- -

A note about the spectrum of composition operators induced by a rotation

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A note about the spectrum of composition operators induced by a rotation

Show simple item record

Files in this item

dc.contributor.author Bonet Solves, José Antonio es_ES
dc.date.accessioned 2021-03-01T08:08:37Z
dc.date.available 2021-03-01T08:08:37Z
dc.date.issued 2020-01-11 es_ES
dc.identifier.issn 1578-7303 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162570
dc.description.abstract [EN] A characterization of those points of the unit circle which belong to the spectrum of a composition operator C phi, defined by a rotation phi (z)=rz with |r|=1, on the space H0(D) of all analytic functions which vanish at 0, is given. Examples show that the spectrum of C phi need not be closed. In these examples the spectrum is dense but point 1 may or may not belong to it, and this is related to Diophantine approximation. es_ES
dc.description.sponsorship The research of this paper was partially supported by the projects MTM2016-76647-P and GV Prometeo/2017/102. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation AGENCIA ESTATAL DE INVESTIGACION/MTM2016-76647-P es_ES
dc.relation GENERALITAT VALENCIANA/PROMETEO/2017/102 es_ES
dc.relation.ispartof Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Composition operator es_ES
dc.subject Space of analytic functions es_ES
dc.subject Rotation es_ES
dc.subject Diophantine number es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title A note about the spectrum of composition operators induced by a rotation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s13398-020-00788-5 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Bonet Solves, JA. (2020). A note about the spectrum of composition operators induced by a rotation. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 114(2):1-6. https://doi.org/10.1007/s13398-020-00788-5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s13398-020-00788-5 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 6 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 114 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\405028 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Albanese, A.A., Bonet, J., Ricker, W.J.: Montel resolvents and uniformly mean ergodic semigroups of linear operators. Quaest. Math. 36, 253–290 (2013) es_ES
dc.description.references Arendt, W., Celariès, B., Chalendar, I.: In Koenigs’ footsteps: diagonalization of composition operators. J. Funct. Anal. 278, 108313 (2020) es_ES
dc.description.references Aron, R., Lindström, M.: Spectra of weighted composition operators on weighted Banach spaces of analytic functions. Israel J. Math. 141, 263–276 (2004) es_ES
dc.description.references Bonet, J., Domanski, P.: A note on mean ergodic composition operators on spaces of holomorphic functions. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 105, 389–396 (2011) es_ES
dc.description.references Carleson, L., Gamelin, T.W.: Complex Dynamics. Springer, New York (1993) es_ES
dc.description.references Cowen, C., MacCluer, B.: Composition Operators on Spaces of Analytic Functions. CRC Press, Boca Raton, FL (1995) es_ES
dc.description.references Eisner, T., Farkas, B., Haase, M., Nagel, R.: Operator Theoretic Aspects of Ergodic Theory, Graduate Texts in Mathematics 272. Springer, New York (2015) es_ES
dc.description.references Eklund, T., Lindström, M., Mleczko, P., Rzeczkowski, M.: Spectra of weighted composition operators on abstract Hardy spaces, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113, 267–279 (2019) es_ES
dc.description.references Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 6th edn. Oxford University Press, Oxford (2008) es_ES
dc.description.references Ya, A.: Khinchin, Continued fractions. Translated from the third (1961) Russian edition. Reprint of the 1964 translation. Dover Publications, Inc., Mineola, NY (1997) es_ES
dc.description.references Meise, R., Vogt, D.: Introduction to Functional Analysis. The Clarendon Press Oxford University Press, New York (1997) es_ES
dc.description.references Queffélec, H., Queffélec, M.: Diophantine Approximation and Dirichlet series. Hindustain Book Agency, New Delhi (2013) es_ES
dc.description.references Shapiro, J.H.: Composition Operators and Classical Function Theory. Springer, New York (1993) es_ES
dc.description.references Shapiro, J.H.: Composition operators and Schröder’s functional equation. Contemporary Math. 213, 213–228 (1998) es_ES
dc.description.references Vasilescu, F.H.: Analytic functional calculus and spectral decompositions. Translated from the Romanian. Mathematics and its Applications (East European Series), 1. D. Reidel Publishing Co., Dordrecht (1982) es_ES


This item appears in the following Collection(s)

Show simple item record