- -

Injection-Molded Parts of Partially Biobased Polyamide 610 and Biobased Halloysite Nanotubes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Injection-Molded Parts of Partially Biobased Polyamide 610 and Biobased Halloysite Nanotubes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Marset, David es_ES
dc.contributor.author Dolza, Celia es_ES
dc.contributor.author Boronat, Teodomiro es_ES
dc.contributor.author Montanes, Nestor es_ES
dc.contributor.author Balart, Rafael es_ES
dc.contributor.author Sanchez-Nacher, Lourdes es_ES
dc.contributor.author Quiles-Carrillo, Luis es_ES
dc.date.accessioned 2021-03-01T08:08:31Z
dc.date.available 2021-03-01T08:08:31Z
dc.date.issued 2020-07 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162567
dc.description.abstract [EN] This works focuses on the development of environmentally friendly composites with a partially biobased polyamide 610 (PA610), containing 63% biobased content, and a natural inorganic filler at the nanoscale, namely, halloysite nanotubes (HNTs). PA610 composites containing 10, 20, and 30 wt% HNTs were obtained by melt extrusion in a twin screw co-rotating extruder. The resulting composites were injection-molded for further characterization. The obtained materials were characterized to obtain reliable data about their mechanical, thermal, and morphological properties. The effect of the HNTs wt% on these properties was evaluated. From a mechanical standpoint, the addition of 30 wt% HNTs gave an increase in tensile modulus of twice the initial value, thus verifying how this type of natural load provides increased stiffness on injection molded parts. The materials prepared with HNTs slightly improved the thermal stability, while a noticeable improvement on thermomechanical resistance over a wide temperature range was observed with increasing HNTs content. The obtained results indicate that high biobased content composites can be obtained with an engineering thermoplastic, i.e., PA610, and a natural inorganic nanotubeshaped filler, i.e., HNTs, with balanced mechanical properties and attractive behavior against high temperature. es_ES
dc.description.sponsorship This research was funded by the Ministry of Science, Innovation, and Universities (MICIU) project numbers MAT2017-84909-C2-2-R and AGL2015-63855-C2-1-R. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Polymers es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject PA610 es_ES
dc.subject Halloysite nanotubes (HNTs) es_ES
dc.subject Flame retardant es_ES
dc.subject Thermomechanical resistance es_ES
dc.subject.classification INGENIERIA DE LOS PROCESOS DE FABRICACION es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Injection-Molded Parts of Partially Biobased Polyamide 610 and Biobased Halloysite Nanotubes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/polym12071503 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2015-63855-C2-1-R/ES/DESARROLLO DE UN CONCEPTO DE ENVASE MULTICAPA ALIMENTARIO DE ALTA BARRERA Y CON CARACTER ACTIVO Y BIOACTIVO DERIVADO DE SUBPRODUCTOS ALIMENTARIOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84909-C2-2-R/ES/PROCESADO Y OPTIMIZACION DE MATERIALES AVANZADOS DERIVADOS DE ESTRUCTURAS PROTEICAS Y COMPONENTES LIGNOCELULOSICOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Marset, D.; Dolza, C.; Boronat, T.; Montanes, N.; Balart, R.; Sanchez-Nacher, L.; Quiles-Carrillo, L. (2020). Injection-Molded Parts of Partially Biobased Polyamide 610 and Biobased Halloysite Nanotubes. Polymers. 12(7):1-14. https://doi.org/10.3390/polym12071503 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/polym12071503 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 7 es_ES
dc.identifier.eissn 2073-4360 es_ES
dc.identifier.pmid 32640632 es_ES
dc.identifier.pmcid PMC7407294 es_ES
dc.relation.pasarela S\415005 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Ahmann, D., & Dorgan, J. R. (2007). Bioengineering for pollution prevention through development of biobased energy and materials state of the science report. Industrial Biotechnology, 3(3), 218-259. doi:10.1089/ind.2007.3.218 es_ES
dc.description.references Stafford, R., & Jones, P. J. S. (2019). Viewpoint – Ocean plastic pollution: A convenient but distracting truth? Marine Policy, 103, 187-191. doi:10.1016/j.marpol.2019.02.003 es_ES
dc.description.references Liu, W., Chen, T., Fei, M., Qiu, R., Yu, D., Fu, T., & Qiu, J. (2019). Properties of natural fiber-reinforced biobased thermoset biocomposites: Effects of fiber type and resin composition. Composites Part B: Engineering, 171, 87-95. doi:10.1016/j.compositesb.2019.04.048 es_ES
dc.description.references Garcia, D., Balart, R., Sánchez, L., & López, J. (2007). Compatibility of recycled PVC/ABS blends. Effect of previous degradation. Polymer Engineering & Science, 47(6), 789-796. doi:10.1002/pen.20755 es_ES
dc.description.references Mohan, T. P., & Kanny, K. (2019). Compressive characteristics of unmodified and nanoclay treated banana fiber reinforced epoxy composite cylinders. Composites Part B: Engineering, 169, 118-125. doi:10.1016/j.compositesb.2019.03.071 es_ES
dc.description.references Fombuena, V., L, S.-N., MD, S., D, J., & R, B. (2012). Study of the Properties of Thermoset Materials Derived from Epoxidized Soybean Oil and Protein Fillers. Journal of the American Oil Chemists’ Society, 90(3), 449-457. doi:10.1007/s11746-012-2171-2 es_ES
dc.description.references Moran, C. S., Barthelon, A., Pearsall, A., Mittal, V., & Dorgan, J. R. (2016). Biorenewable blends of polyamide-4,10 and polyamide-6,10. Journal of Applied Polymer Science, 133(45). doi:10.1002/app.43626 es_ES
dc.description.references Stewart, R. (2011). Rebounding automotive industry welcome news for FRP. Reinforced Plastics, 55(1), 38-44. doi:10.1016/s0034-3617(11)70036-4 es_ES
dc.description.references Horrocks, A. R., Kandola, B. K., Davies, P. J., Zhang, S., & Padbury, S. A. (2005). Developments in flame retardant textiles – a review. Polymer Degradation and Stability, 88(1), 3-12. doi:10.1016/j.polymdegradstab.2003.10.024 es_ES
dc.description.references Jacob, A. (2014). Carbon fibre and cars – 2013 in review. Reinforced Plastics, 58(1), 18-19. doi:10.1016/s0034-3617(14)70036-0 es_ES
dc.description.references Marchildon, K. (2010). Polyamides - Still Strong After Seventy Years. Macromolecular Reaction Engineering, 5(1), 22-54. doi:10.1002/mren.201000017 es_ES
dc.description.references Torres-Giner, S., Montanes, N., Fenollar, O., García-Sanoguera, D., & Balart, R. (2016). Development and optimization of renewable vinyl plastisol/wood flour composites exposed to ultraviolet radiation. Materials & Design, 108, 648-658. doi:10.1016/j.matdes.2016.07.037 es_ES
dc.description.references Feldmann, M., & Bledzki, A. K. (2014). Bio-based polyamides reinforced with cellulosic fibres – Processing and properties. Composites Science and Technology, 100, 113-120. doi:10.1016/j.compscitech.2014.06.008 es_ES
dc.description.references OGUNNIYI, D. (2006). Castor oil: A vital industrial raw material. Bioresource Technology, 97(9), 1086-1091. doi:10.1016/j.biortech.2005.03.028 es_ES
dc.description.references Desroches, M., Escouvois, M., Auvergne, R., Caillol, S., & Boutevin, B. (2012). From Vegetable Oils to Polyurethanes: Synthetic Routes to Polyols and Main Industrial Products. Polymer Reviews, 52(1), 38-79. doi:10.1080/15583724.2011.640443 es_ES
dc.description.references Ogunsona, E. O., Misra, M., & Mohanty, A. K. (2016). Sustainable biocomposites from biobased polyamide 6,10 and biocarbon from pyrolyzed miscanthus fibers. Journal of Applied Polymer Science, 134(4). doi:10.1002/app.44221 es_ES
dc.description.references Carbonell-Verdu, A., Bernardi, L., Garcia-Garcia, D., Sanchez-Nacher, L., & Balart, R. (2015). Development of environmentally friendly composite matrices from epoxidized cottonseed oil. European Polymer Journal, 63, 1-10. doi:10.1016/j.eurpolymj.2014.11.043 es_ES
dc.description.references Sabatini, V., Farina, H., Basilissi, L., Di Silvestro, G., & Ortenzi, M. A. (2015). The Use of Epoxy Silanes on Montmorillonite: An Effective Way to Improve Thermal and Rheological Properties of PLA/MMT Nanocomposites Obtained via «In Situ» Polymerization. Journal of Nanomaterials, 2015, 1-16. doi:10.1155/2015/418418 es_ES
dc.description.references Wu, G., Li, B., & Jiang, J. (2010). Carbon black self-networking induced co-continuity of immiscible polymer blends. Polymer, 51(9), 2077-2083. doi:10.1016/j.polymer.2010.03.007 es_ES
dc.description.references Šehić, A., Vasiljević, J., Demšar, A., Leskovšek, M., Bukošek, V., Medved, J., … Simončič, B. (2018). Polyamide 6 composite fibers with incorporated mixtures of melamine cyanurate, carbon nanotubes, and carbon black. Journal of Applied Polymer Science, 136(5), 47007. doi:10.1002/app.47007 es_ES
dc.description.references Uhl, F. M., Yao, Q., Nakajima, H., Manias, E., & Wilkie, C. A. (2005). Expandable graphite/polyamide-6 nanocomposites. Polymer Degradation and Stability, 89(1), 70-84. doi:10.1016/j.polymdegradstab.2005.01.004 es_ES
dc.description.references Ho, Q. B., Osazuwa, O., Modler, R., Daymond, M., Gallerneault, M. T., & Kontopoulou, M. (2019). Exfoliation of graphite and expanded graphite by melt compounding to prepare reinforced, thermally and electrically conducting polyamide composites. Composites Science and Technology, 176, 111-120. doi:10.1016/j.compscitech.2019.03.024 es_ES
dc.description.references Xu, Z., & Gao, C. (2010). In situ Polymerization Approach to Graphene-Reinforced Nylon-6 Composites. Macromolecules, 43(16), 6716-6723. doi:10.1021/ma1009337 es_ES
dc.description.references Tapper, R. J., Longana, M. L., Hamerton, I., & Potter, K. D. (2019). A closed-loop recycling process for discontinuous carbon fibre polyamide 6 composites. Composites Part B: Engineering, 179, 107418. doi:10.1016/j.compositesb.2019.107418 es_ES
dc.description.references Mazur, K., Kuciel, S., & Salasinska, K. (2019). Mechanical, fire, and smoke behaviour of hybrid composites based on polyamide 6 with basalt/carbon fibres. Journal of Composite Materials, 53(28-30), 3979-3991. doi:10.1177/0021998319853015 es_ES
dc.description.references España, J. M., Samper, M. D., Fages, E., Sánchez-Nácher, L., & Balart, R. (2013). Investigation of the effect of different silane coupling agents on mechanical performance of basalt fiber composite laminates with biobased epoxy matrices. Polymer Composites, 34(3), 376-381. doi:10.1002/pc.22421 es_ES
dc.description.references Lascano, D., Valcárcel, J., Balart, R., Quiles-Carrillo, L., & Boronat, T. (2019). Manufacturing of composite materials with high environmental efficiency using epoxy resin of renewable origin and permeable light cores for vacuum-assisted infusion molding. Ingenius, (23), 62-73. doi:10.17163/ings.n23.2020.06 es_ES
dc.description.references Mittal, V. (2009). Polymer Layered Silicate Nanocomposites: A Review. Materials, 2(3), 992-1057. doi:10.3390/ma2030992 es_ES
dc.description.references Choudalakis, G., & Gotsis, A. D. (2009). Permeability of polymer/clay nanocomposites: A review. European Polymer Journal, 45(4), 967-984. doi:10.1016/j.eurpolymj.2009.01.027 es_ES
dc.description.references Yuan, Q., Awate, S., & Misra, R. D. K. (2006). Nonisothermal crystallization behavior of polypropylene–clay nanocomposites. European Polymer Journal, 42(9), 1994-2003. doi:10.1016/j.eurpolymj.2006.03.012 es_ES
dc.description.references Pandey, J. K., Raghunatha Reddy, K., Pratheep Kumar, A., & Singh, R. P. (2005). An overview on the degradability of polymer nanocomposites. Polymer Degradation and Stability, 88(2), 234-250. doi:10.1016/j.polymdegradstab.2004.09.013 es_ES
dc.description.references Du, M., Guo, B., & Jia, D. (2010). Newly emerging applications of halloysite nanotubes: a review. Polymer International, 59(5), 574-582. doi:10.1002/pi.2754 es_ES
dc.description.references Zhong, B., Lin, J., Liu, M., Jia, Z., Luo, Y., Jia, D., & Liu, F. (2017). Preparation of halloysite nanotubes loaded antioxidant and its antioxidative behaviour in natural rubber. Polymer Degradation and Stability, 141, 19-25. doi:10.1016/j.polymdegradstab.2017.05.009 es_ES
dc.description.references Prashantha, K., Lacrampe, M. F., & Krawczak, P. (2011). Processing and characterization of halloysite nanotubes filled polypropylene nanocomposites based on a masterbatch route: effect of halloysites treatment on structural and mechanical properties. Express Polymer Letters, 5(4), 295-307. doi:10.3144/expresspolymlett.2011.30 es_ES
dc.description.references Lecouvet, B., Gutierrez, J. G., Sclavons, M., & Bailly, C. (2011). Structure–property relationships in polyamide 12/halloysite nanotube nanocomposites. Polymer Degradation and Stability, 96(2), 226-235. doi:10.1016/j.polymdegradstab.2010.11.006 es_ES
dc.description.references Vahabi, H., Saeb, M. R., Formela, K., & Cuesta, J.-M. L. (2018). Flame retardant epoxy/halloysite nanotubes nanocomposite coatings: Exploring low-concentration threshold for flammability compared to expandable graphite as superior fire retardant. Progress in Organic Coatings, 119, 8-14. doi:10.1016/j.porgcoat.2018.02.005 es_ES
dc.description.references Boonkongkaew, M., & Sirisinha, K. (2018). Halloysite nanotubes loaded with liquid organophosphate for enhanced flame retardancy and mechanical properties of polyamide 6. Journal of Materials Science, 53(14), 10181-10193. doi:10.1007/s10853-018-2351-z es_ES
dc.description.references Gorrasi, G., Senatore, V., Vigliotta, G., Belviso, S., & Pucciariello, R. (2014). PET–halloysite nanotubes composites for packaging application: Preparation, characterization and analysis of physical properties. European Polymer Journal, 61, 145-156. doi:10.1016/j.eurpolymj.2014.10.004 es_ES
dc.description.references Makaremi, M., Pasbakhsh, P., Cavallaro, G., Lazzara, G., Aw, Y. K., Lee, S. M., & Milioto, S. (2017). Effect of Morphology and Size of Halloysite Nanotubes on Functional Pectin Bionanocomposites for Food Packaging Applications. ACS Applied Materials & Interfaces, 9(20), 17476-17488. doi:10.1021/acsami.7b04297 es_ES
dc.description.references Senthilvel, K., & Prabu, B. (2019). Novel Carbon Black-Halloysite Nanotube Reinforced NBR-PVC Hybrid Oil Seals for Automotive Applications. Recent Patents on Materials Science, 11(2), 83-90. doi:10.2174/2212797612666181213130010 es_ES
dc.description.references Haw, T. T., Hart, F., Rashidi, A., & Pasbakhsh, P. (2020). Sustainable cementitious composites reinforced with metakaolin and halloysite nanotubes for construction and building applications. Applied Clay Science, 188, 105533. doi:10.1016/j.clay.2020.105533 es_ES
dc.description.references Goda, E. S., Yoon, K. R., El-sayed, S. H., & Hong, S. E. (2018). Halloysite nanotubes as smart flame retardant and economic reinforcing materials: A review. Thermochimica Acta, 669, 173-184. doi:10.1016/j.tca.2018.09.017 es_ES
dc.description.references Massaro, M., Lazzara, G., Milioto, S., Noto, R., & Riela, S. (2017). Covalently modified halloysite clay nanotubes: synthesis, properties, biological and medical applications. Journal of Materials Chemistry B, 5(16), 2867-2882. doi:10.1039/c7tb00316a es_ES
dc.description.references Elzein, T., Brogly, M., & Schultz, J. (2002). Crystallinity measurements of polyamides adsorbed as thin films. Polymer, 43(17), 4811-4822. doi:10.1016/s0032-3861(02)00239-2 es_ES
dc.description.references Handge, U. A., Hedicke-Höchstötter, K., & Altstädt, V. (2010). Composites of polyamide 6 and silicate nanotubes of the mineral halloysite: Influence of molecular weight on thermal, mechanical and rheological properties. Polymer, 51(12), 2690-2699. doi:10.1016/j.polymer.2010.04.041 es_ES
dc.description.references Da Silva, T. F., de Melo Morgado, G. F., do Amaral Montanheiro, T. L., Montagna, L. S., Albers, A. P. F., & Passador, F. R. (2020). A simple mixing method for polyamide 12/attapulgite nanocomposites: structural and mechanical characterization. SN Applied Sciences, 2(3). doi:10.1007/s42452-020-2153-1 es_ES
dc.description.references Quiles‐Carrillo, L., Montanes, N., Fombuena, V., Balart, R., & Torres‐Giner, S. (2019). Enhancement of the processing window and performance of polyamide 1010/bio‐based high‐density polyethylene blends by melt mixing with natural additives. Polymer International, 69(1), 61-71. doi:10.1002/pi.5919 es_ES
dc.description.references Kausar, A. (2017). In-situ modified graphene reinforced polyamide 1010/poly(ether amide): mechanical, thermal, and barrier properties. Materials Research Innovations, 23(4), 191-199. doi:10.1080/14328917.2017.1409392 es_ES
dc.description.references Boonkongkaew, M., Hornsby, P., & Sirisinha, K. (2017). Structural effect of secondary antioxidants on mechanical properties and stabilization efficiency of polyamide 6/halloysite nanotube composites during heat ageing. Journal of Applied Polymer Science, 134(39), 45360. doi:10.1002/app.45360 es_ES
dc.description.references Sahnoune, M., Taguet, A., Otazaghine, B., Kaci, M., & Lopez-Cuesta, J.-M. (2017). Effects of functionalized halloysite on morphology and properties of polyamide-11/SEBS-g-MA blends. European Polymer Journal, 90, 418-430. doi:10.1016/j.eurpolymj.2017.03.008 es_ES
dc.description.references Frost, R. L. (1997). Raman Microprobe Spectroscopy of Halloysite. Clays and Clay Minerals, 45(1), 68-72. doi:10.1346/ccmn.1997.0450107 es_ES
dc.description.references Du, M., Guo, B., Cai, X., Jia, Z., Liu, M., & Jia, D. (2008). Morphology and properties of halloysite nanotubes reinforced polypropylene nanocomposites. e-Polymers, 8(1). doi:10.1515/epoly.2008.8.1.1490 es_ES
dc.description.references Wu, J., Huang, Y., Li, H., Runt, J., & Yeh, J. (2018). Properties of polyamide 6,10/poly(vinyl alcohol) blends and impact on oxygen barrier performance. Polymer International, 67(4), 453-462. doi:10.1002/pi.5528 es_ES
dc.description.references Logakis, E., Pandis, C., Peoglos, V., Pissis, P., Stergiou, C., Pionteck, J., … Omastová, M. (2009). Structure-property relationships in polyamide 6/multi-walled carbon nanotubes nanocomposites. Journal of Polymer Science Part B: Polymer Physics, 47(8), 764-774. doi:10.1002/polb.21681 es_ES
dc.description.references Pai, F.-C., Lai, S.-M., & Chu, H.-H. (2013). Characterization and Properties of Reactive Poly(lactic acid)/Polyamide 610 Biomass Blends. Journal of Applied Polymer Science, 130(4), 2563-2571. doi:10.1002/app.39473 es_ES
dc.description.references Jeong, J.-Y., Lee, H.-J., Kang, S.-W., Tan, L.-S., & Baek, J.-B. (2008). Nylon 610/functionalized multiwalled carbon nanotube composite prepared fromin-situinterfacial polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 46(18), 6041-6050. doi:10.1002/pola.22916 es_ES
dc.description.references Zhang, G., & Yan, D. (2003). Crystallization kinetics and melting behavior of nylon 10,10 in nylon 10,10-montmorillonite nanocomposites. Journal of Applied Polymer Science, 88(9), 2181-2188. doi:10.1002/app.11879 es_ES
dc.description.references Quiles-Carrillo, L., Montanes, N., Boronat, T., Balart, R., & Torres-Giner, S. (2017). Evaluation of the engineering performance of different bio-based aliphatic homopolyamide tubes prepared by profile extrusion. Polymer Testing, 61, 421-429. doi:10.1016/j.polymertesting.2017.06.004 es_ES
dc.description.references Xiuwei, F., Xiaohong, L., Laigui, Y., & Zhijun, Z. (2010). Effect ofin situsurface-modified nano-SiO2on the thermal and mechanical properties and crystallization behavior of nylon 1010. Journal of Applied Polymer Science, 115(6), 3339-3347. doi:10.1002/app.30457 es_ES
dc.description.references Ghaffari Mosanenzadeh, S., Liu, M. W., Osia, A., & Naguib, H. E. (2015). Thermal Composites of Biobased Polyamide with Boron Nitride Micro Networks. Journal of Polymers and the Environment, 23(4), 566-579. doi:10.1007/s10924-015-0733-8 es_ES
dc.description.references Botelho, E. C., & Rezende, M. C. (2006). Monitoring of Carbon Fiber/Polyamide Composites Processing by Rheological and Thermal Analyses. Polymer-Plastics Technology and Engineering, 45(1), 61-69. doi:10.1080/03602550500373618 es_ES
dc.description.references SHEN, Z., BATEMAN, S., WU, D., MCMAHON, P., DELLOLIO, M., & GOTAMA, J. (2009). The effects of carbon nanotubes on mechanical and thermal properties of woven glass fibre reinforced polyamide-6 nanocomposites. Composites Science and Technology, 69(2), 239-244. doi:10.1016/j.compscitech.2008.10.017 es_ES
dc.description.references Ruehle, D. A., Perbix, C., Castañeda, M., Dorgan, J. R., Mittal, V., Halley, P., & Martin, D. (2013). Blends of biorenewable polyamide-11 and polyamide-6,10. Polymer, 54(26), 6961-6970. doi:10.1016/j.polymer.2013.10.013 es_ES
dc.description.references Vieira Marques, M. de F., da Silva Rosa, J. L., & da Silva, M. C. V. (2016). Nanocomposites of polypropylene with halloysite nanotubes employing in situ polymerization. Polymer Bulletin, 74(7), 2447-2464. doi:10.1007/s00289-016-1848-3 es_ES
dc.description.references Guo, B., Zou, Q., Lei, Y., & Jia, D. (2009). Structure and Performance of Polyamide 6/Halloysite Nanotubes Nanocomposites. Polymer Journal, 41(10), 835-842. doi:10.1295/polymj.pj2009110 es_ES
dc.description.references Liu, M., Guo, B., Du, M., Lei, Y., & Jia, D. (2007). Natural inorganic nanotubes reinforced epoxy resin nanocomposites. Journal of Polymer Research, 15(3), 205-212. doi:10.1007/s10965-007-9160-4 es_ES
dc.subject.ods 08.- Fomentar el crecimiento económico sostenido, inclusivo y sostenible, el empleo pleno y productivo, y el trabajo decente para todos es_ES
dc.subject.ods 17.- Fortalecer los medios de ejecución y reavivar la alianza mundial para el desarrollo sostenible es_ES
dc.subject.ods 12.- Garantizar las pautas de consumo y de producción sostenibles es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem