- -

Solid polymer electrolytes based on lithium bis(trifluoromethanesulfonyl)imide/poly(vinylidene fluoride -co-hexafluoropropylene) for safer rechargeable lithium-ion batteries

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Solid polymer electrolytes based on lithium bis(trifluoromethanesulfonyl)imide/poly(vinylidene fluoride -co-hexafluoropropylene) for safer rechargeable lithium-ion batteries

Mostrar el registro completo del ítem

Gonçalves, R.; Miranda, D.; Almeida, AM.; Silva, MM.; Meseguer Dueñas, JM.; Gómez Ribelles, JL.; Lanceros-Méndez, S.... (2019). Solid polymer electrolytes based on lithium bis(trifluoromethanesulfonyl)imide/poly(vinylidene fluoride -co-hexafluoropropylene) for safer rechargeable lithium-ion batteries. Sustainable Materials and Technologies. 21:1-11. https://doi.org/10.1016/j.susmat.2019.e00104

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162579

Ficheros en el ítem

Metadatos del ítem

Título: Solid polymer electrolytes based on lithium bis(trifluoromethanesulfonyl)imide/poly(vinylidene fluoride -co-hexafluoropropylene) for safer rechargeable lithium-ion batteries
Autor: Gonçalves, R. Miranda, D. Almeida, A. M. Silva, M. M. Meseguer Dueñas, José María Gómez Ribelles, José Luís Lanceros-Méndez, S. Costa, C. M.
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Fecha difusión:
Resumen:
[EN] The increasing use of electronic portable systems and the consequent energy demand, leads to the need to improve energy storage systems. According to that and due to safety issues, high-performance non-flammable ...[+]
Palabras clave: Solid polymer electrolyte , PVDF-HFP , LiTFSI , Composites , Simulations , Li-ion batteries
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Sustainable Materials and Technologies. (issn: 2214-9937 )
DOI: 10.1016/j.susmat.2019.e00104
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.susmat.2019.e00104
Código del Proyecto:
info:eu-repo/grantAgreement/FCT/SFRH/FCT%2FSFRH%2FBPD%2F112547%2F2015/PT/
...[+]
info:eu-repo/grantAgreement/FCT/SFRH/FCT%2FSFRH%2FBPD%2F112547%2F2015/PT/
info:eu-repo/grantAgreement/FCT/5876/147325/PT/Microelectromechanical Systems Research Unit/
info:eu-repo/grantAgreement/FCT//UID%2FQUI%2F0686%2F2016/
info:eu-repo/grantAgreement/FCT/5876/147414/PT/Physics Center of Minho and Porto Universities/
info:eu-repo/grantAgreement/FCT//PTDC%2FFIS-MAC%2F28157%2F2017/
info:eu-repo/grantAgreement/MINECO//MAT2016-76039-C4-3-R/ES/UNA NUEVA GENERACION DE MATERIALES ELECTROACTIVOS Y BIOREACTORES PARA INGENIERIA DE TEJIDO MUSCULAR/
info:eu-repo/grantAgreement/MINECO//MAT2016-76039-C4-1-R/ES/BIOMATERIALES PIEZOELECTRICOS PARA LA DIFERENCIACION CELULAR EN INTERFASES CELULA-MATERIAL ELECTRICAMENTE ACTIVAS/
[-]
Agradecimientos:
The authors thank the FCT (Fundacao para a Ciencia e Tecnologia) for financial support under the framework of Strategic Funding grants UID/FIS/04650/2013, UID/EEA/04436/2013 and UID/QUI/0686/2016; and project no. ...[+]
Tipo: Artículo

References

Lin, X., Salari, M., Arava, L. M. R., Ajayan, P. M., & Grinstaff, M. W. (2016). High temperature electrical energy storage: advances, challenges, and frontiers. Chemical Society Reviews, 45(21), 5848-5887. doi:10.1039/c6cs00012f

Manthiram, A. (2017). An Outlook on Lithium Ion Battery Technology. ACS Central Science, 3(10), 1063-1069. doi:10.1021/acscentsci.7b00288

Blomgren, G. E. (2016). The Development and Future of Lithium Ion Batteries. Journal of The Electrochemical Society, 164(1), A5019-A5025. doi:10.1149/2.0251701jes [+]
Lin, X., Salari, M., Arava, L. M. R., Ajayan, P. M., & Grinstaff, M. W. (2016). High temperature electrical energy storage: advances, challenges, and frontiers. Chemical Society Reviews, 45(21), 5848-5887. doi:10.1039/c6cs00012f

Manthiram, A. (2017). An Outlook on Lithium Ion Battery Technology. ACS Central Science, 3(10), 1063-1069. doi:10.1021/acscentsci.7b00288

Blomgren, G. E. (2016). The Development and Future of Lithium Ion Batteries. Journal of The Electrochemical Society, 164(1), A5019-A5025. doi:10.1149/2.0251701jes

Kraytsberg, A., & Ein-Eli, Y. (2012). Higher, Stronger, Better…︁ A Review of 5 Volt Cathode Materials for Advanced Lithium-Ion Batteries. Advanced Energy Materials, 2(8), 922-939. doi:10.1002/aenm.201200068

Lee, H., Yanilmaz, M., Toprakci, O., Fu, K., & Zhang, X. (2014). A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ. Sci., 7(12), 3857-3886. doi:10.1039/c4ee01432d

Navarra, M. A., Manzi, J., Lombardo, L., Panero, S., & Scrosati, B. (2011). Ionic Liquid-Based Membranes as Electrolytes for Advanced Lithium Polymer Batteries. ChemSusChem, 4(1), 125-130. doi:10.1002/cssc.201000254

Liu, Y., Liu, Q., Xin, L., Liu, Y., Yang, F., Stach, E. A., & Xie, J. (2017). Making Li-metal electrodes rechargeable by controlling the dendrite growth direction. Nature Energy, 2(7). doi:10.1038/nenergy.2017.83

Meyer, W. H. (1998). Polymer Electrolytes for Lithium-Ion Batteries. Advanced Materials, 10(6), 439-448. doi:10.1002/(sici)1521-4095(199804)10:6<439::aid-adma439>3.0.co;2-i

Sun, C., Liu, J., Gong, Y., Wilkinson, D. P., & Zhang, J. (2017). Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy, 33, 363-386. doi:10.1016/j.nanoen.2017.01.028

Wright, P. V. (1998). Polymer electrolytes—the early days. Electrochimica Acta, 43(10-11), 1137-1143. doi:10.1016/s0013-4686(97)10011-1

Nunes-Pereira, J., Costa, C. M., & Lanceros-Méndez, S. (2015). Polymer composites and blends for battery separators: State of the art, challenges and future trends. Journal of Power Sources, 281, 378-398. doi:10.1016/j.jpowsour.2015.02.010

Barbosa, J., Dias, J., Lanceros-Méndez, S., & Costa, C. (2018). Recent Advances in Poly(vinylidene fluoride) and Its Copolymers for Lithium-Ion Battery Separators. Membranes, 8(3), 45. doi:10.3390/membranes8030045

Costa, C. M., Silva, M. M., & Lanceros-Méndez, S. (2013). Battery separators based on vinylidene fluoride (VDF) polymers and copolymers for lithium ion battery applications. RSC Advances, 3(29), 11404. doi:10.1039/c3ra40732b

Elmér, A. M., & Jannasch, P. (2006). Polymer electrolyte membranes byin situ polymerization of poly(ethylene carbonate-co-ethylene oxide) macromonomers in blends with poly(vinylidene fluoride-co-hexafluoropropylene). Journal of Polymer Science Part B: Polymer Physics, 45(1), 79-90. doi:10.1002/polb.20980

Gorecki, W., Jeannin, M., Belorizky, E., Roux, C., & Armand, M. (1995). Physical properties of solid polymer electrolyte PEO(LiTFSI) complexes. Journal of Physics: Condensed Matter, 7(34), 6823-6832. doi:10.1088/0953-8984/7/34/007

Alcock, H. J., White, O. C., Jegelevicius, G., Roberts, M. R., & Owen, J. R. (2011). New high-throughput methods of investigating polymer electrolytes. Journal of Power Sources, 196(6), 3355-3359. doi:10.1016/j.jpowsour.2010.11.098

Bai, J., Lu, H., Cao, Y., Li, X., & Wang, J. (2017). A novel ionic liquid polymer electrolyte for quasi-solid state lithium air batteries. RSC Advances, 7(49), 30603-30609. doi:10.1039/c7ra05035f

Ferrari, S., Quartarone, E., Mustarelli, P., Magistris, A., Fagnoni, M., Protti, S., … Spinella, A. (2010). Lithium ion conducting PVdF-HFP composite gel electrolytes based on N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide ionic liquid. Journal of Power Sources, 195(2), 559-566. doi:10.1016/j.jpowsour.2009.08.015

Aliahmad, N., Shrestha, S., Varahramyan, K., & Agarwal, M. (2016). Poly(vinylidene fluoride-hexafluoropropylene) polymer electrolyte for paper-based and flexible battery applications. AIP Advances, 6(6), 065206. doi:10.1063/1.4953811

Suriyakumar, S., Kanagaraj, M., Angulakshmi, N., Kathiresan, M., Nahm, K. S., Walkowiak, M., … Stephan, A. M. (2016). Charge–discharge studies of all-solid-state Li/LiFePO4 cells with PEO-based composite electrolytes encompassing metal organic frameworks. RSC Advances, 6(99), 97180-97186. doi:10.1039/c6ra17962b

Zalewska, A., Dumińska, J., Langwald, N., Syzdek, J., & Zawadzki, M. (2014). Preparation and performance of gel polymer electrolytes doped with ionic liquids and surface-modified inorganic fillers. Electrochimica Acta, 121, 337-344. doi:10.1016/j.electacta.2013.12.135

Ye, H., Huang, J., Xu, J. J., Khalfan, A., & Greenbaum, S. G. (2007). Li Ion Conducting Polymer Gel Electrolytes Based on Ionic Liquid/PVDF-HFP Blends. Journal of The Electrochemical Society, 154(11), A1048. doi:10.1149/1.2779962

Zhang, W., Nie, J., Li, F., Wang, Z. L., & Sun, C. (2018). A durable and safe solid-state lithium battery with a hybrid electrolyte membrane. Nano Energy, 45, 413-419. doi:10.1016/j.nanoen.2018.01.028

Ban, X., Zhang, W., Chen, N., & Sun, C. (2018). A High-Performance and Durable Poly(ethylene oxide)-Based Composite Solid Electrolyte for All Solid-State Lithium Battery. The Journal of Physical Chemistry C, 122(18), 9852-9858. doi:10.1021/acs.jpcc.8b02556

Zhang, Y., Lai, J., Gong, Y., Hu, Y., Liu, J., Sun, C., & Wang, Z. L. (2016). A Safe High-Performance All-Solid-State Lithium–Vanadium Battery with a Freestanding V2O5 Nanowire Composite Paper Cathode. ACS Applied Materials & Interfaces, 8(50), 34309-34316. doi:10.1021/acsami.6b10358

Hou, H., Xu, Q., Pang, Y., Li, L., Wang, J., Zhang, C., & Sun, C. (2017). Efficient Storing Energy Harvested by Triboelectric Nanogenerators Using a Safe and Durable All-Solid-State Sodium-Ion Battery. Advanced Science, 4(8), 1700072. doi:10.1002/advs.201700072

Wang, J., Sun, C.-W., Gong, Y.-D., Zhang, H.-R., Alonso, J. A., Fernández-Díaz, M. T., … Goodenough, J. B. (2018). Imaging the diffusion pathway of Al 3+ ion in NASICON-type (Al 0.2 Zr 0.8 ) 20/19 Nb(PO 4 ) 3 as electrolyte for rechargeable solid-state Al batteries. Chinese Physics B, 27(12), 128201. doi:10.1088/1674-1056/27/12/128201

Imrie, C. T., Ingram, M. D., & McHattie, G. S. (1999). Ion Transport in Glassy Polymer Electrolytes. The Journal of Physical Chemistry B, 103(20), 4132-4138. doi:10.1021/jp983968e

Tao, C., Gao, M.-H., Yin, B.-H., Li, B., Huang, Y.-P., Xu, G., & Bao, J.-J. (2017). A promising TPU/PEO blend polymer electrolyte for all-solid-state lithium ion batteries. Electrochimica Acta, 257, 31-39. doi:10.1016/j.electacta.2017.10.037

Ribeiro, C., Costa, C. M., Correia, D. M., Nunes-Pereira, J., Oliveira, J., Martins, P., … Lanceros-Méndez, S. (2018). Electroactive poly(vinylidene fluoride)-based structures for advanced applications. Nature Protocols, 13(4), 681-704. doi:10.1038/nprot.2017.157

Gören, A., Cíntora-Juárez, D., Martins, P., Ferdov, S., Silva, M. M., Tirado, J. L., … Lanceros-Méndez, S. (2015). Influence of Solvent Evaporation Rate in the Preparation of Carbon-Coated Lithium Iron Phosphate Cathode Films on Battery Performance. Energy Technology, 4(5), 573-582. doi:10.1002/ente.201500392

Li, S., Wu, Q., Zhang, D., Liu, Z., He, Y., Wang, Z. L., & Sun, C. (2019). Effects of pulse charging on the performances of lithium-ion batteries. Nano Energy, 56, 555-562. doi:10.1016/j.nanoen.2018.11.070

Bates, A., Mukherjee, S., Schuppert, N., Son, B., Kim, J. G., & Park, S. (2015). Modeling and simulation of 2D lithium-ion solid state battery. International Journal of Energy Research, 39(11), 1505-1518. doi:10.1002/er.3344

Danilov, D., Niessen, R. A. H., & Notten, P. H. L. (2011). Modeling All-Solid-State Li-Ion Batteries. Journal of The Electrochemical Society, 158(3), A215. doi:10.1149/1.3521414

Fabre, S. D., Guy-Bouyssou, D., Bouillon, P., Le Cras, F., & Delacourt, C. (2011). Charge/Discharge Simulation of an All-Solid-State Thin-Film Battery Using a One-Dimensional Model. Journal of The Electrochemical Society, 159(2), A104-A115. doi:10.1149/2.041202jes

Martins, P., Lopes, A. C., & Lanceros-Mendez, S. (2014). Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Progress in Polymer Science, 39(4), 683-706. doi:10.1016/j.progpolymsci.2013.07.006

Munch Elmér, A., & Jannasch, P. (2005). Gel electrolyte membranes derived from co-continuous polymer blends. Polymer, 46(19), 7896-7908. doi:10.1016/j.polymer.2005.06.079

Ulaganathan, M., Mathew, C. M., & Rajendran, S. (2013). Highly porous lithium-ion conducting solvent-free poly(vinylidene fluoride-co-hexafluoropropylene)/poly(ethyl methacrylate) based polymer blend electrolytes for Li battery applications. Electrochimica Acta, 93, 230-235. doi:10.1016/j.electacta.2013.01.100

Sousa, R. E., Nunes-Pereira, J., Ferreira, J. C. C., Costa, C. M., Machado, A. V., Silva, M. M., & Lanceros-Mendez, S. (2014). Microstructural variations of poly(vinylidene fluoride co-hexafluoropropylene) and their influence on the thermal, dielectric and piezoelectric properties. Polymer Testing, 40, 245-255. doi:10.1016/j.polymertesting.2014.09.012

Jeschke, S., Mutke, M., Jiang, Z., Alt, B., & Wiemhöfer, H.-D. (2014). Study of Carbamate-Modified Disiloxane in Porous PVDF-HFP Membranes: New Electrolytes/Separators for Lithium-Ion Batteries. ChemPhysChem, 15(9), 1761-1771. doi:10.1002/cphc.201400065

Kam, W., Liew, C.-W., Lim, J. Y., & Ramesh, S. (2013). Electrical, structural, and thermal studies of antimony trioxide-doped poly(acrylic acid)-based composite polymer electrolytes. Ionics, 20(5), 665-674. doi:10.1007/s11581-013-1012-0

Amici, J., Alidoost, M., Francia, C., Bodoardo, S., Martinez Crespiera, S., Amantia, D., … Trotta, F. (2016). O2 selective membranes based on a dextrin-nanosponge (NS) in a PVDF-HFP polymer matrix for Li–air cells. Chemical Communications, 52(94), 13683-13686. doi:10.1039/c6cc06954a

Shalu, S., Balo, L., Gupta, H., Singh, V. kumar, & Singh, R. K. (2016). Mixed anion effect on the ionic transport behavior, complexation and various physicochemical properties of ionic liquid based polymer gel electrolyte membranes. RSC Advances, 6(77), 73028-73039. doi:10.1039/c6ra10340e

Cheng, C. ., Wan, C. ., & Wang, Y. . (2004). Preparation of porous, chemically cross-linked, PVdF-based gel polymer electrolytes for rechargeable lithium batteries. Journal of Power Sources, 134(2), 202-210. doi:10.1016/j.jpowsour.2004.03.037

Chang, B.-Y., & Park, S.-M. (2010). Electrochemical Impedance Spectroscopy. Annual Review of Analytical Chemistry, 3(1), 207-229. doi:10.1146/annurev.anchem.012809.102211

Park, S.-M., & Yoo, J.-S. (2003). Peer Reviewed: Electrochemical Impedance Spectroscopy for Better Electrochemical Measurements. Analytical Chemistry, 75(21), 455 A-461 A. doi:10.1021/ac0313973

Armstrong, R. D., Dickinson, T., & Willis, P. M. (1974). The A.C. impedance of powdered and sintered solid ionic conductors. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 53(3), 389-405. doi:10.1016/s0022-0728(74)80077-x

Correia, D. M., Costa, C. M., Nunes-Pereira, J., Silva, M. M., Botelho, G., Ribelles, J. L. G., & Lanceros-Méndez, S. (2014). Physicochemical properties of poly(vinylidene fluoride-trifluoroethylene)/poly(ethylene oxide) blend membranes for lithium ion battery applications: Influence of poly(ethylene oxide) molecular weight. Solid State Ionics, 268, 54-67. doi:10.1016/j.ssi.2014.09.029

Li, X., Wang, Z., Lin, H., Liu, Y., Min, Y., & Pan, F. (2019). Composite electrolytes of pyrrolidone-derivatives-PEO enable to enhance performance of all solid state lithium-ion batteries. Electrochimica Acta, 293, 25-29. doi:10.1016/j.electacta.2018.10.023

Baik, J.-H., Kim, D.-G., Shim, J., Lee, J. H., Choi, Y.-S., & Lee, J.-C. (2016). Solid polymer electrolytes containing poly(ethylene glycol) and renewable cardanol moieties for all-solid-state rechargeable lithium batteries. Polymer, 99, 704-712. doi:10.1016/j.polymer.2016.07.058

Zeng, H., Ji, X., Tsai, F., Zhang, Q., Jiang, T., Li, R. K. Y., … Shi, D. (2018). Enhanced cycling performance for all-solid-state lithium ion battery with LiFePO4 composite cathode encapsulated by poly (ethylene glycol) (PEG) based polymer electrolyte. Solid State Ionics, 320, 92-99. doi:10.1016/j.ssi.2018.02.040

Li, C., Yue, H., Wang, Q., Li, J., Zhang, J., Dong, H., … Yang, S. (2018). A novel composite solid polymer electrolyte based on copolymer P(LA-co-TMC) for all-solid-state lithium ionic batteries. Solid State Ionics, 321, 8-14. doi:10.1016/j.ssi.2018.03.031

Bao, J., Qu, X., Qi, G., Huang, Q., Wu, S., Tao, C., … Chen, C. (2018). Solid electrolyte based on waterborne polyurethane and poly(ethylene oxide) blend polymer for all-solid-state lithium ion batteries. Solid State Ionics, 320, 55-63. doi:10.1016/j.ssi.2018.02.030

Nien, Y.-H., Carey, J. R., & Chen, J.-S. (2009). Physical and electrochemical properties of LiFePO4/C composite cathode prepared from various polymer-containing precursors. Journal of Power Sources, 193(2), 822-827. doi:10.1016/j.jpowsour.2009.04.013

Sasikumar, M., Raja, M., Krishna, R. H., Jagadeesan, A., Sivakumar, P., & Rajendran, S. (2018). Influence of Hydrothermally Synthesized Cubic-Structured BaTiO3 Ceramic Fillers on Ionic Conductivity, Mechanical Integrity, and Thermal Behavior of P(VDF–HFP)/PVAc-Based Composite Solid Polymer Electrolytes for Lithium-Ion Batteries. The Journal of Physical Chemistry C, 122(45), 25741-25752. doi:10.1021/acs.jpcc.8b03952

Kim, G.-T., Passerini, S., Carewska, M., & Appetecchi, G. (2018). Ionic Liquid-Based Electrolyte Membranes for Medium-High Temperature Lithium Polymer Batteries. Membranes, 8(3), 41. doi:10.3390/membranes8030041

Yang, K., Liao, Z., Zhang, Z., Yang, L., & Hirano, S. (2019). Ionic plastic crystal-polymeric ionic liquid solid-state electrolytes with high ionic conductivity for lithium ion batteries. Materials Letters, 236, 554-557. doi:10.1016/j.matlet.2018.11.003

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem