- -

Solid polymer electrolytes based on lithium bis(trifluoromethanesulfonyl)imide/poly(vinylidene fluoride -co-hexafluoropropylene) for safer rechargeable lithium-ion batteries

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Solid polymer electrolytes based on lithium bis(trifluoromethanesulfonyl)imide/poly(vinylidene fluoride -co-hexafluoropropylene) for safer rechargeable lithium-ion batteries

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gonçalves, R. es_ES
dc.contributor.author Miranda, D. es_ES
dc.contributor.author Almeida, A. M. es_ES
dc.contributor.author Silva, M. M. es_ES
dc.contributor.author Meseguer Dueñas, José María es_ES
dc.contributor.author Gómez Ribelles, José Luís es_ES
dc.contributor.author Lanceros-Méndez, S. es_ES
dc.contributor.author Costa, C. M. es_ES
dc.date.accessioned 2021-03-01T08:08:59Z
dc.date.available 2021-03-01T08:08:59Z
dc.date.issued 2019-09 es_ES
dc.identifier.issn 2214-9937 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162579
dc.description.abstract [EN] The increasing use of electronic portable systems and the consequent energy demand, leads to the need to improve energy storage systems. According to that and due to safety issues, high-performance non-flammable electrolytes and solid polymer electrolytes (SPE) are needed. SPE containing different amounts of lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) into a poly(vinylidene fluoride-co-hexafluoropropylene), PVDF-HFP, polymer matrix have been prepared by solvent casting. The addition of LiTFSI into PVDF-HFP allows to tailor thermal, mechanical and electrical properties of the composite. In particular, the ionic conductivity of the composites increases with LiTFSI content, the best ionic conductivities of 0.0011 mS/cmat 25 degrees C and 0.23 mS/cmat 90 degrees C were obtained for the PVDF-HFP/LiTFSI composites with 80 wt % of LiTFSI. This solid electrolyte allows the fabrication of Li metallic/SPE/C-LiFePO4 half-cells with a discharge capacity of 51.2 mAh/ g at C/20. Further, theoretical simulations show that the discharge capacity value depends on the lithium concentration and percentage of free ions and is independent of the solid polymer electrolyte thickness. On the other hand, the voltage plateau depends on the SPE thickness. Thus, a solid electrolyte is presented for the next generation of safer solid-state batteries. es_ES
dc.description.sponsorship The authors thank the FCT (Fundacao para a Ciencia e Tecnologia) for financial support under the framework of Strategic Funding grants UID/FIS/04650/2013, UID/EEA/04436/2013 and UID/QUI/0686/2016; and project no. PTDC/FIS-MAC/28157/2017. The authors also thank the FCT for financial support under grant SFRH/BPD/112547/2015 (C.M.C.). Financial support from the Basque Government Industry Department under the ELKARTEK and HAZITEK programs is also acknowledged. JMMD and JLGR acknowledge funding by the Spanish Ministry of Economy and Competitiveness (MINECO) through the project MAT2016-76039-C4-1 and 3-R (including the FEDER financial support) CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance fromthe European Regional Development Fund. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Sustainable Materials and Technologies es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Solid polymer electrolyte es_ES
dc.subject PVDF-HFP es_ES
dc.subject LiTFSI es_ES
dc.subject Composites es_ES
dc.subject Simulations es_ES
dc.subject Li-ion batteries es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Solid polymer electrolytes based on lithium bis(trifluoromethanesulfonyl)imide/poly(vinylidene fluoride -co-hexafluoropropylene) for safer rechargeable lithium-ion batteries es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.susmat.2019.e00104 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/SFRH/FCT%2FSFRH%2FBPD%2F112547%2F2015/PT/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/5876/147325/PT/Microelectromechanical Systems Research Unit/
dc.relation.projectID info:eu-repo/grantAgreement/FCT//UID%2FQUI%2F0686%2F2016/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/5876/147414/PT/Physics Center of Minho and Porto Universities/
dc.relation.projectID info:eu-repo/grantAgreement/FCT//PTDC%2FFIS-MAC%2F28157%2F2017/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2016-76039-C4-3-R/ES/UNA NUEVA GENERACION DE MATERIALES ELECTROACTIVOS Y BIOREACTORES PARA INGENIERIA DE TEJIDO MUSCULAR/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2016-76039-C4-1-R/ES/BIOMATERIALES PIEZOELECTRICOS PARA LA DIFERENCIACION CELULAR EN INTERFASES CELULA-MATERIAL ELECTRICAMENTE ACTIVAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Gonçalves, R.; Miranda, D.; Almeida, AM.; Silva, MM.; Meseguer Dueñas, JM.; Gómez Ribelles, JL.; Lanceros-Méndez, S.... (2019). Solid polymer electrolytes based on lithium bis(trifluoromethanesulfonyl)imide/poly(vinylidene fluoride -co-hexafluoropropylene) for safer rechargeable lithium-ion batteries. Sustainable Materials and Technologies. 21:1-11. https://doi.org/10.1016/j.susmat.2019.e00104 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.susmat.2019.e00104 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.relation.pasarela S\404552 es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder Gobierno Vasco/Eusko Jaurlaritza es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Fundação para a Ciência e a Tecnologia, Portugal es_ES
dc.contributor.funder Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina es_ES
dc.description.references Lin, X., Salari, M., Arava, L. M. R., Ajayan, P. M., & Grinstaff, M. W. (2016). High temperature electrical energy storage: advances, challenges, and frontiers. Chemical Society Reviews, 45(21), 5848-5887. doi:10.1039/c6cs00012f es_ES
dc.description.references Manthiram, A. (2017). An Outlook on Lithium Ion Battery Technology. ACS Central Science, 3(10), 1063-1069. doi:10.1021/acscentsci.7b00288 es_ES
dc.description.references Blomgren, G. E. (2016). The Development and Future of Lithium Ion Batteries. Journal of The Electrochemical Society, 164(1), A5019-A5025. doi:10.1149/2.0251701jes es_ES
dc.description.references Kraytsberg, A., & Ein-Eli, Y. (2012). Higher, Stronger, Better…︁ A Review of 5 Volt Cathode Materials for Advanced Lithium-Ion Batteries. Advanced Energy Materials, 2(8), 922-939. doi:10.1002/aenm.201200068 es_ES
dc.description.references Lee, H., Yanilmaz, M., Toprakci, O., Fu, K., & Zhang, X. (2014). A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ. Sci., 7(12), 3857-3886. doi:10.1039/c4ee01432d es_ES
dc.description.references Navarra, M. A., Manzi, J., Lombardo, L., Panero, S., & Scrosati, B. (2011). Ionic Liquid-Based Membranes as Electrolytes for Advanced Lithium Polymer Batteries. ChemSusChem, 4(1), 125-130. doi:10.1002/cssc.201000254 es_ES
dc.description.references Liu, Y., Liu, Q., Xin, L., Liu, Y., Yang, F., Stach, E. A., & Xie, J. (2017). Making Li-metal electrodes rechargeable by controlling the dendrite growth direction. Nature Energy, 2(7). doi:10.1038/nenergy.2017.83 es_ES
dc.description.references Meyer, W. H. (1998). Polymer Electrolytes for Lithium-Ion Batteries. Advanced Materials, 10(6), 439-448. doi:10.1002/(sici)1521-4095(199804)10:6<439::aid-adma439>3.0.co;2-i es_ES
dc.description.references Sun, C., Liu, J., Gong, Y., Wilkinson, D. P., & Zhang, J. (2017). Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy, 33, 363-386. doi:10.1016/j.nanoen.2017.01.028 es_ES
dc.description.references Wright, P. V. (1998). Polymer electrolytes—the early days. Electrochimica Acta, 43(10-11), 1137-1143. doi:10.1016/s0013-4686(97)10011-1 es_ES
dc.description.references Nunes-Pereira, J., Costa, C. M., & Lanceros-Méndez, S. (2015). Polymer composites and blends for battery separators: State of the art, challenges and future trends. Journal of Power Sources, 281, 378-398. doi:10.1016/j.jpowsour.2015.02.010 es_ES
dc.description.references Barbosa, J., Dias, J., Lanceros-Méndez, S., & Costa, C. (2018). Recent Advances in Poly(vinylidene fluoride) and Its Copolymers for Lithium-Ion Battery Separators. Membranes, 8(3), 45. doi:10.3390/membranes8030045 es_ES
dc.description.references Costa, C. M., Silva, M. M., & Lanceros-Méndez, S. (2013). Battery separators based on vinylidene fluoride (VDF) polymers and copolymers for lithium ion battery applications. RSC Advances, 3(29), 11404. doi:10.1039/c3ra40732b es_ES
dc.description.references Elmér, A. M., & Jannasch, P. (2006). Polymer electrolyte membranes byin situ polymerization of poly(ethylene carbonate-co-ethylene oxide) macromonomers in blends with poly(vinylidene fluoride-co-hexafluoropropylene). Journal of Polymer Science Part B: Polymer Physics, 45(1), 79-90. doi:10.1002/polb.20980 es_ES
dc.description.references Gorecki, W., Jeannin, M., Belorizky, E., Roux, C., & Armand, M. (1995). Physical properties of solid polymer electrolyte PEO(LiTFSI) complexes. Journal of Physics: Condensed Matter, 7(34), 6823-6832. doi:10.1088/0953-8984/7/34/007 es_ES
dc.description.references Alcock, H. J., White, O. C., Jegelevicius, G., Roberts, M. R., & Owen, J. R. (2011). New high-throughput methods of investigating polymer electrolytes. Journal of Power Sources, 196(6), 3355-3359. doi:10.1016/j.jpowsour.2010.11.098 es_ES
dc.description.references Bai, J., Lu, H., Cao, Y., Li, X., & Wang, J. (2017). A novel ionic liquid polymer electrolyte for quasi-solid state lithium air batteries. RSC Advances, 7(49), 30603-30609. doi:10.1039/c7ra05035f es_ES
dc.description.references Ferrari, S., Quartarone, E., Mustarelli, P., Magistris, A., Fagnoni, M., Protti, S., … Spinella, A. (2010). Lithium ion conducting PVdF-HFP composite gel electrolytes based on N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide ionic liquid. Journal of Power Sources, 195(2), 559-566. doi:10.1016/j.jpowsour.2009.08.015 es_ES
dc.description.references Aliahmad, N., Shrestha, S., Varahramyan, K., & Agarwal, M. (2016). Poly(vinylidene fluoride-hexafluoropropylene) polymer electrolyte for paper-based and flexible battery applications. AIP Advances, 6(6), 065206. doi:10.1063/1.4953811 es_ES
dc.description.references Suriyakumar, S., Kanagaraj, M., Angulakshmi, N., Kathiresan, M., Nahm, K. S., Walkowiak, M., … Stephan, A. M. (2016). Charge–discharge studies of all-solid-state Li/LiFePO4 cells with PEO-based composite electrolytes encompassing metal organic frameworks. RSC Advances, 6(99), 97180-97186. doi:10.1039/c6ra17962b es_ES
dc.description.references Zalewska, A., Dumińska, J., Langwald, N., Syzdek, J., & Zawadzki, M. (2014). Preparation and performance of gel polymer electrolytes doped with ionic liquids and surface-modified inorganic fillers. Electrochimica Acta, 121, 337-344. doi:10.1016/j.electacta.2013.12.135 es_ES
dc.description.references Ye, H., Huang, J., Xu, J. J., Khalfan, A., & Greenbaum, S. G. (2007). Li Ion Conducting Polymer Gel Electrolytes Based on Ionic Liquid/PVDF-HFP Blends. Journal of The Electrochemical Society, 154(11), A1048. doi:10.1149/1.2779962 es_ES
dc.description.references Zhang, W., Nie, J., Li, F., Wang, Z. L., & Sun, C. (2018). A durable and safe solid-state lithium battery with a hybrid electrolyte membrane. Nano Energy, 45, 413-419. doi:10.1016/j.nanoen.2018.01.028 es_ES
dc.description.references Ban, X., Zhang, W., Chen, N., & Sun, C. (2018). A High-Performance and Durable Poly(ethylene oxide)-Based Composite Solid Electrolyte for All Solid-State Lithium Battery. The Journal of Physical Chemistry C, 122(18), 9852-9858. doi:10.1021/acs.jpcc.8b02556 es_ES
dc.description.references Zhang, Y., Lai, J., Gong, Y., Hu, Y., Liu, J., Sun, C., & Wang, Z. L. (2016). A Safe High-Performance All-Solid-State Lithium–Vanadium Battery with a Freestanding V2O5 Nanowire Composite Paper Cathode. ACS Applied Materials & Interfaces, 8(50), 34309-34316. doi:10.1021/acsami.6b10358 es_ES
dc.description.references Hou, H., Xu, Q., Pang, Y., Li, L., Wang, J., Zhang, C., & Sun, C. (2017). Efficient Storing Energy Harvested by Triboelectric Nanogenerators Using a Safe and Durable All-Solid-State Sodium-Ion Battery. Advanced Science, 4(8), 1700072. doi:10.1002/advs.201700072 es_ES
dc.description.references Wang, J., Sun, C.-W., Gong, Y.-D., Zhang, H.-R., Alonso, J. A., Fernández-Díaz, M. T., … Goodenough, J. B. (2018). Imaging the diffusion pathway of Al 3+ ion in NASICON-type (Al 0.2 Zr 0.8 ) 20/19 Nb(PO 4 ) 3 as electrolyte for rechargeable solid-state Al batteries. Chinese Physics B, 27(12), 128201. doi:10.1088/1674-1056/27/12/128201 es_ES
dc.description.references Imrie, C. T., Ingram, M. D., & McHattie, G. S. (1999). Ion Transport in Glassy Polymer Electrolytes. The Journal of Physical Chemistry B, 103(20), 4132-4138. doi:10.1021/jp983968e es_ES
dc.description.references Tao, C., Gao, M.-H., Yin, B.-H., Li, B., Huang, Y.-P., Xu, G., & Bao, J.-J. (2017). A promising TPU/PEO blend polymer electrolyte for all-solid-state lithium ion batteries. Electrochimica Acta, 257, 31-39. doi:10.1016/j.electacta.2017.10.037 es_ES
dc.description.references Ribeiro, C., Costa, C. M., Correia, D. M., Nunes-Pereira, J., Oliveira, J., Martins, P., … Lanceros-Méndez, S. (2018). Electroactive poly(vinylidene fluoride)-based structures for advanced applications. Nature Protocols, 13(4), 681-704. doi:10.1038/nprot.2017.157 es_ES
dc.description.references Gören, A., Cíntora-Juárez, D., Martins, P., Ferdov, S., Silva, M. M., Tirado, J. L., … Lanceros-Méndez, S. (2015). Influence of Solvent Evaporation Rate in the Preparation of Carbon-Coated Lithium Iron Phosphate Cathode Films on Battery Performance. Energy Technology, 4(5), 573-582. doi:10.1002/ente.201500392 es_ES
dc.description.references Li, S., Wu, Q., Zhang, D., Liu, Z., He, Y., Wang, Z. L., & Sun, C. (2019). Effects of pulse charging on the performances of lithium-ion batteries. Nano Energy, 56, 555-562. doi:10.1016/j.nanoen.2018.11.070 es_ES
dc.description.references Bates, A., Mukherjee, S., Schuppert, N., Son, B., Kim, J. G., & Park, S. (2015). Modeling and simulation of 2D lithium-ion solid state battery. International Journal of Energy Research, 39(11), 1505-1518. doi:10.1002/er.3344 es_ES
dc.description.references Danilov, D., Niessen, R. A. H., & Notten, P. H. L. (2011). Modeling All-Solid-State Li-Ion Batteries. Journal of The Electrochemical Society, 158(3), A215. doi:10.1149/1.3521414 es_ES
dc.description.references Fabre, S. D., Guy-Bouyssou, D., Bouillon, P., Le Cras, F., & Delacourt, C. (2011). Charge/Discharge Simulation of an All-Solid-State Thin-Film Battery Using a One-Dimensional Model. Journal of The Electrochemical Society, 159(2), A104-A115. doi:10.1149/2.041202jes es_ES
dc.description.references Martins, P., Lopes, A. C., & Lanceros-Mendez, S. (2014). Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Progress in Polymer Science, 39(4), 683-706. doi:10.1016/j.progpolymsci.2013.07.006 es_ES
dc.description.references Munch Elmér, A., & Jannasch, P. (2005). Gel electrolyte membranes derived from co-continuous polymer blends. Polymer, 46(19), 7896-7908. doi:10.1016/j.polymer.2005.06.079 es_ES
dc.description.references Ulaganathan, M., Mathew, C. M., & Rajendran, S. (2013). Highly porous lithium-ion conducting solvent-free poly(vinylidene fluoride-co-hexafluoropropylene)/poly(ethyl methacrylate) based polymer blend electrolytes for Li battery applications. Electrochimica Acta, 93, 230-235. doi:10.1016/j.electacta.2013.01.100 es_ES
dc.description.references Sousa, R. E., Nunes-Pereira, J., Ferreira, J. C. C., Costa, C. M., Machado, A. V., Silva, M. M., & Lanceros-Mendez, S. (2014). Microstructural variations of poly(vinylidene fluoride co-hexafluoropropylene) and their influence on the thermal, dielectric and piezoelectric properties. Polymer Testing, 40, 245-255. doi:10.1016/j.polymertesting.2014.09.012 es_ES
dc.description.references Jeschke, S., Mutke, M., Jiang, Z., Alt, B., & Wiemhöfer, H.-D. (2014). Study of Carbamate-Modified Disiloxane in Porous PVDF-HFP Membranes: New Electrolytes/Separators for Lithium-Ion Batteries. ChemPhysChem, 15(9), 1761-1771. doi:10.1002/cphc.201400065 es_ES
dc.description.references Kam, W., Liew, C.-W., Lim, J. Y., & Ramesh, S. (2013). Electrical, structural, and thermal studies of antimony trioxide-doped poly(acrylic acid)-based composite polymer electrolytes. Ionics, 20(5), 665-674. doi:10.1007/s11581-013-1012-0 es_ES
dc.description.references Amici, J., Alidoost, M., Francia, C., Bodoardo, S., Martinez Crespiera, S., Amantia, D., … Trotta, F. (2016). O2 selective membranes based on a dextrin-nanosponge (NS) in a PVDF-HFP polymer matrix for Li–air cells. Chemical Communications, 52(94), 13683-13686. doi:10.1039/c6cc06954a es_ES
dc.description.references Shalu, S., Balo, L., Gupta, H., Singh, V. kumar, & Singh, R. K. (2016). Mixed anion effect on the ionic transport behavior, complexation and various physicochemical properties of ionic liquid based polymer gel electrolyte membranes. RSC Advances, 6(77), 73028-73039. doi:10.1039/c6ra10340e es_ES
dc.description.references Cheng, C. ., Wan, C. ., & Wang, Y. . (2004). Preparation of porous, chemically cross-linked, PVdF-based gel polymer electrolytes for rechargeable lithium batteries. Journal of Power Sources, 134(2), 202-210. doi:10.1016/j.jpowsour.2004.03.037 es_ES
dc.description.references Chang, B.-Y., & Park, S.-M. (2010). Electrochemical Impedance Spectroscopy. Annual Review of Analytical Chemistry, 3(1), 207-229. doi:10.1146/annurev.anchem.012809.102211 es_ES
dc.description.references Park, S.-M., & Yoo, J.-S. (2003). Peer Reviewed: Electrochemical Impedance Spectroscopy for Better Electrochemical Measurements. Analytical Chemistry, 75(21), 455 A-461 A. doi:10.1021/ac0313973 es_ES
dc.description.references Armstrong, R. D., Dickinson, T., & Willis, P. M. (1974). The A.C. impedance of powdered and sintered solid ionic conductors. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 53(3), 389-405. doi:10.1016/s0022-0728(74)80077-x es_ES
dc.description.references Correia, D. M., Costa, C. M., Nunes-Pereira, J., Silva, M. M., Botelho, G., Ribelles, J. L. G., & Lanceros-Méndez, S. (2014). Physicochemical properties of poly(vinylidene fluoride-trifluoroethylene)/poly(ethylene oxide) blend membranes for lithium ion battery applications: Influence of poly(ethylene oxide) molecular weight. Solid State Ionics, 268, 54-67. doi:10.1016/j.ssi.2014.09.029 es_ES
dc.description.references Li, X., Wang, Z., Lin, H., Liu, Y., Min, Y., & Pan, F. (2019). Composite electrolytes of pyrrolidone-derivatives-PEO enable to enhance performance of all solid state lithium-ion batteries. Electrochimica Acta, 293, 25-29. doi:10.1016/j.electacta.2018.10.023 es_ES
dc.description.references Baik, J.-H., Kim, D.-G., Shim, J., Lee, J. H., Choi, Y.-S., & Lee, J.-C. (2016). Solid polymer electrolytes containing poly(ethylene glycol) and renewable cardanol moieties for all-solid-state rechargeable lithium batteries. Polymer, 99, 704-712. doi:10.1016/j.polymer.2016.07.058 es_ES
dc.description.references Zeng, H., Ji, X., Tsai, F., Zhang, Q., Jiang, T., Li, R. K. Y., … Shi, D. (2018). Enhanced cycling performance for all-solid-state lithium ion battery with LiFePO4 composite cathode encapsulated by poly (ethylene glycol) (PEG) based polymer electrolyte. Solid State Ionics, 320, 92-99. doi:10.1016/j.ssi.2018.02.040 es_ES
dc.description.references Li, C., Yue, H., Wang, Q., Li, J., Zhang, J., Dong, H., … Yang, S. (2018). A novel composite solid polymer electrolyte based on copolymer P(LA-co-TMC) for all-solid-state lithium ionic batteries. Solid State Ionics, 321, 8-14. doi:10.1016/j.ssi.2018.03.031 es_ES
dc.description.references Bao, J., Qu, X., Qi, G., Huang, Q., Wu, S., Tao, C., … Chen, C. (2018). Solid electrolyte based on waterborne polyurethane and poly(ethylene oxide) blend polymer for all-solid-state lithium ion batteries. Solid State Ionics, 320, 55-63. doi:10.1016/j.ssi.2018.02.030 es_ES
dc.description.references Nien, Y.-H., Carey, J. R., & Chen, J.-S. (2009). Physical and electrochemical properties of LiFePO4/C composite cathode prepared from various polymer-containing precursors. Journal of Power Sources, 193(2), 822-827. doi:10.1016/j.jpowsour.2009.04.013 es_ES
dc.description.references Sasikumar, M., Raja, M., Krishna, R. H., Jagadeesan, A., Sivakumar, P., & Rajendran, S. (2018). Influence of Hydrothermally Synthesized Cubic-Structured BaTiO3 Ceramic Fillers on Ionic Conductivity, Mechanical Integrity, and Thermal Behavior of P(VDF–HFP)/PVAc-Based Composite Solid Polymer Electrolytes for Lithium-Ion Batteries. The Journal of Physical Chemistry C, 122(45), 25741-25752. doi:10.1021/acs.jpcc.8b03952 es_ES
dc.description.references Kim, G.-T., Passerini, S., Carewska, M., & Appetecchi, G. (2018). Ionic Liquid-Based Electrolyte Membranes for Medium-High Temperature Lithium Polymer Batteries. Membranes, 8(3), 41. doi:10.3390/membranes8030041 es_ES
dc.description.references Yang, K., Liao, Z., Zhang, Z., Yang, L., & Hirano, S. (2019). Ionic plastic crystal-polymeric ionic liquid solid-state electrolytes with high ionic conductivity for lithium ion batteries. Materials Letters, 236, 554-557. doi:10.1016/j.matlet.2018.11.003 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem