- -

Transcranial focusing of ultrasonic vortices by acoustic holograms

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Transcranial focusing of ultrasonic vortices by acoustic holograms

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Jiménez-Gambín, Sergio es_ES
dc.contributor.author Jimenez, Noe es_ES
dc.contributor.author Camarena Femenia, Francisco es_ES
dc.date.accessioned 2021-03-01T08:08:48Z
dc.date.available 2021-03-01T08:08:48Z
dc.date.issued 2020-11-30 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162574
dc.description.abstract [EN] Acoustic vortex beams have great potential for contactless particle manipulation and torque-based biomedical applications. However, when focusing acoustic waves through aberration layers such as the human skull at ultrasonic frequencies results in strong phase aberrations which prevent the generation of sharp acoustic images. In the case of a wavefront containing phase dislocations, skull aberrations inhibit the focusing of acoustic vortex beams inside the cranial cavity. In this work, we demonstrate that phase-conjugated acoustic holograms can encode time-reversed fields simultaneously allowing the compensation of the aberrations of the skull and the generation of a focused vortex inside an ex-vivo human skull. The method is applied for single-element geometrically focused sources and results in a very simple and compact ultrasonic system. This work will pave the road to design low-cost particle trapping applications, clot manipulation, torque exertion in the brain and acoustic-radiation-force based biomedical applications. es_ES
dc.description.sponsorship This research was supported by the Spanish Ministry of Science, Innovation, and Universities through "Juan de la Cierva-Incorporacion" Grants No. IJC2018-037897-I and No. PID2019-111436RB-C22, by the Agencia Valenciana de la Innovacio through Grants No. INNVAL10/19/016, No. INNVA1/2020/92, and No. INNCON/2020/009, and by the Generalitat Valenciana through Grant No. ACIF/2017/045. The action was cofinanced by the European Union through the Programa Operativo del Fondo Europeo de Desarrollo Regional (FEDER) of the Comunitat Valenciana, Grant No. IDIFEDER/2018/022. es_ES
dc.language Inglés es_ES
dc.publisher American Physical Society es_ES
dc.relation.ispartof Physical Review Applied es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Transcranial focusing of ultrasonic vortices by acoustic holograms es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1103/PhysRevApplied.14.054070 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AVI//INNCON%2F2020%2F009/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2017%2F045/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2FA%2F022/ES/EQUIPOS PARA TECNICAS MIXTAS ELECTROMAGNETICAS-ULTRASONICAS PARA IMAGEN MEDICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AVI//INNCON00%2F18%2F9/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AVI//INNVA10%2F19%2F016/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//IJC2018-037897-I/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AVI//INNVA1%2F2020%2F92/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-111436RB-C22/ES/NEW TECHNIQUES FOR MULTIMODAL MOLECULAR ELASTOGRAPHIC IMAGING/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Jiménez-Gambín, S.; Jimenez, N.; Camarena Femenia, F. (2020). Transcranial focusing of ultrasonic vortices by acoustic holograms. Physical Review Applied. 14(5):1-10. https://doi.org/10.1103/PhysRevApplied.14.054070 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1103/PhysRevApplied.14.054070 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 14 es_ES
dc.description.issue 5 es_ES
dc.identifier.eissn 2331-7019 es_ES
dc.relation.pasarela S\426605 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Agència Valenciana de la Innovació es_ES
dc.description.references Elias, W. J., Huss, D., Voss, T., Loomba, J., Khaled, M., Zadicario, E., … Wintermark, M. (2013). A Pilot Study of Focused Ultrasound Thalamotomy for Essential Tremor. New England Journal of Medicine, 369(7), 640-648. doi:10.1056/nejmoa1300962 es_ES
dc.description.references Tufail, Y., Yoshihiro, A., Pati, S., Li, M. M., & Tyler, W. J. (2011). Ultrasonic neuromodulation by brain stimulation with transcranial ultrasound. Nature Protocols, 6(9), 1453-1470. doi:10.1038/nprot.2011.371 es_ES
dc.description.references Lipsman, N., Meng, Y., Bethune, A. J., Huang, Y., Lam, B., Masellis, M., … Black, S. E. (2018). Blood–brain barrier opening in Alzheimer’s disease using MR-guided focused ultrasound. Nature Communications, 9(1). doi:10.1038/s41467-018-04529-6 es_ES
dc.description.references Thomas, J.-L., & Marchiano, R. (2003). Pseudo Angular Momentum and Topological Charge Conservation for Nonlinear Acoustical Vortices. Physical Review Letters, 91(24). doi:10.1103/physrevlett.91.244302 es_ES
dc.description.references Volke-Sepúlveda, K., Santillán, A. O., & Boullosa, R. R. (2008). Transfer of Angular Momentum to Matter from Acoustical Vortices in Free Space. Physical Review Letters, 100(2). doi:10.1103/physrevlett.100.024302 es_ES
dc.description.references Skeldon, K. D., Wilson, C., Edgar, M., & Padgett, M. J. (2008). An acoustic spanner and its associated rotational Doppler shift. New Journal of Physics, 10(1), 013018. doi:10.1088/1367-2630/10/1/013018 es_ES
dc.description.references Zhang, L., & Marston, P. L. (2011). Angular momentum flux of nonparaxial acoustic vortex beams and torques on axisymmetric objects. Physical Review E, 84(6). doi:10.1103/physreve.84.065601 es_ES
dc.description.references Anhäuser, A., Wunenburger, R., & Brasselet, E. (2012). Acoustic Rotational Manipulation Using Orbital Angular Momentum Transfer. Physical Review Letters, 109(3). doi:10.1103/physrevlett.109.034301 es_ES
dc.description.references Demore, C. E. M., Yang, Z., Volovick, A., Cochran, S., MacDonald, M. P., & Spalding, G. C. (2012). Mechanical Evidence of the Orbital Angular Momentum to Energy Ratio of Vortex Beams. Physical Review Letters, 108(19). doi:10.1103/physrevlett.108.194301 es_ES
dc.description.references Hong, Z., Zhang, J., & Drinkwater, B. W. (2015). Observation of Orbital Angular Momentum Transfer from Bessel-Shaped Acoustic Vortices to Diphasic Liquid-Microparticle Mixtures. Physical Review Letters, 114(21). doi:10.1103/physrevlett.114.214301 es_ES
dc.description.references Riaud, A., Baudoin, M., Thomas, J.-L., & Bou Matar, O. (2014). Cyclones and attractive streaming generated by acoustical vortices. Physical Review E, 90(1). doi:10.1103/physreve.90.013008 es_ES
dc.description.references Wu, J. (1991). Acoustical tweezers. The Journal of the Acoustical Society of America, 89(5), 2140-2143. doi:10.1121/1.400907 es_ES
dc.description.references Baresch, D., Thomas, J.-L., & Marchiano, R. (2016). Observation of a Single-Beam Gradient Force Acoustical Trap for Elastic Particles: Acoustical Tweezers. Physical Review Letters, 116(2). doi:10.1103/physrevlett.116.024301 es_ES
dc.description.references Marzo, A., Caleap, M., & Drinkwater, B. W. (2018). Acoustic Virtual Vortices with Tunable Orbital Angular Momentum for Trapping of Mie Particles. Physical Review Letters, 120(4). doi:10.1103/physrevlett.120.044301 es_ES
dc.description.references Gong, Z., & Baudoin, M. (2019). Particle Assembly with Synchronized Acoustic Tweezers. Physical Review Applied, 12(2). doi:10.1103/physrevapplied.12.024045 es_ES
dc.description.references Ashkin, A. (1970). Acceleration and Trapping of Particles by Radiation Pressure. Physical Review Letters, 24(4), 156-159. doi:10.1103/physrevlett.24.156 es_ES
dc.description.references Grier, D. G. (2003). A revolution in optical manipulation. Nature, 424(6950), 810-816. doi:10.1038/nature01935 es_ES
dc.description.references Baudoin, M., Thomas, J.-L., Sahely, R. A., Gerbedoen, J.-C., Gong, Z., Sivery, A., … Vlandas, A. (2020). Spatially selective manipulation of cells with single-beam acoustical tweezers. Nature Communications, 11(1). doi:10.1038/s41467-020-18000-y es_ES
dc.description.references Ghanem, M. A., Maxwell, A. D., Wang, Y.-N., Cunitz, B. W., Khokhlova, V. A., Sapozhnikov, O. A., & Bailey, M. R. (2020). Noninvasive acoustic manipulation of objects in a living body. Proceedings of the National Academy of Sciences, 117(29), 16848-16855. doi:10.1073/pnas.2001779117 es_ES
dc.description.references Baresch, D., & Garbin, V. (2020). Acoustic trapping of microbubbles in complex environments and controlled payload release. Proceedings of the National Academy of Sciences, 117(27), 15490-15496. doi:10.1073/pnas.2003569117 es_ES
dc.description.references Hefner, B. T., & Marston, P. L. (1999). An acoustical helicoidal wave transducer with applications for the alignment of ultrasonic and underwater systems. The Journal of the Acoustical Society of America, 106(6), 3313-3316. doi:10.1121/1.428184 es_ES
dc.description.references Marchiano, R., & Thomas, J.-L. (2005). Synthesis and analysis of linear and nonlinear acoustical vortices. Physical Review E, 71(6). doi:10.1103/physreve.71.066616 es_ES
dc.description.references Pazos-Ospina, J. F., Ealo, J. L., & Franco, E. E. (2017). Characterization of phased array-steered acoustic vortex beams. The Journal of the Acoustical Society of America, 142(1), 61-71. doi:10.1121/1.4985194 es_ES
dc.description.references Ealo, J. L., Prieto, J. C., & Seco, F. (2011). Airborne ultrasonic vortex generation using flexible ferroelectrets. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 58(8), 1651-1657. doi:10.1109/tuffc.2011.1992 es_ES
dc.description.references Jiménez, N., Picó, R., Sánchez-Morcillo, V., Romero-García, V., García-Raffi, L. M., & Staliunas, K. (2016). Formation of high-order acoustic Bessel beams by spiral diffraction gratings. Physical Review E, 94(5). doi:10.1103/physreve.94.053004 es_ES
dc.description.references Wang, T., Ke, M., Li, W., Yang, Q., Qiu, C., & Liu, Z. (2016). Particle manipulation with acoustic vortex beam induced by a brass plate with spiral shape structure. Applied Physics Letters, 109(12), 123506. doi:10.1063/1.4963185 es_ES
dc.description.references Jiménez, N., Romero-García, V., García-Raffi, L. M., Camarena, F., & Staliunas, K. (2018). Sharp acoustic vortex focusing by Fresnel-spiral zone plates. Applied Physics Letters, 112(20), 204101. doi:10.1063/1.5029424 es_ES
dc.description.references Gspan, S., Meyer, A., Bernet, S., & Ritsch-Marte, M. (2004). Optoacoustic generation of a helicoidal ultrasonic beam. The Journal of the Acoustical Society of America, 115(3), 1142-1146. doi:10.1121/1.1643367 es_ES
dc.description.references Muelas-Hurtado, R. D., Ealo, J. L., Pazos-Ospina, J. F., & Volke-Sepúlveda, K. (2018). Generation of multiple vortex beam by means of active diffraction gratings. Applied Physics Letters, 112(8), 084101. doi:10.1063/1.5016864 es_ES
dc.description.references Jiang, X., Li, Y., Liang, B., Cheng, J., & Zhang, L. (2016). Convert Acoustic Resonances to Orbital Angular Momentum. Physical Review Letters, 117(3). doi:10.1103/physrevlett.117.034301 es_ES
dc.description.references Ye, L., Qiu, C., Lu, J., Tang, K., Jia, H., Ke, M., … Liu, Z. (2016). Making sound vortices by metasurfaces. AIP Advances, 6(8), 085007. doi:10.1063/1.4961062 es_ES
dc.description.references Marzo, A., Ghobrial, A., Cox, L., Caleap, M., Croxford, A., & Drinkwater, B. W. (2017). Realization of compact tractor beams using acoustic delay-lines. Applied Physics Letters, 110(1), 014102. doi:10.1063/1.4972407 es_ES
dc.description.references Naify, C. J., Rohde, C. A., Martin, T. P., Nicholas, M., Guild, M. D., & Orris, G. J. (2016). Generation of topologically diverse acoustic vortex beams using a compact metamaterial aperture. Applied Physics Letters, 108(22), 223503. doi:10.1063/1.4953075 es_ES
dc.description.references Esfahlani, H., Lissek, H., & Mosig, J. R. (2017). Generation of acoustic helical wavefronts using metasurfaces. Physical Review B, 95(2). doi:10.1103/physrevb.95.024312 es_ES
dc.description.references Melde, K., Mark, A. G., Qiu, T., & Fischer, P. (2016). Holograms for acoustics. Nature, 537(7621), 518-522. doi:10.1038/nature19755 es_ES
dc.description.references Santos, A. G., da Rocha, G. O., & de Andrade, J. B. (2019). Occurrence of the potent mutagens 2- nitrobenzanthrone and 3-nitrobenzanthrone in fine airborne particles. Scientific Reports, 9(1). doi:10.1038/s41598-018-37186-2 es_ES
dc.description.references Horodyckid, C., Canney, M., Vignot, A., Boisgard, R., Drier, A., Huberfeld, G., … Carpentier, A. (2017). Safe long-term repeated disruption of the blood-brain barrier using an implantable ultrasound device: a multiparametric study in a primate model. Journal of Neurosurgery, 126(4), 1351-1361. doi:10.3171/2016.3.jns151635 es_ES
dc.description.references Idbaih, A., Canney, M., Belin, L., Desseaux, C., Vignot, A., Bouchoux, G., … Carpentier, A. (2019). Safety and Feasibility of Repeated and Transient Blood–Brain Barrier Disruption by Pulsed Ultrasound in Patients with Recurrent Glioblastoma. Clinical Cancer Research, 25(13), 3793-3801. doi:10.1158/1078-0432.ccr-18-3643 es_ES
dc.description.references Abrahao, A., Meng, Y., Llinas, M., Huang, Y., Hamani, C., Mainprize, T., … Zinman, L. (2019). First-in-human trial of blood–brain barrier opening in amyotrophic lateral sclerosis using MR-guided focused ultrasound. Nature Communications, 10(1). doi:10.1038/s41467-019-12426-9 es_ES
dc.description.references Shen, C., Xu, J., Fang, N. X., & Jing, Y. (2014). Anisotropic Complementary Acoustic Metamaterial for Canceling out Aberrating Layers. Physical Review X, 4(4). doi:10.1103/physrevx.4.041033 es_ES
dc.description.references Maimbourg, G., Houdouin, A., Deffieux, T., Tanter, M., & Aubry, J.-F. (2018). 3D-printed adaptive acoustic lens as a disruptive technology for transcranial ultrasound therapy using single-element transducers. Physics in Medicine & Biology, 63(2), 025026. doi:10.1088/1361-6560/aaa037 es_ES
dc.description.references Jiménez-Gambín, S., Jiménez, N., Benlloch, J. M., & Camarena, F. (2019). Holograms to Focus Arbitrary Ultrasonic Fields through the Skull. Physical Review Applied, 12(1). doi:10.1103/physrevapplied.12.014016 es_ES
dc.description.references Schneider, U., Pedroni, E., & Lomax, A. (1996). The calibration of CT Hounsfield units for radiotherapy treatment planning. Physics in Medicine and Biology, 41(1), 111-124. doi:10.1088/0031-9155/41/1/009 es_ES
dc.description.references Mast, T. D. (2000). Empirical relationships between acoustic parameters in human soft tissues. Acoustics Research Letters Online, 1(2), 37-42. doi:10.1121/1.1336896 es_ES
dc.description.references Tabei, M., Mast, T. D., & Waag, R. C. (2002). Ak-space method for coupled first-order acoustic propagation equations. The Journal of the Acoustical Society of America, 111(1), 53-63. doi:10.1121/1.1421344 es_ES
dc.description.references Treeby, B. E., & Cox, B. T. (2010). Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian. The Journal of the Acoustical Society of America, 127(5), 2741-2748. doi:10.1121/1.3377056 es_ES
dc.description.references Treeby, B. E., Jaros, J., Rendell, A. P., & Cox, B. T. (2012). Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method. The Journal of the Acoustical Society of America, 131(6), 4324-4336. doi:10.1121/1.4712021 es_ES
dc.description.references Maimbourg, G., Houdouin, A., Deffieux, T., Tanter, M., & Aubry, J.-F. (2020). Steering Capabilities of an Acoustic Lens for Transcranial Therapy: Numerical and Experimental Studies. IEEE Transactions on Biomedical Engineering, 67(1), 27-37. doi:10.1109/tbme.2019.2907556 es_ES
dc.description.references Jiménez, N., Camarena, F., Redondo, J., Sánchez-Morcillo, V., Hou, Y., & Konofagou, E. E. (2016). Time-Domain Simulation of Ultrasound Propagation in a Tissue-Like Medium Based on the Resolution of the Nonlinear Acoustic Constitutive Relations. Acta Acustica united with Acustica, 102(5), 876-892. doi:10.3813/aaa.919002 es_ES
dc.description.references Ferri, M., Bravo, J. M., Redondo, J., Jiménez-Gambín, S., Jiménez, N., Camarena, F., & Sánchez-Pérez, J. V. (2019). On the Evaluation of the Suitability of the Materials Used to 3D Print Holographic Acoustic Lenses to Correct Transcranial Focused Ultrasound Aberrations. Polymers, 11(9), 1521. doi:10.3390/polym11091521 es_ES
dc.description.references Hill, J. (2004). Physical activity and obesity. The Lancet, 363(9404), 182. doi:10.1016/s0140-6736(03)15368-8 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem