- -

Perfect Absorption in Mirror-Symmetric Acoustic Metascreens

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Perfect Absorption in Mirror-Symmetric Acoustic Metascreens

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Romero-García, V. es_ES
dc.contributor.author Jimenez, Noe es_ES
dc.contributor.author Groby, J.-P. es_ES
dc.contributor.author Merkel, A. es_ES
dc.contributor.author Tournat, V. es_ES
dc.contributor.author Theocharis, G. es_ES
dc.contributor.author Richoux, O. es_ES
dc.contributor.author Pagneux, V. es_ES
dc.date.accessioned 2021-03-01T08:08:52Z
dc.date.available 2021-03-01T08:08:52Z
dc.date.issued 2020-11 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162576
dc.description.abstract [EN] Mirror-symmetric acoustic metascreens producing perfect absorption independently of the incidence side are theoretically and experimentally reported in this work. The mirror-symmetric resonant building blocks of the metascreen support symmetric and antisymmetric resonances that can be tuned to be at the same frequency (degenerate resonances). The geometry of the building blocks is optimized to critically couple both the symmetric and the antisymmetric resonances at the same frequency, allowing perfect absorption of sound from both sides of the metascreen. A hybrid analytical model based on the transfer-matrix method and the modal decomposition of the exterior acoustic field is developed to analyze the scattering properties of the metascreen. The resulting geometry is three-dimensionally printed and experimentally tested in an impedance tube. The experimental results agree well with the theoretical predictions, proving the efficiency of these metascreens for the perfect absorption of sound in ventilation problems. es_ES
dc.description.sponsorship We gratefully acknowledge the Agence Nationale de la Recherche (ANR) - Research Grants Council (RGC) METARoom project (Grant No. ANR-18-CE08-0021) and the HYPERMETA project, funded under the program Étoiles Montantes of the Région Pays de la Loire. This paper is based upon work from European Cooperation in Science and Technology (COST) Action DENORMS (Designs for Noise Reducing Materials and Structures) Grant No. CA15125, supported by COST. N.J. acknowledges financial support from the Spanish Ministry of Science, Innovation, and Universities (MICINN) through the grant "Juan de la Cierva-Incorporación" (Grant No. IJC2018-037897-I). es_ES
dc.language Inglés es_ES
dc.publisher American Physical Society es_ES
dc.relation.ispartof Physical Review Applied es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Perfect Absorption in Mirror-Symmetric Acoustic Metascreens es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1103/PhysRevApplied.14.054055 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COST//CA15125/EU/Designs for Noise Reducing Materials and Structures (DENORMS)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-18-CE08-0021/FR/METARoom: deep subwavelength reconfigurable acoustic treatments for room acoustics/METARoom/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//IJC2018-037897-I/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular es_ES
dc.description.bibliographicCitation Romero-García, V.; Jimenez, N.; Groby, J.; Merkel, A.; Tournat, V.; Theocharis, G.; Richoux, O.... (2020). Perfect Absorption in Mirror-Symmetric Acoustic Metascreens. Physical Review Applied. 14(5):1-9. https://doi.org/10.1103/PhysRevApplied.14.054055 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1103/PhysRevApplied.14.054055 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 14 es_ES
dc.description.issue 5 es_ES
dc.identifier.eissn 2331-7019 es_ES
dc.relation.pasarela S\422084 es_ES
dc.contributor.funder Region Pays de la Loire es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Agence Nationale de la Recherche, Francia es_ES
dc.contributor.funder European Cooperation in Science and Technology es_ES
dc.description.references Bliokh, K. Y., Bliokh, Y. P., Freilikher, V., Savel’ev, S., & Nori, F. (2008). Colloquium: Unusual resonators: Plasmonics, metamaterials, and random media. Reviews of Modern Physics, 80(4), 1201-1213. doi:10.1103/revmodphys.80.1201 es_ES
dc.description.references Luk, T. S., Campione, S., Kim, I., Feng, S., Jun, Y. C., Liu, S., … Sinclair, M. B. (2014). Directional perfect absorption using deep subwavelength low-permittivity films. Physical Review B, 90(8). doi:10.1103/physrevb.90.085411 es_ES
dc.description.references Piper, J. R., Liu, V., & Fan, S. (2014). Total absorption by degenerate critical coupling. Applied Physics Letters, 104(25), 251110. doi:10.1063/1.4885517 es_ES
dc.description.references Ma, G., Yang, M., Xiao, S., Yang, Z., & Sheng, P. (2014). Acoustic metasurface with hybrid resonances. Nature Materials, 13(9), 873-878. doi:10.1038/nmat3994 es_ES
dc.description.references Wei, P., Croënne, C., Tak Chu, S., & Li, J. (2014). Symmetrical and anti-symmetrical coherent perfect absorption for acoustic waves. Applied Physics Letters, 104(12), 121902. doi:10.1063/1.4869462 es_ES
dc.description.references Song, J. Z., Bai, P., Hang, Z. H., & Lai, Y. (2014). Acoustic coherent perfect absorbers. New Journal of Physics, 16(3), 033026. doi:10.1088/1367-2630/16/3/033026 es_ES
dc.description.references Leroy, V., Strybulevych, A., Lanoy, M., Lemoult, F., Tourin, A., & Page, J. H. (2015). Superabsorption of acoustic waves with bubble metascreens. Physical Review B, 91(2). doi:10.1103/physrevb.91.020301 es_ES
dc.description.references Yang, M., & Sheng, P. (2017). Sound Absorption Structures: From Porous Media to Acoustic Metamaterials. Annual Review of Materials Research, 47(1), 83-114. doi:10.1146/annurev-matsci-070616-124032 es_ES
dc.description.references Romero-García, V., Theocharis, G., Richoux, O., Merkel, A., Tournat, V., & Pagneux, V. (2016). Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators. Scientific Reports, 6(1). doi:10.1038/srep19519 es_ES
dc.description.references Romero-García, V., Theocharis, G., Richoux, O., & Pagneux, V. (2016). Use of complex frequency plane to design broadband and sub-wavelength absorbers. The Journal of the Acoustical Society of America, 139(6), 3395-3403. doi:10.1121/1.4950708 es_ES
dc.description.references Li, Y., & Assouar, B. M. (2016). Acoustic metasurface-based perfect absorber with deep subwavelength thickness. Applied Physics Letters, 108(6), 063502. doi:10.1063/1.4941338 es_ES
dc.description.references Jiménez, N., Huang, W., Romero-García, V., Pagneux, V., & Groby, J.-P. (2016). Ultra-thin metamaterial for perfect and quasi-omnidirectional sound absorption. Applied Physics Letters, 109(12), 121902. doi:10.1063/1.4962328 es_ES
dc.description.references Jiménez, N., Romero-García, V., Pagneux, V., & Groby, J.-P. (2017). Rainbow-trapping absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems. Scientific Reports, 7(1). doi:10.1038/s41598-017-13706-4 es_ES
dc.description.references Lee, T., Nomura, T., Dede, E. M., & Iizuka, H. (2019). Ultrasparse Acoustic Absorbers Enabling Fluid Flow and Visible-Light Controls. Physical Review Applied, 11(2). doi:10.1103/physrevapplied.11.024022 es_ES
dc.description.references Aurégan, Y. (2018). Ultra-thin low frequency perfect sound absorber with high ratio of active area. Applied Physics Letters, 113(20), 201904. doi:10.1063/1.5063504 es_ES
dc.description.references Yang, M., Meng, C., Fu, C., Li, Y., Yang, Z., & Sheng, P. (2015). Subwavelength total acoustic absorption with degenerate resonators. Applied Physics Letters, 107(10), 104104. doi:10.1063/1.4930944 es_ES
dc.description.references Merkel, A., Theocharis, G., Richoux, O., Romero-García, V., & Pagneux, V. (2015). Control of acoustic absorption in one-dimensional scattering by resonant scatterers. Applied Physics Letters, 107(24), 244102. doi:10.1063/1.4938121 es_ES
dc.description.references Li, J., Wang, W., Xie, Y., Popa, B.-I., & Cummer, S. A. (2016). A sound absorbing metasurface with coupled resonators. Applied Physics Letters, 109(9), 091908. doi:10.1063/1.4961671 es_ES
dc.description.references Huang, S., Fang, X., Wang, X., Assouar, B., Cheng, Q., & Li, Y. (2018). Acoustic perfect absorbers via spiral metasurfaces with embedded apertures. Applied Physics Letters, 113(23), 233501. doi:10.1063/1.5063289 es_ES
dc.description.references Duan, Y., Luo, J., Wang, G., Hang, Z. H., Hou, B., Li, J., … Lai, Y. (2015). Theoretical requirements for broadband perfect absorption of acoustic waves by ultra-thin elastic meta-films. Scientific Reports, 5(1). doi:10.1038/srep12139 es_ES
dc.description.references Wang, X., Luo, X., Zhao, H., & Huang, Z. (2018). Acoustic perfect absorption and broadband insulation achieved by double-zero metamaterials. Applied Physics Letters, 112(2), 021901. doi:10.1063/1.5018180 es_ES
dc.description.references Ni, X., Wu, Y., Chen, Z.-G., Zheng, L.-Y., Xu, Y.-L., Nayar, P., … Chen, Y.-F. (2014). Acoustic rainbow trapping by coiling up space. Scientific Reports, 4(1). doi:10.1038/srep07038 es_ES
dc.description.references Zhang, C., & Hu, X. (2016). Three-Dimensional Single-Port Labyrinthine Acoustic Metamaterial: Perfect Absorption with Large Bandwidth and Tunability. Physical Review Applied, 6(6). doi:10.1103/physrevapplied.6.064025 es_ES
dc.description.references Yang, M., Chen, S., Fu, C., & Sheng, P. (2017). Optimal sound-absorbing structures. Materials Horizons, 4(4), 673-680. doi:10.1039/c7mh00129k es_ES
dc.description.references Lanoy, M., Guillermic, R.-M., Strybulevych, A., & Page, J. H. (2018). Broadband coherent perfect absorption of acoustic waves with bubble metascreens. Applied Physics Letters, 113(17), 171907. doi:10.1063/1.5051341 es_ES
dc.description.references Starkey, T. A., Smith, J. D., Hibbins, A. P., Sambles, J. R., & Rance, H. J. (2017). Thin structured rigid body for acoustic absorption. Applied Physics Letters, 110(4), 041902. doi:10.1063/1.4974487 es_ES
dc.description.references Groby, J.-P., Huang, W., Lardeau, A., & Aurégan, Y. (2015). The use of slow waves to design simple sound absorbing materials. Journal of Applied Physics, 117(12), 124903. doi:10.1063/1.4915115 es_ES
dc.description.references Groby, J.-P., Pommier, R., & Aurégan, Y. (2016). Use of slow sound to design perfect and broadband passive sound absorbing materials. The Journal of the Acoustical Society of America, 139(4), 1660-1671. doi:10.1121/1.4945101 es_ES
dc.description.references Aurégan, Y., & Pagneux, V. (2017). PT-Symmetric Scattering in Flow Duct Acoustics. Physical Review Letters, 118(17). doi:10.1103/physrevlett.118.174301 es_ES
dc.description.references Jiménez, N., Romero-García, V., Pagneux, V., & Groby, J.-P. (2017). Quasiperfect absorption by subwavelength acoustic panels in transmission using accumulation of resonances due to slow sound. Physical Review B, 95(1). doi:10.1103/physrevb.95.014205 es_ES
dc.description.references Chesnel, L., & Pagneux, V. (2018). Simple examples of perfectly invisible and trapped modes in waveguides. The Quarterly Journal of Mechanics and Applied Mathematics, 71(3), 297-315. doi:10.1093/qjmam/hby006 es_ES
dc.description.references Kergomard, J., & Garcia, A. (1987). Simple discontinuities in acoustic waveguides at low frequencies: Critical analysis and formulae. Journal of Sound and Vibration, 114(3), 465-479. doi:10.1016/s0022-460x(87)80017-2 es_ES
dc.description.references Theocharis, G., Richoux, O., García, V. R., Merkel, A., & Tournat, V. (2014). Limits of slow sound propagation and transparency in lossy, locally resonant periodic structures. New Journal of Physics, 16(9), 093017. doi:10.1088/1367-2630/16/9/093017 es_ES
dc.description.references Stinson, M. R. (1991). The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross‐sectional shape. The Journal of the Acoustical Society of America, 89(2), 550-558. doi:10.1121/1.400379 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem