science, 136(5), 47007. doi:10.1002/app.47007 | es_ES |
dc.description.references | Uhl, F. M., Yao, Q., Nakajima, H., Manias, E., & Wilkie, C. A. (2005). Expandable graphite/polyamide-6 nanocomposites. Polymer Degradation and Stability, 89(1), 70-84. doi:10.1016/j.polymdegradstab.2005.01.004 | es_ES |
dc.description.references | Ho, Q. B., Osazuwa, O., Modler, R., Daymond, M., Gallerneault, M. T., & Kontopoulou, M. (2019). Exfoliation of graphite and expanded graphite by melt compounding to prepare reinforced, thermally and electrically conducting polyamide composites. Composites Science and Technology, 176, 111-120. doi:10.1016/j.compscitech.2019.03.024 | es_ES |
dc.description.references | Xu, Z., & Gao, C. (2010). In situ Polymerization Approach to Graphene-Reinforced Nylon-6 Composites. Macromolecules, 43(16), 6716-6723. doi:10.1021/ma1009337 | es_ES |
dc.description.references | Tapper, R. J., Longana, M. L., Hamerton, I., & Potter, K. D. (2019). A closed-loop recycling process for discontinuous carbon fibre polyamide 6 composites. Composites Part B: Engineering, 179, 107418. doi:10.1016/j.compositesb.2019.107418 | es_ES |
dc.description.references | Mazur, K., Kuciel, S., & Salasinska, K. (2019). Mechanical, fire, and smoke behaviour of hybrid composites based on polyamide 6 with basalt/carbon fibres. Journal of Composite Materials, 53(28-30), 3979-3991. doi:10.1177/0021998319853015 | es_ES |
dc.description.references | España, J. M., Samper, M. D., Fages, E., Sánchez-Nácher, L., & Balart, R. (2013). Investigation of the effect of different silane coupling agents on mechanical performance of basalt fiber composite laminates with biobased epoxy matrices. Polymer Composites, 34(3), 376-381. doi:10.1002/pc.22421 | es_ES |
dc.description.references | Lascano, D., Valcárcel, J., Balart, R., Quiles-Carrillo, L., & Boronat, T. (2019). Manufacturing of composite materials with high environmental efficiency using epoxy resin of renewable origin and permeable light cores for vacuum-assisted infusion molding. Ingenius, (23), 62-73. doi:10.17163/ings.n23.2020.06 | es_ES |
dc.description.references | Mittal, V. (2009). Polymer Layered Silicate Nanocomposites: A Review. Materials, 2(3), 992-1057. doi:10.3390/ma2030992 | es_ES |
dc.description.references | Choudalakis, G., & Gotsis, A. D. (2009). Permeability of polymer/clay nanocomposites: A review. European Polymer Journal, 45(4), 967-984. doi:10.1016/j.eurpolymj.2009.01.027 | es_ES |
dc.description.references | Yuan, Q., Awate, S., & Misra, R. D. K. (2006). Nonisothermal crystallization behavior of polypropylene–clay nanocomposites. European Polymer Journal, 42(9), 1994-2003. doi:10.1016/j.eurpolymj.2006.03.012 | es_ES |
dc.description.references | Pandey, J. K., Raghunatha Reddy, K., Pratheep Kumar, A., & Singh, R. P. (2005). An overview on the degradability of polymer nanocomposites. Polymer Degradation and Stability, 88(2), 234-250. doi:10.1016/j.polymdegradstab.2004.09.013 | es_ES |
dc.description.references | Du, M., Guo, B., & Jia, D. (2010). Newly emerging applications of halloysite nanotubes: a review. Polymer International, 59(5), 574-582. doi:10.1002/pi.2754 | es_ES |
dc.description.references | Zhong, B., Lin, J., Liu, M., Jia, Z., Luo, Y., Jia, D., & Liu, F. (2017). Preparation of halloysite nanotubes loaded antioxidant and its antioxidative behaviour in natural rubber. Polymer Degradation and Stability, 141, 19-25. doi:10.1016/j.polymdegradstab.2017.05.009 | es_ES |
dc.description.references | Prashantha, K., Lacrampe, M. F., & Krawczak, P. (2011). Processing and characterization of halloysite nanotubes filled polypropylene nanocomposites based on a masterbatch route: effect of halloysites treatment on structural and mechanical properties. Express Polymer Letters, 5(4), 295-307. doi:10.3144/expresspolymlett.2011.30 | es_ES |
dc.description.references | Lecouvet, B., Gutierrez, J. G., Sclavons, M., & Bailly, C. (2011). Structure–property relationships in polyamide 12/halloysite nanotube nanocomposites. Polymer Degradation and Stability, 96(2), 226-235. doi:10.1016/j.polymdegradstab.2010.11.006 | es_ES |
dc.description.references | Vahabi, H., Saeb, M. R., Formela, K., & Cuesta, J.-M. L. (2018). Flame retardant epoxy/halloysite nanotubes nanocomposite coatings: Exploring low-concentration threshold for flammability compared to expandable graphite as superior fire retardant. Progress in Organic Coatings, 119, 8-14. doi:10.1016/j.porgcoat.2018.02.005 | es_ES |
dc.description.references | Boonkongkaew, M., & Sirisinha, K. (2018). Halloysite nanotubes loaded with liquid organophosphate for enhanced flame retardancy and mechanical properties of polyamide 6. Journal of Materials Science, 53(14), 10181-10193. doi:10.1007/s10853-018-2351-z | es_ES |
dc.description.references | Gorrasi, G., Senatore, V., Vigliotta, G., Belviso, S., & Pucciariello, R. (2014). PET–halloysite nanotubes composites for packaging application: Preparation, characterization and analysis of physical properties. European Polymer Journal, 61, 145-156. doi:10.1016/j.eurpolymj.2014.10.004 | es_ES |
dc.description.references | Makaremi, M., Pasbakhsh, P., Cavallaro, G., Lazzara, G., Aw, Y. K., Lee, S. M., & Milioto, S. (2017). Effect of Morphology and Size of Halloysite Nanotubes on Functional Pectin Bionanocomposites for Food Packaging Applications. ACS Applied Materials & Interfaces, 9(20), 17476-17488. doi:10.1021/acsami.7b04297 | es_ES |
dc.description.references | Senthilvel, K., & Prabu, B. (2019). Novel Carbon Black-Halloysite Nanotube Reinforced NBR-PVC Hybrid Oil Seals for Automotive Applications. Recent Patents on Materials Science, 11(2), 83-90. doi:10.2174/2212797612666181213130010 | es_ES |
dc.description.references | Haw, T. T., Hart, F., Rashidi, A., & Pasbakhsh, P. (2020). Sustainable cementitious composites reinforced with metakaolin and halloysite nanotubes for construction and building applications. Applied Clay Science, 188, 105533. doi:10.1016/j.clay.2020.105533 | es_ES |
dc.description.references | Goda, E. S., Yoon, K. R., El-sayed, S. H., & Hong, S. E. (2018). Halloysite nanotubes as smart flame retardant and economic reinforcing materials: A review. Thermochimica Acta, 669, 173-184. doi:10.1016/j.tca.2018.09.017 | es_ES |
dc.description.references | Massaro, M., Lazzara, G., Milioto, S., Noto, R., & Riela, S. (2017). Covalently modified halloysite clay nanotubes: synthesis, properties, biological and medical applications. Journal of Materials Chemistry B, 5(16), 2867-2882. doi:10.1039/c7tb00316a | es_ES |
dc.description.references | Elzein, T., Brogly, M., & Schultz, J. (2002). Crystallinity measurements of polyamides adsorbed as thin films. Polymer, 43(17), 4811-4822. doi:10.1016/s0032-3861(02)00239-2 | es_ES |
dc.description.references | Handge, U. A., Hedicke-Höchstötter, K., & Altstädt, V. (2010). Composites of polyamide 6 and silicate nanotubes of the mineral halloysite: Influence of molecular weight on thermal, mechanical and rheological properties. Polymer, 51(12), 2690-2699. doi:10.1016/j.polymer.2010.04.041 | es_ES |
dc.description.references | Da Silva, T. F., de Melo Morgado, G. F., do Amaral Montanheiro, T. L., Montagna, L. S., Albers, A. P. F., & Passador, F. R. (2020). A simple mixing method for polyamide 12/attapulgite nanocomposites: structural and mechanical characterization. SN Applied Sciences, 2(3). doi:10.1007/s42452-020-2153-1 | es_ES |
dc.description.references | Quiles‐Carrillo, L., Montanes, N., Fombuena, V., Balart, R., & Torres‐Giner, S. (2019). Enhancement of the processing window and performance of polyamide 1010/bio‐based high‐density polyethylene blends by melt mixing with natural additives. Polymer International, 69(1), 61-71. doi:10.1002/pi.5919 | es_ES |
dc.description.references | Kausar, A. (2017). In-situ modified graphene reinforced polyamide 1010/poly(ether amide): mechanical, thermal, and barrier properties. Materials Research Innovations, 23(4), 191-199. doi:10.1080/14328917.2017.1409392 | es_ES |
dc.description.references | Boonkongkaew, M., Hornsby, P., & Sirisinha, K. (2017). Structural effect of secondary antioxidants on mechanical properties and stabilization efficiency of polyamide 6/halloysite nanotube composites during heat ageing. Journal of Applied Polymer Science, 134(39), 45360. doi:10.1002/app.45360 | es_ES |
dc.description.references | Sahnoune, M., Taguet, A., Otazaghine, B., Kaci, M., & Lopez-Cuesta, J.-M. (2017). Effects of functionalized halloysite on morphology and properties of polyamide-11/SEBS-g-MA blends. European Polymer Journal, 90, 418-430. doi:10.1016/j.eurpolymj.2017.03.008 | es_ES |
dc.description.references | Frost, R. L. (1997). Raman Microprobe Spectroscopy of Halloysite. Clays and Clay Minerals, 45(1), 68-72. doi:10.1346/ccmn.1997.0450107 | es_ES |
dc.description.references | Du, M., Guo, B., Cai, X., Jia, Z., Liu, M., & Jia, D. (2008). Morphology and properties of halloysite nanotubes reinforced polypropylene nanocomposites. e-Polymers, 8(1). doi:10.1515/epoly.2008.8.1.1490 | es_ES |
dc.description.references | Wu, J., Huang, Y., Li, H., Runt, J., & Yeh, J. (2018). Properties of polyamide 6,10/poly(vinyl alcohol) blends and impact on oxygen barrier performance. Polymer International, 67(4), 453-462. doi:10.1002/pi.5528 | es_ES |
dc.description.references | Logakis, E., Pandis, C., Peoglos, V., Pissis, P., Stergiou, C., Pionteck, J., … Omastová, M. (2009). Structure-property relationships in polyamide 6/multi-walled carbon nanotubes nanocomposites. Journal of Polymer Science Part B: Polymer Physics, 47(8), 764-774. doi:10.1002/polb.21681 | es_ES |
dc.description.references | Pai, F.-C., Lai, S.-M., & Chu, H.-H. (2013). Characterization and Properties of Reactive Poly(lactic acid)/Polyamide 610 Biomass Blends. Journal of Applied Polymer Science, 130(4), 2563-2571. doi:10.1002/app.39473 | es_ES |
dc.description.references | Jeong, J.-Y., Lee, H.-J., Kang, S.-W., Tan, L.-S., & Baek, J.-B. (2008). Nylon 610/functionalized multiwalled carbon nanotube composite prepared fromin-situinterfacial polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 46(18), 6041-6050. doi:10.1002/pola.22916 | es_ES |
dc.description.references | Zhang, G., & Yan, D. (2003). Crystallization kinetics and melting behavior of nylon 10,10 in nylon 10,10-montmorillonite nanocomposites. Journal of Applied Polymer Science, 88(9), 2181-2188. doi:10.1002/app.11879 | es_ES |
dc.description.references | Quiles-Carrillo, L., Montanes, N., Boronat, T., Balart, R., & Torres-Giner, S. (2017). Evaluation of the engineering performance of different bio-based aliphatic homopolyamide tubes prepared by profile extrusion. Polymer Testing, 61, 421-429. doi:10.1016/j.polymertesting.2017.06.004 | es_ES |
dc.description.references | Xiuwei, F., Xiaohong, L., Laigui, Y., & Zhijun, Z. (2010). Effect ofin situsurface-modified nano-SiO2on the thermal and mechanical properties and crystallization behavior of nylon 1010. Journal of Applied Polymer Science, 115(6), 3339-3347. doi:10.1002/app.30457 | es_ES |
dc.description.references | Ghaffari Mosanenzadeh, S., Liu, M. W., Osia, A., & Naguib, H. E. (2015). Thermal Composites of Biobased Polyamide with Boron Nitride Micro Networks. Journal of Polymers and the Environment, 23(4), 566-579. doi:10.1007/s10924-015-0733-8 | es_ES |
dc.description.references | Botelho, E. C., & Rezende, M. C. (2006). Monitoring of Carbon Fiber/Polyamide Composites Processing by Rheological and Thermal Analyses. Polymer-Plastics Technology and Engineering, 45(1), 61-69. doi:10.1080/03602550500373618 | es_ES |
dc.description.references | SHEN, Z., BATEMAN, S., WU, D., MCMAHON, P., DELLOLIO, M., & GOTAMA, J. (2009). The effects of carbon nanotubes on mechanical and thermal properties of woven glass fibre reinforced polyamide-6 nanocomposites. Composites Science and Technology, 69(2), 239-244. doi:10.1016/j.compscitech.2008.10.017 | es_ES |
dc.description.references | Ruehle, D. A., Perbix, C., Castañeda, M., Dorgan, J. R., Mittal, V., Halley, P., & Martin, D. (2013). Blends of biorenewable polyamide-11 and polyamide-6,10. Polymer, 54(26), 6961-6970. doi:10.1016/j.polymer.2013.10.013 | es_ES |
dc.description.references | Vieira Marques, M. de F., da Silva Rosa, J. L., & da Silva, M. C. V. (2016). Nanocomposites of polypropylene with halloysite nanotubes employing in situ polymerization. Polymer Bulletin, 74(7), 2447-2464. doi:10.1007/s00289-016-1848-3 | es_ES |
dc.description.references | Guo, B., Zou, Q., Lei, Y., & Jia, D. (2009). Structure and Performance of Polyamide 6/Halloysite Nanotubes Nanocomposites. Polymer Journal, 41(10), 835-842. doi:10.1295/polymj.pj2009110 | es_ES |
dc.description.references | Liu, M., Guo, B., Du, M., Lei, Y., & Jia, D. (2007). Natural inorganic nanotubes reinforced epoxy resin nanocomposites. Journal of Polymer Research, 15(3), 205-212. doi:10.1007/s10965-007-9160-4 | es_ES |
dc.subject.ods | 08.- Fomentar el crecimiento económico sostenido, inclusivo y sostenible, el empleo pleno y productivo, y el trabajo decente para todos | es_ES |
dc.subject.ods | 17.- Fortalecer los medios de ejecución y reavivar la alianza mundial para el desarrollo sostenible | es_ES |
dc.subject.ods | 12.- Garantizar las pautas de consumo y de producción sostenibles | es_ES |