- -

Quarantine in an epidemic model with seasonality

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Quarantine in an epidemic model with seasonality

Mostrar el registro completo del ítem

Coll, C.; Sánchez, E. (2019). Quarantine in an epidemic model with seasonality. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 114(1):1-12. https://doi.org/10.1007/s13398-019-00753-x

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162573

Ficheros en el ítem

Metadatos del ítem

Título: Quarantine in an epidemic model with seasonality
Autor: Coll, Carmen Sánchez, Elena
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] In this work, we focus on the periodicity of recurrent epidemic patterns and propose a periodic model that includes quarantine as a control strategy. So, we consider that susceptible individuals can be quarantined (Q) ...[+]
Palabras clave: Quarantine , Periodic model , Epidemic model , Basic reproductive number
Derechos de uso: Reserva de todos los derechos
Fuente:
Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. (issn: 1578-7303 )
DOI: 10.1007/s13398-019-00753-x
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s13398-019-00753-x
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MTM2013-43678-P/ES/ANALISIS DE MODELOS MATEMATICOS CON COEFICIENTES MATRICIALES: FUNDAMENTOS TEORICOS Y APLICACIONES/
Agradecimientos:
This work is supported by Spanish Grant MTM2013-43678-P.
Tipo: Artículo

References

Allen, L., van den Driessche, P.: The basic reproduction number in some discrete-time epidemic models. J. Differ. Equ. Appl. 1–19, 1127–1147 (2008)

Bacaër, N., Ait, E.H.D.: On the biological interpretation of a definition for the parameter $$R_0$$ in periodic population models. J. Math. Biol. 65, 601–621 (2012)

Berman, A., Plemmons, R.J.: Non-negative Matrices in the Mathematical Sciences. SIAM, Philadelphia (1994) [+]
Allen, L., van den Driessche, P.: The basic reproduction number in some discrete-time epidemic models. J. Differ. Equ. Appl. 1–19, 1127–1147 (2008)

Bacaër, N., Ait, E.H.D.: On the biological interpretation of a definition for the parameter $$R_0$$ in periodic population models. J. Math. Biol. 65, 601–621 (2012)

Berman, A., Plemmons, R.J.: Non-negative Matrices in the Mathematical Sciences. SIAM, Philadelphia (1994)

Castillo-Chavez, C., Castillo-Garsow, C.W., Yakubu, A.A.: Mahematical models of isolation and quarantine. JAMA 290, 2876–2877 (2003)

Cantó, B., Coll, C., Sánchez, E.: A study on vaccination models for a seasonal epidemic process. Appl. Math. Comput. 243, 152–160 (2014)

Castillo-Chavez, C., Feng, Z., Huang, W.: On the computation of $$R_0$$ and its role on global stability. Inst. Math. Appl. 125, 229–251 (2002)

Cauchemez, S., Valleron, A.J., Boelle, P.Y., Flahault, A., Ferguson, N.M.: Estimating the impact of school closure on inluenza transmission from Sentinel data. Nature 452, 750–754 (2008)

Cao, H., Zhou, Y.: The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discret. Contin. Dyn. Syst. Ser. B 18(1), 37–56 (2013)

Coburn, B.J., Wagner, B.G., Blower, S.: Modeling influenza epidemics and pandemics: insights into the future of swine flu. BMC Med. 7(30), (2009). http://www.biomedcentral.com/1741-7015/7/30

Cushing, J.M., Ackleh, A.S.: A net reproductive number for periodic matrix models. J. Biol. Dyn. 6(2), 166–188 (2012)

Davis, P.: Circulant Matrices. Wiley, New York (1979)

Epstein, J.M., Goedecke, D.M., Yu, F., Morris, R.J., Wagener, D.K., Bobashev, G.V.: Controlling pandemic flu: the value of international air travel restrictions. PLoS One 452, e401 (2007)

Fumanelli, L., Ajelli, M., Merler, S., Ferguson, N.M., Cauchemez, S.: Model-based comprehensive analysis of school closure policies for mitigating influenza epidemics and pandemics. PLoS Comput. Biol. (2016). https://doi.org/10.1371/journal.pcbi.1004681

Hethcote, H., Zhien, M., Shengbing, L.: Effects of quarantine in six endemic models for infectious diseases. Math. Biosci. 180, 141–160 (2002)

Li, C.K., Schneider, H.: Applications of Perron-Frobenius theory to population dynamics. J. Math. Biol. 44, 450–462 (2002)

Meyer, R.A., Burrus, C.S.: A unified analysis of multirate and periodically time-varying digital filters. IEEE Trans. Circuits Syst. 22(3), 162–168 (1975)

Mubayi, A.M., Zaleta, C.K., Martcheva, M., Castillo-Chavez, C.: A cost-based comparison of quarantine strategies for new emerging diseases. Math. Biosci. Eng. 7(3), 687–717 (2010)

Park, B., Verriest, E.I.: Canonical forms on discrete linear periodically time-varying system and a control application. In: Proceedings of the 28th IEEE Conference on Decision and Control, Tampa, pp 1220–1225 (1989)

Stone, L., Olinky, R., Huppert, A.: Seasonal dynamics of recurrent epidemics. Nature 446, 533–536 (2007)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem