Mostrar el registro sencillo del ítem
dc.contributor.author | Romero-García, V. | es_ES |
dc.contributor.author | Jimenez, Noe | es_ES |
dc.contributor.author | Groby, J.-P. | es_ES |
dc.contributor.author | Merkel, A. | es_ES |
dc.contributor.author | Tournat, V. | es_ES |
dc.contributor.author | Theocharis, G. | es_ES |
dc.contributor.author | Richoux, O. | es_ES |
dc.contributor.author | Pagneux, V. | es_ES |
dc.date.accessioned | 2021-03-01T08:08:52Z | |
dc.date.available | 2021-03-01T08:08:52Z | |
dc.date.issued | 2020-11 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/162576 | |
dc.description.abstract | [EN] Mirror-symmetric acoustic metascreens producing perfect absorption independently of the incidence side are theoretically and experimentally reported in this work. The mirror-symmetric resonant building blocks of the metascreen support symmetric and antisymmetric resonances that can be tuned to be at the same frequency (degenerate resonances). The geometry of the building blocks is optimized to critically couple both the symmetric and the antisymmetric resonances at the same frequency, allowing perfect absorption of sound from both sides of the metascreen. A hybrid analytical model based on the transfer-matrix method and the modal decomposition of the exterior acoustic field is developed to analyze the scattering properties of the metascreen. The resulting geometry is three-dimensionally printed and experimentally tested in an impedance tube. The experimental results agree well with the theoretical predictions, proving the efficiency of these metascreens for the perfect absorption of sound in ventilation problems. | es_ES |
dc.description.sponsorship | We gratefully acknowledge the Agence Nationale de la Recherche (ANR) - Research Grants Council (RGC) METARoom project (Grant No. ANR-18-CE08-0021) and the HYPERMETA project, funded under the program Étoiles Montantes of the Région Pays de la Loire. This paper is based upon work from European Cooperation in Science and Technology (COST) Action DENORMS (Designs for Noise Reducing Materials and Structures) Grant No. CA15125, supported by COST. N.J. acknowledges financial support from the Spanish Ministry of Science, Innovation, and Universities (MICINN) through the grant "Juan de la Cierva-Incorporación" (Grant No. IJC2018-037897-I). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | American Physical Society | es_ES |
dc.relation.ispartof | Physical Review Applied | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Perfect Absorption in Mirror-Symmetric Acoustic Metascreens | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1103/PhysRevApplied.14.054055 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/COST//CA15125/EU/Designs for Noise Reducing Materials and Structures (DENORMS)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ANR//ANR-18-CE08-0021/FR/METARoom: deep subwavelength reconfigurable acoustic treatments for room acoustics/METARoom/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//IJC2018-037897-I/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular | es_ES |
dc.description.bibliographicCitation | Romero-García, V.; Jimenez, N.; Groby, J.; Merkel, A.; Tournat, V.; Theocharis, G.; Richoux, O.... (2020). Perfect Absorption in Mirror-Symmetric Acoustic Metascreens. Physical Review Applied. 14(5):1-9. https://doi.org/10.1103/PhysRevApplied.14.054055 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1103/PhysRevApplied.14.054055 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 9 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 14 | es_ES |
dc.description.issue | 5 | es_ES |
dc.identifier.eissn | 2331-7019 | es_ES |
dc.relation.pasarela | S\422084 | es_ES |
dc.contributor.funder | Region Pays de la Loire | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Agence Nationale de la Recherche, Francia | es_ES |
dc.contributor.funder | European Cooperation in Science and Technology | es_ES |
dc.description.references | Bliokh, K. Y., Bliokh, Y. P., Freilikher, V., Savel’ev, S., & Nori, F. (2008). Colloquium: Unusual resonators: Plasmonics, metamaterials, and random media. Reviews of Modern Physics, 80(4), 1201-1213. doi:10.1103/revmodphys.80.1201 | es_ES |
dc.description.references | Luk, T. S., Campione, S., Kim, I., Feng, S., Jun, Y. C., Liu, S., … Sinclair, M. B. (2014). Directional perfect absorption using deep subwavelength low-permittivity films. Physical Review B, 90(8). doi:10.1103/physrevb.90.085411 | es_ES |
dc.description.references | Piper, J. R., Liu, V., & Fan, S. (2014). Total absorption by degenerate critical coupling. Applied Physics Letters, 104(25), 251110. doi:10.1063/1.4885517 | es_ES |
dc.description.references | Ma, G., Yang, M., Xiao, S., Yang, Z., & Sheng, P. (2014). Acoustic metasurface with hybrid resonances. Nature Materials, 13(9), 873-878. doi:10.1038/nmat3994 | es_ES |
dc.description.references | Wei, P., Croënne, C., Tak Chu, S., & Li, J. (2014). Symmetrical and anti-symmetrical coherent perfect absorption for acoustic waves. Applied Physics Letters, 104(12), 121902. doi:10.1063/1.4869462 | es_ES |
dc.description.references | Song, J. Z., Bai, P., Hang, Z. H., & Lai, Y. (2014). Acoustic coherent perfect absorbers. New Journal of Physics, 16(3), 033026. doi:10.1088/1367-2630/16/3/033026 | es_ES |
dc.description.references | Leroy, V., Strybulevych, A., Lanoy, M., Lemoult, F., Tourin, A., & Page, J. H. (2015). Superabsorption of acoustic waves with bubble metascreens. Physical Review B, 91(2). doi:10.1103/physrevb.91.020301 | es_ES |
dc.description.references | Yang, M., & Sheng, P. (2017). Sound Absorption Structures: From Porous Media to Acoustic Metamaterials. Annual Review of Materials Research, 47(1), 83-114. doi:10.1146/annurev-matsci-070616-124032 | es_ES |
dc.description.references | Romero-García, V., Theocharis, G., Richoux, O., Merkel, A., Tournat, V., & Pagneux, V. (2016). Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators. Scientific Reports, 6(1). doi:10.1038/srep19519 | es_ES |
dc.description.references | Romero-García, V., Theocharis, G., Richoux, O., & Pagneux, V. (2016). Use of complex frequency plane to design broadband and sub-wavelength absorbers. The Journal of the Acoustical Society of America, 139(6), 3395-3403. doi:10.1121/1.4950708 | es_ES |
dc.description.references | Li, Y., & Assouar, B. M. (2016). Acoustic metasurface-based perfect absorber with deep subwavelength thickness. Applied Physics Letters, 108(6), 063502. doi:10.1063/1.4941338 | es_ES |
dc.description.references | Jiménez, N., Huang, W., Romero-García, V., Pagneux, V., & Groby, J.-P. (2016). Ultra-thin metamaterial for perfect and quasi-omnidirectional sound absorption. Applied Physics Letters, 109(12), 121902. doi:10.1063/1.4962328 | es_ES |
dc.description.references | Jiménez, N., Romero-García, V., Pagneux, V., & Groby, J.-P. (2017). Rainbow-trapping absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems. Scientific Reports, 7(1). doi:10.1038/s41598-017-13706-4 | es_ES |
dc.description.references | Lee, T., Nomura, T., Dede, E. M., & Iizuka, H. (2019). Ultrasparse Acoustic Absorbers Enabling Fluid Flow and Visible-Light Controls. Physical Review Applied, 11(2). doi:10.1103/physrevapplied.11.024022 | es_ES |
dc.description.references | Aurégan, Y. (2018). Ultra-thin low frequency perfect sound absorber with high ratio of active area. Applied Physics Letters, 113(20), 201904. doi:10.1063/1.5063504 | es_ES |
dc.description.references | Yang, M., Meng, C., Fu, C., Li, Y., Yang, Z., & Sheng, P. (2015). Subwavelength total acoustic absorption with degenerate resonators. Applied Physics Letters, 107(10), 104104. doi:10.1063/1.4930944 | es_ES |
dc.description.references | Merkel, A., Theocharis, G., Richoux, O., Romero-García, V., & Pagneux, V. (2015). Control of acoustic absorption in one-dimensional scattering by resonant scatterers. Applied Physics Letters, 107(24), 244102. doi:10.1063/1.4938121 | es_ES |
dc.description.references | Li, J., Wang, W., Xie, Y., Popa, B.-I., & Cummer, S. A. (2016). A sound absorbing metasurface with coupled resonators. Applied Physics Letters, 109(9), 091908. doi:10.1063/1.4961671 | es_ES |
dc.description.references | Huang, S., Fang, X., Wang, X., Assouar, B., Cheng, Q., & Li, Y. (2018). Acoustic perfect absorbers via spiral metasurfaces with embedded apertures. Applied Physics Letters, 113(23), 233501. doi:10.1063/1.5063289 | es_ES |
dc.description.references | Duan, Y., Luo, J., Wang, G., Hang, Z. H., Hou, B., Li, J., … Lai, Y. (2015). Theoretical requirements for broadband perfect absorption of acoustic waves by ultra-thin elastic meta-films. Scientific Reports, 5(1). doi:10.1038/srep12139 | es_ES |
dc.description.references | Wang, X., Luo, X., Zhao, H., & Huang, Z. (2018). Acoustic perfect absorption and broadband insulation achieved by double-zero metamaterials. Applied Physics Letters, 112(2), 021901. doi:10.1063/1.5018180 | es_ES |
dc.description.references | Ni, X., Wu, Y., Chen, Z.-G., Zheng, L.-Y., Xu, Y.-L., Nayar, P., … Chen, Y.-F. (2014). Acoustic rainbow trapping by coiling up space. Scientific Reports, 4(1). doi:10.1038/srep07038 | es_ES |
dc.description.references | Zhang, C., & Hu, X. (2016). Three-Dimensional Single-Port Labyrinthine Acoustic Metamaterial: Perfect Absorption with Large Bandwidth and Tunability. Physical Review Applied, 6(6). doi:10.1103/physrevapplied.6.064025 | es_ES |
dc.description.references | Yang, M., Chen, S., Fu, C., & Sheng, P. (2017). Optimal sound-absorbing structures. Materials Horizons, 4(4), 673-680. doi:10.1039/c7mh00129k | es_ES |
dc.description.references | Lanoy, M., Guillermic, R.-M., Strybulevych, A., & Page, J. H. (2018). Broadband coherent perfect absorption of acoustic waves with bubble metascreens. Applied Physics Letters, 113(17), 171907. doi:10.1063/1.5051341 | es_ES |
dc.description.references | Starkey, T. A., Smith, J. D., Hibbins, A. P., Sambles, J. R., & Rance, H. J. (2017). Thin structured rigid body for acoustic absorption. Applied Physics Letters, 110(4), 041902. doi:10.1063/1.4974487 | es_ES |
dc.description.references | Groby, J.-P., Huang, W., Lardeau, A., & Aurégan, Y. (2015). The use of slow waves to design simple sound absorbing materials. Journal of Applied Physics, 117(12), 124903. doi:10.1063/1.4915115 | es_ES |
dc.description.references | Groby, J.-P., Pommier, R., & Aurégan, Y. (2016). Use of slow sound to design perfect and broadband passive sound absorbing materials. The Journal of the Acoustical Society of America, 139(4), 1660-1671. doi:10.1121/1.4945101 | es_ES |
dc.description.references | Aurégan, Y., & Pagneux, V. (2017). PT-Symmetric Scattering in Flow Duct Acoustics. Physical Review Letters, 118(17). doi:10.1103/physrevlett.118.174301 | es_ES |
dc.description.references | Jiménez, N., Romero-García, V., Pagneux, V., & Groby, J.-P. (2017). Quasiperfect absorption by subwavelength acoustic panels in transmission using accumulation of resonances due to slow sound. Physical Review B, 95(1). doi:10.1103/physrevb.95.014205 | es_ES |
dc.description.references | Chesnel, L., & Pagneux, V. (2018). Simple examples of perfectly invisible and trapped modes in waveguides. The Quarterly Journal of Mechanics and Applied Mathematics, 71(3), 297-315. doi:10.1093/qjmam/hby006 | es_ES |
dc.description.references | Kergomard, J., & Garcia, A. (1987). Simple discontinuities in acoustic waveguides at low frequencies: Critical analysis and formulae. Journal of Sound and Vibration, 114(3), 465-479. doi:10.1016/s0022-460x(87)80017-2 | es_ES |
dc.description.references | Theocharis, G., Richoux, O., García, V. R., Merkel, A., & Tournat, V. (2014). Limits of slow sound propagation and transparency in lossy, locally resonant periodic structures. New Journal of Physics, 16(9), 093017. doi:10.1088/1367-2630/16/9/093017 | es_ES |
dc.description.references | Stinson, M. R. (1991). The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross‐sectional shape. The Journal of the Acoustical Society of America, 89(2), 550-558. doi:10.1121/1.400379 | es_ES |