- -

A note about the spectrum of composition operators induced by a rotation

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A note about the spectrum of composition operators induced by a rotation

Show full item record

Bonet Solves, JA. (2020). A note about the spectrum of composition operators induced by a rotation. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 114(2):1-6. https://doi.org/10.1007/s13398-020-00788-5

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162570

Files in this item

Item Metadata

Title: A note about the spectrum of composition operators induced by a rotation
Author: Bonet Solves, José Antonio
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
[EN] A characterization of those points of the unit circle which belong to the spectrum of a composition operator C phi, defined by a rotation phi (z)=rz with |r|=1, on the space H0(D) of all analytic functions which vanish ...[+]
Subjects: Composition operator , Space of analytic functions , Rotation , Diophantine number
Copyrigths: Reserva de todos los derechos
Source:
Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. (issn: 1578-7303 )
DOI: 10.1007/s13398-020-00788-5
Publisher:
Springer-Verlag
Publisher version: https://doi.org/10.1007/s13398-020-00788-5
Project ID:
AGENCIA ESTATAL DE INVESTIGACION/MTM2016-76647-P
GENERALITAT VALENCIANA/PROMETEO/2017/102
Thanks:
The research of this paper was partially supported by the projects MTM2016-76647-P and GV Prometeo/2017/102.
Type: Artículo

References

Albanese, A.A., Bonet, J., Ricker, W.J.: Montel resolvents and uniformly mean ergodic semigroups of linear operators. Quaest. Math. 36, 253–290 (2013)

Arendt, W., Celariès, B., Chalendar, I.: In Koenigs’ footsteps: diagonalization of composition operators. J. Funct. Anal. 278, 108313 (2020)

Aron, R., Lindström, M.: Spectra of weighted composition operators on weighted Banach spaces of analytic functions. Israel J. Math. 141, 263–276 (2004) [+]
Albanese, A.A., Bonet, J., Ricker, W.J.: Montel resolvents and uniformly mean ergodic semigroups of linear operators. Quaest. Math. 36, 253–290 (2013)

Arendt, W., Celariès, B., Chalendar, I.: In Koenigs’ footsteps: diagonalization of composition operators. J. Funct. Anal. 278, 108313 (2020)

Aron, R., Lindström, M.: Spectra of weighted composition operators on weighted Banach spaces of analytic functions. Israel J. Math. 141, 263–276 (2004)

Bonet, J., Domanski, P.: A note on mean ergodic composition operators on spaces of holomorphic functions. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 105, 389–396 (2011)

Carleson, L., Gamelin, T.W.: Complex Dynamics. Springer, New York (1993)

Cowen, C., MacCluer, B.: Composition Operators on Spaces of Analytic Functions. CRC Press, Boca Raton, FL (1995)

Eisner, T., Farkas, B., Haase, M., Nagel, R.: Operator Theoretic Aspects of Ergodic Theory, Graduate Texts in Mathematics 272. Springer, New York (2015)

Eklund, T., Lindström, M., Mleczko, P., Rzeczkowski, M.: Spectra of weighted composition operators on abstract Hardy spaces, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113, 267–279 (2019)

Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 6th edn. Oxford University Press, Oxford (2008)

Ya, A.: Khinchin, Continued fractions. Translated from the third (1961) Russian edition. Reprint of the 1964 translation. Dover Publications, Inc., Mineola, NY (1997)

Meise, R., Vogt, D.: Introduction to Functional Analysis. The Clarendon Press Oxford University Press, New York (1997)

Queffélec, H., Queffélec, M.: Diophantine Approximation and Dirichlet series. Hindustain Book Agency, New Delhi (2013)

Shapiro, J.H.: Composition Operators and Classical Function Theory. Springer, New York (1993)

Shapiro, J.H.: Composition operators and Schröder’s functional equation. Contemporary Math. 213, 213–228 (1998)

Vasilescu, F.H.: Analytic functional calculus and spectral decompositions. Translated from the Romanian. Mathematics and its Applications (East European Series), 1. D. Reidel Publishing Co., Dordrecht (1982)

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record