- -

Transcranial focusing of ultrasonic vortices by acoustic holograms

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Transcranial focusing of ultrasonic vortices by acoustic holograms

Mostrar el registro completo del ítem

Jiménez-Gambín, S.; Jimenez, N.; Camarena Femenia, F. (2020). Transcranial focusing of ultrasonic vortices by acoustic holograms. Physical Review Applied. 14(5):1-10. https://doi.org/10.1103/PhysRevApplied.14.054070

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162574

Ficheros en el ítem

Metadatos del ítem

Título: Transcranial focusing of ultrasonic vortices by acoustic holograms
Autor: Jiménez-Gambín, Sergio Jimenez, Noe Camarena Femenia, Francisco
Entidad UPV: Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
[EN] Acoustic vortex beams have great potential for contactless particle manipulation and torque-based biomedical applications. However, when focusing acoustic waves through aberration layers such as the human skull at ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Physical Review Applied. (eissn: 2331-7019 )
DOI: 10.1103/PhysRevApplied.14.054070
Editorial:
American Physical Society
Versión del editor: https://doi.org/10.1103/PhysRevApplied.14.054070
Código del Proyecto:
info:eu-repo/grantAgreement/AVI//INNCON%2F2020%2F009/
...[+]
info:eu-repo/grantAgreement/AVI//INNCON%2F2020%2F009/
info:eu-repo/grantAgreement/GVA//ACIF%2F2017%2F045/
info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2FA%2F022/ES/EQUIPOS PARA TECNICAS MIXTAS ELECTROMAGNETICAS-ULTRASONICAS PARA IMAGEN MEDICA/
info:eu-repo/grantAgreement/AVI//INNCON00%2F18%2F9/
info:eu-repo/grantAgreement/AVI//INNVA10%2F19%2F016/
info:eu-repo/grantAgreement/AEI//IJC2018-037897-I/
info:eu-repo/grantAgreement/AVI//INNVA1%2F2020%2F92/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-111436RB-C22/ES/NEW TECHNIQUES FOR MULTIMODAL MOLECULAR ELASTOGRAPHIC IMAGING/
[-]
Agradecimientos:
This research was supported by the Spanish Ministry of Science, Innovation, and Universities through "Juan de la Cierva-Incorporacion" Grants No. IJC2018-037897-I and No. PID2019-111436RB-C22, by the Agencia Valenciana de ...[+]
Tipo: Artículo

References

Elias, W. J., Huss, D., Voss, T., Loomba, J., Khaled, M., Zadicario, E., … Wintermark, M. (2013). A Pilot Study of Focused Ultrasound Thalamotomy for Essential Tremor. New England Journal of Medicine, 369(7), 640-648. doi:10.1056/nejmoa1300962

Tufail, Y., Yoshihiro, A., Pati, S., Li, M. M., & Tyler, W. J. (2011). Ultrasonic neuromodulation by brain stimulation with transcranial ultrasound. Nature Protocols, 6(9), 1453-1470. doi:10.1038/nprot.2011.371

Lipsman, N., Meng, Y., Bethune, A. J., Huang, Y., Lam, B., Masellis, M., … Black, S. E. (2018). Blood–brain barrier opening in Alzheimer’s disease using MR-guided focused ultrasound. Nature Communications, 9(1). doi:10.1038/s41467-018-04529-6 [+]
Elias, W. J., Huss, D., Voss, T., Loomba, J., Khaled, M., Zadicario, E., … Wintermark, M. (2013). A Pilot Study of Focused Ultrasound Thalamotomy for Essential Tremor. New England Journal of Medicine, 369(7), 640-648. doi:10.1056/nejmoa1300962

Tufail, Y., Yoshihiro, A., Pati, S., Li, M. M., & Tyler, W. J. (2011). Ultrasonic neuromodulation by brain stimulation with transcranial ultrasound. Nature Protocols, 6(9), 1453-1470. doi:10.1038/nprot.2011.371

Lipsman, N., Meng, Y., Bethune, A. J., Huang, Y., Lam, B., Masellis, M., … Black, S. E. (2018). Blood–brain barrier opening in Alzheimer’s disease using MR-guided focused ultrasound. Nature Communications, 9(1). doi:10.1038/s41467-018-04529-6

Thomas, J.-L., & Marchiano, R. (2003). Pseudo Angular Momentum and Topological Charge Conservation for Nonlinear Acoustical Vortices. Physical Review Letters, 91(24). doi:10.1103/physrevlett.91.244302

Volke-Sepúlveda, K., Santillán, A. O., & Boullosa, R. R. (2008). Transfer of Angular Momentum to Matter from Acoustical Vortices in Free Space. Physical Review Letters, 100(2). doi:10.1103/physrevlett.100.024302

Skeldon, K. D., Wilson, C., Edgar, M., & Padgett, M. J. (2008). An acoustic spanner and its associated rotational Doppler shift. New Journal of Physics, 10(1), 013018. doi:10.1088/1367-2630/10/1/013018

Zhang, L., & Marston, P. L. (2011). Angular momentum flux of nonparaxial acoustic vortex beams and torques on axisymmetric objects. Physical Review E, 84(6). doi:10.1103/physreve.84.065601

Anhäuser, A., Wunenburger, R., & Brasselet, E. (2012). Acoustic Rotational Manipulation Using Orbital Angular Momentum Transfer. Physical Review Letters, 109(3). doi:10.1103/physrevlett.109.034301

Demore, C. E. M., Yang, Z., Volovick, A., Cochran, S., MacDonald, M. P., & Spalding, G. C. (2012). Mechanical Evidence of the Orbital Angular Momentum to Energy Ratio of Vortex Beams. Physical Review Letters, 108(19). doi:10.1103/physrevlett.108.194301

Hong, Z., Zhang, J., & Drinkwater, B. W. (2015). Observation of Orbital Angular Momentum Transfer from Bessel-Shaped Acoustic Vortices to Diphasic Liquid-Microparticle Mixtures. Physical Review Letters, 114(21). doi:10.1103/physrevlett.114.214301

Riaud, A., Baudoin, M., Thomas, J.-L., & Bou Matar, O. (2014). Cyclones and attractive streaming generated by acoustical vortices. Physical Review E, 90(1). doi:10.1103/physreve.90.013008

Wu, J. (1991). Acoustical tweezers. The Journal of the Acoustical Society of America, 89(5), 2140-2143. doi:10.1121/1.400907

Baresch, D., Thomas, J.-L., & Marchiano, R. (2016). Observation of a Single-Beam Gradient Force Acoustical Trap for Elastic Particles: Acoustical Tweezers. Physical Review Letters, 116(2). doi:10.1103/physrevlett.116.024301

Marzo, A., Caleap, M., & Drinkwater, B. W. (2018). Acoustic Virtual Vortices with Tunable Orbital Angular Momentum for Trapping of Mie Particles. Physical Review Letters, 120(4). doi:10.1103/physrevlett.120.044301

Gong, Z., & Baudoin, M. (2019). Particle Assembly with Synchronized Acoustic Tweezers. Physical Review Applied, 12(2). doi:10.1103/physrevapplied.12.024045

Ashkin, A. (1970). Acceleration and Trapping of Particles by Radiation Pressure. Physical Review Letters, 24(4), 156-159. doi:10.1103/physrevlett.24.156

Grier, D. G. (2003). A revolution in optical manipulation. Nature, 424(6950), 810-816. doi:10.1038/nature01935

Baudoin, M., Thomas, J.-L., Sahely, R. A., Gerbedoen, J.-C., Gong, Z., Sivery, A., … Vlandas, A. (2020). Spatially selective manipulation of cells with single-beam acoustical tweezers. Nature Communications, 11(1). doi:10.1038/s41467-020-18000-y

Ghanem, M. A., Maxwell, A. D., Wang, Y.-N., Cunitz, B. W., Khokhlova, V. A., Sapozhnikov, O. A., & Bailey, M. R. (2020). Noninvasive acoustic manipulation of objects in a living body. Proceedings of the National Academy of Sciences, 117(29), 16848-16855. doi:10.1073/pnas.2001779117

Baresch, D., & Garbin, V. (2020). Acoustic trapping of microbubbles in complex environments and controlled payload release. Proceedings of the National Academy of Sciences, 117(27), 15490-15496. doi:10.1073/pnas.2003569117

Hefner, B. T., & Marston, P. L. (1999). An acoustical helicoidal wave transducer with applications for the alignment of ultrasonic and underwater systems. The Journal of the Acoustical Society of America, 106(6), 3313-3316. doi:10.1121/1.428184

Marchiano, R., & Thomas, J.-L. (2005). Synthesis and analysis of linear and nonlinear acoustical vortices. Physical Review E, 71(6). doi:10.1103/physreve.71.066616

Pazos-Ospina, J. F., Ealo, J. L., & Franco, E. E. (2017). Characterization of phased array-steered acoustic vortex beams. The Journal of the Acoustical Society of America, 142(1), 61-71. doi:10.1121/1.4985194

Ealo, J. L., Prieto, J. C., & Seco, F. (2011). Airborne ultrasonic vortex generation using flexible ferroelectrets. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 58(8), 1651-1657. doi:10.1109/tuffc.2011.1992

Jiménez, N., Picó, R., Sánchez-Morcillo, V., Romero-García, V., García-Raffi, L. M., & Staliunas, K. (2016). Formation of high-order acoustic Bessel beams by spiral diffraction gratings. Physical Review E, 94(5). doi:10.1103/physreve.94.053004

Wang, T., Ke, M., Li, W., Yang, Q., Qiu, C., & Liu, Z. (2016). Particle manipulation with acoustic vortex beam induced by a brass plate with spiral shape structure. Applied Physics Letters, 109(12), 123506. doi:10.1063/1.4963185

Jiménez, N., Romero-García, V., García-Raffi, L. M., Camarena, F., & Staliunas, K. (2018). Sharp acoustic vortex focusing by Fresnel-spiral zone plates. Applied Physics Letters, 112(20), 204101. doi:10.1063/1.5029424

Gspan, S., Meyer, A., Bernet, S., & Ritsch-Marte, M. (2004). Optoacoustic generation of a helicoidal ultrasonic beam. The Journal of the Acoustical Society of America, 115(3), 1142-1146. doi:10.1121/1.1643367

Muelas-Hurtado, R. D., Ealo, J. L., Pazos-Ospina, J. F., & Volke-Sepúlveda, K. (2018). Generation of multiple vortex beam by means of active diffraction gratings. Applied Physics Letters, 112(8), 084101. doi:10.1063/1.5016864

Jiang, X., Li, Y., Liang, B., Cheng, J., & Zhang, L. (2016). Convert Acoustic Resonances to Orbital Angular Momentum. Physical Review Letters, 117(3). doi:10.1103/physrevlett.117.034301

Ye, L., Qiu, C., Lu, J., Tang, K., Jia, H., Ke, M., … Liu, Z. (2016). Making sound vortices by metasurfaces. AIP Advances, 6(8), 085007. doi:10.1063/1.4961062

Marzo, A., Ghobrial, A., Cox, L., Caleap, M., Croxford, A., & Drinkwater, B. W. (2017). Realization of compact tractor beams using acoustic delay-lines. Applied Physics Letters, 110(1), 014102. doi:10.1063/1.4972407

Naify, C. J., Rohde, C. A., Martin, T. P., Nicholas, M., Guild, M. D., & Orris, G. J. (2016). Generation of topologically diverse acoustic vortex beams using a compact metamaterial aperture. Applied Physics Letters, 108(22), 223503. doi:10.1063/1.4953075

Esfahlani, H., Lissek, H., & Mosig, J. R. (2017). Generation of acoustic helical wavefronts using metasurfaces. Physical Review B, 95(2). doi:10.1103/physrevb.95.024312

Melde, K., Mark, A. G., Qiu, T., & Fischer, P. (2016). Holograms for acoustics. Nature, 537(7621), 518-522. doi:10.1038/nature19755

Santos, A. G., da Rocha, G. O., & de Andrade, J. B. (2019). Occurrence of the potent mutagens 2- nitrobenzanthrone and 3-nitrobenzanthrone in fine airborne particles. Scientific Reports, 9(1). doi:10.1038/s41598-018-37186-2

Horodyckid, C., Canney, M., Vignot, A., Boisgard, R., Drier, A., Huberfeld, G., … Carpentier, A. (2017). Safe long-term repeated disruption of the blood-brain barrier using an implantable ultrasound device: a multiparametric study in a primate model. Journal of Neurosurgery, 126(4), 1351-1361. doi:10.3171/2016.3.jns151635

Idbaih, A., Canney, M., Belin, L., Desseaux, C., Vignot, A., Bouchoux, G., … Carpentier, A. (2019). Safety and Feasibility of Repeated and Transient Blood–Brain Barrier Disruption by Pulsed Ultrasound in Patients with Recurrent Glioblastoma. Clinical Cancer Research, 25(13), 3793-3801. doi:10.1158/1078-0432.ccr-18-3643

Abrahao, A., Meng, Y., Llinas, M., Huang, Y., Hamani, C., Mainprize, T., … Zinman, L. (2019). First-in-human trial of blood–brain barrier opening in amyotrophic lateral sclerosis using MR-guided focused ultrasound. Nature Communications, 10(1). doi:10.1038/s41467-019-12426-9

Shen, C., Xu, J., Fang, N. X., & Jing, Y. (2014). Anisotropic Complementary Acoustic Metamaterial for Canceling out Aberrating Layers. Physical Review X, 4(4). doi:10.1103/physrevx.4.041033

Maimbourg, G., Houdouin, A., Deffieux, T., Tanter, M., & Aubry, J.-F. (2018). 3D-printed adaptive acoustic lens as a disruptive technology for transcranial ultrasound therapy using single-element transducers. Physics in Medicine & Biology, 63(2), 025026. doi:10.1088/1361-6560/aaa037

Jiménez-Gambín, S., Jiménez, N., Benlloch, J. M., & Camarena, F. (2019). Holograms to Focus Arbitrary Ultrasonic Fields through the Skull. Physical Review Applied, 12(1). doi:10.1103/physrevapplied.12.014016

Schneider, U., Pedroni, E., & Lomax, A. (1996). The calibration of CT Hounsfield units for radiotherapy treatment planning. Physics in Medicine and Biology, 41(1), 111-124. doi:10.1088/0031-9155/41/1/009

Mast, T. D. (2000). Empirical relationships between acoustic parameters in human soft tissues. Acoustics Research Letters Online, 1(2), 37-42. doi:10.1121/1.1336896

Tabei, M., Mast, T. D., & Waag, R. C. (2002). Ak-space method for coupled first-order acoustic propagation equations. The Journal of the Acoustical Society of America, 111(1), 53-63. doi:10.1121/1.1421344

Treeby, B. E., & Cox, B. T. (2010). Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian. The Journal of the Acoustical Society of America, 127(5), 2741-2748. doi:10.1121/1.3377056

Treeby, B. E., Jaros, J., Rendell, A. P., & Cox, B. T. (2012). Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method. The Journal of the Acoustical Society of America, 131(6), 4324-4336. doi:10.1121/1.4712021

Maimbourg, G., Houdouin, A., Deffieux, T., Tanter, M., & Aubry, J.-F. (2020). Steering Capabilities of an Acoustic Lens for Transcranial Therapy: Numerical and Experimental Studies. IEEE Transactions on Biomedical Engineering, 67(1), 27-37. doi:10.1109/tbme.2019.2907556

Jiménez, N., Camarena, F., Redondo, J., Sánchez-Morcillo, V., Hou, Y., & Konofagou, E. E. (2016). Time-Domain Simulation of Ultrasound Propagation in a Tissue-Like Medium Based on the Resolution of the Nonlinear Acoustic Constitutive Relations. Acta Acustica united with Acustica, 102(5), 876-892. doi:10.3813/aaa.919002

Ferri, M., Bravo, J. M., Redondo, J., Jiménez-Gambín, S., Jiménez, N., Camarena, F., & Sánchez-Pérez, J. V. (2019). On the Evaluation of the Suitability of the Materials Used to 3D Print Holographic Acoustic Lenses to Correct Transcranial Focused Ultrasound Aberrations. Polymers, 11(9), 1521. doi:10.3390/polym11091521

Hill, J. (2004). Physical activity and obesity. The Lancet, 363(9404), 182. doi:10.1016/s0140-6736(03)15368-8

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem