- -

Electrohysterogram for ANN-Based Prediction of Imminent Labor in Women with Threatened Preterm Labor Undergoing Tocolytic Therapy

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Electrohysterogram for ANN-Based Prediction of Imminent Labor in Women with Threatened Preterm Labor Undergoing Tocolytic Therapy

Mostrar el registro completo del ítem

Mas-Cabo, J.; Prats-Boluda, G.; Garcia-Casado, J.; Alberola Rubio, J.; Monfort-Ortiz, R.; Martinez-Saez, C.; Perales, A.... (2020). Electrohysterogram for ANN-Based Prediction of Imminent Labor in Women with Threatened Preterm Labor Undergoing Tocolytic Therapy. Sensors. 20(9):1-16. https://doi.org/10.3390/s20092681

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162582

Ficheros en el ítem

Metadatos del ítem

Título: Electrohysterogram for ANN-Based Prediction of Imminent Labor in Women with Threatened Preterm Labor Undergoing Tocolytic Therapy
Autor: Mas-Cabo, Javier Prats-Boluda, Gema Garcia-Casado, Javier Alberola Rubio, J. Monfort-Ortiz, R. Martinez-Saez, C. Perales, A. Ye Lin, Yiyao
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà
Universitat Politècnica de València. Servicio de Alumnado - Servei d'Alumnat
Fecha difusión:
Resumen:
[EN] Threatened preterm labor (TPL) is the most common cause of hospitalization in the second half of pregnancy and entails high costs for health systems. Currently, no reliable labor proximity prediction techniques are ...[+]
Palabras clave: Electrohysterogram , Uterine myoelectrical activity , Imminent labor prediction , Artificial network , Tocolytic therapy
Derechos de uso: Reconocimiento (by)
Fuente:
Sensors. (eissn: 1424-8220 )
DOI: 10.3390/s20092681
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/s20092681
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094449-A-I00/ES/ELECTROHISTEROGRAFIA PARA LA MEJORA EN LA TOMA DE DECISIONES EN SITUACIONES DE RIESGO EN OBSTETRICIA: PARTO PREMATURO E INDUCCION DEL PARTO/
info:eu-repo/grantAgreement/GVA//AICO%2F2019%2F220/
Agradecimientos:
This work was supported by the Spanish Ministry of Economy and Competitiveness, the European Regional Development Fund (MCIU/AEI/FEDER, UE RTI2018-094449-A-I00-AR) and by the Generalitat Valenciana (AICO/2019/220).
Tipo: Artículo

References

Beck, S., Wojdyla, D., Say, L., Pilar Bertran, A., Meraldi, M., Harris Requejo, J., … Van Look, P. (2010). The worldwide incidence of preterm birth: a systematic review of maternal mortality and morbidity. Bulletin of the World Health Organization, 88(1), 31-38. doi:10.2471/blt.08.062554

Zeitlin, J., Szamotulska, K., Drewniak, N., Mohangoo, A., Chalmers, J., … Sakkeus, L. (2013). Preterm birth time trends in Europe: a study of 19 countries. BJOG: An International Journal of Obstetrics & Gynaecology, 120(11), 1356-1365. doi:10.1111/1471-0528.12281

Goldenberg, R. L., Culhane, J. F., Iams, J. D., & Romero, R. (2008). Epidemiology and causes of preterm birth. The Lancet, 371(9606), 75-84. doi:10.1016/s0140-6736(08)60074-4 [+]
Beck, S., Wojdyla, D., Say, L., Pilar Bertran, A., Meraldi, M., Harris Requejo, J., … Van Look, P. (2010). The worldwide incidence of preterm birth: a systematic review of maternal mortality and morbidity. Bulletin of the World Health Organization, 88(1), 31-38. doi:10.2471/blt.08.062554

Zeitlin, J., Szamotulska, K., Drewniak, N., Mohangoo, A., Chalmers, J., … Sakkeus, L. (2013). Preterm birth time trends in Europe: a study of 19 countries. BJOG: An International Journal of Obstetrics & Gynaecology, 120(11), 1356-1365. doi:10.1111/1471-0528.12281

Goldenberg, R. L., Culhane, J. F., Iams, J. D., & Romero, R. (2008). Epidemiology and causes of preterm birth. The Lancet, 371(9606), 75-84. doi:10.1016/s0140-6736(08)60074-4

Petrou, S. (2005). The economic consequences of preterm birth duringthe first 10 years of life. BJOG: An International Journal of Obstetrics & Gynaecology, 112, 10-15. doi:10.1111/j.1471-0528.2005.00577.x

Lucovnik, M., Chambliss, L. R., & Garfield, R. E. (2013). Costs of unnecessary admissions and treatments for «threatened preterm labor». American Journal of Obstetrics and Gynecology, 209(3), 217.e1-217.e3. doi:10.1016/j.ajog.2013.06.046

Haas, D., Benjamin, T., Sawyer, R., & Quinney, S. (2014). Short-term tocolytics for preterm delivery – current perspectives. International Journal of Women’s Health, 343. doi:10.2147/ijwh.s44048

Euliano, T. Y., Nguyen, M. T., Darmanjian, S., McGorray, S. P., Euliano, N., Onkala, A., & Gregg, A. R. (2013). Monitoring uterine activity during labor: a comparison of 3 methods. American Journal of Obstetrics and Gynecology, 208(1), 66.e1-66.e6. doi:10.1016/j.ajog.2012.10.873

Devedeux, D., Marque, C., Mansour, S., Germain, G., & Duchêne, J. (1993). Uterine electromyography: A critical review. American Journal of Obstetrics and Gynecology, 169(6), 1636-1653. doi:10.1016/0002-9378(93)90456-s

Chkeir, A., Fleury, M.-J., Karlsson, B., Hassan, M., & Marque, C. (2013). Patterns of electrical activity synchronization in the pregnant rat uterus. BioMedicine, 3(3), 140-144. doi:10.1016/j.biomed.2013.04.007

Fele-Žorž, G., Kavšek, G., Novak-Antolič, Ž., & Jager, F. (2008). A comparison of various linear and non-linear signal processing techniques to separate uterine EMG records of term and pre-term delivery groups. Medical & Biological Engineering & Computing, 46(9), 911-922. doi:10.1007/s11517-008-0350-y

Horoba, K., Jezewski, J., Matonia, A., Wrobel, J., Czabanski, R., & Jezewski, M. (2016). Early predicting a risk of preterm labour by analysis of antepartum electrohysterograhic signals. Biocybernetics and Biomedical Engineering, 36(4), 574-583. doi:10.1016/j.bbe.2016.06.004

Vinken, M. P. G. C., Rabotti, C., Mischi, M., & Oei, S. G. (2009). Accuracy of Frequency-Related Parameters of the Electrohysterogram for Predicting Preterm Delivery. Obstetrical & Gynecological Survey, 64(8), 529-541. doi:10.1097/ogx.0b013e3181a8c6b1

Vrhovec, J., Macek-Lebar, A., & Rudel, D. (s. f.). Evaluating Uterine Electrohysterogram with Entropy. IFMBE Proceedings, 144-147. doi:10.1007/978-3-540-73044-6_36

Diab, A., Hassan, M., Marque, C., & Karlsson, B. (2014). Performance analysis of four nonlinearity analysis methods using a model with variable complexity and application to uterine EMG signals. Medical Engineering & Physics, 36(6), 761-767. doi:10.1016/j.medengphy.2014.01.009

Lemancewicz, A., Borowska, M., Kuć, P., Jasińska, E., Laudański, P., Laudański, T., & Oczeretko, E. (2016). Early diagnosis of threatened premature labor by electrohysterographic recordings – The use of digital signal processing. Biocybernetics and Biomedical Engineering, 36(1), 302-307. doi:10.1016/j.bbe.2015.11.005

Hassan, M., Terrien, J., Marque, C., & Karlsson, B. (2011). Comparison between approximate entropy, correntropy and time reversibility: Application to uterine electromyogram signals. Medical Engineering & Physics, 33(8), 980-986. doi:10.1016/j.medengphy.2011.03.010

Fergus, P., Idowu, I., Hussain, A., & Dobbins, C. (2016). Advanced artificial neural network classification for detecting preterm births using EHG records. Neurocomputing, 188, 42-49. doi:10.1016/j.neucom.2015.01.107

Acharya, U. R., Sudarshan, V. K., Rong, S. Q., Tan, Z., Lim, C. M., Koh, J. E., … Bhandary, S. V. (2017). Automated detection of premature delivery using empirical mode and wavelet packet decomposition techniques with uterine electromyogram signals. Computers in Biology and Medicine, 85, 33-42. doi:10.1016/j.compbiomed.2017.04.013

Fergus, P., Cheung, P., Hussain, A., Al-Jumeily, D., Dobbins, C., & Iram, S. (2013). Prediction of Preterm Deliveries from EHG Signals Using Machine Learning. PLoS ONE, 8(10), e77154. doi:10.1371/journal.pone.0077154

Ren, P., Yao, S., Li, J., Valdes-Sosa, P. A., & Kendrick, K. M. (2015). Improved Prediction of Preterm Delivery Using Empirical Mode Decomposition Analysis of Uterine Electromyography Signals. PLOS ONE, 10(7), e0132116. doi:10.1371/journal.pone.0132116

Degbedzui, D. K., & Yüksel, M. E. (2020). Accurate diagnosis of term–preterm births by spectral analysis of electrohysterography signals. Computers in Biology and Medicine, 119, 103677. doi:10.1016/j.compbiomed.2020.103677

Borowska, M., Brzozowska, E., Kuć, P., Oczeretko, E., Mosdorf, R., & Laudański, P. (2018). Identification of preterm birth based on RQA analysis of electrohysterograms. Computer Methods and Programs in Biomedicine, 153, 227-236. doi:10.1016/j.cmpb.2017.10.018

Vinken, M. P. G. C., Rabotti, C., Mischi, M., van Laar, J. O. E. H., & Oei, S. G. (2010). Nifedipine-Induced Changes in the Electrohysterogram of Preterm Contractions: Feasibility in Clinical Practice. Obstetrics and Gynecology International, 2010, 1-8. doi:10.1155/2010/325635

Mas-Cabo, J., Prats-Boluda, G., Perales, A., Garcia-Casado, J., Alberola-Rubio, J., & Ye-Lin, Y. (2018). Uterine electromyography for discrimination of labor imminence in women with threatened preterm labor under tocolytic treatment. Medical & Biological Engineering & Computing, 57(2), 401-411. doi:10.1007/s11517-018-1888-y

Bradley, A. P. (1997). The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30(7), 1145-1159. doi:10.1016/s0031-3203(96)00142-2

Alexandersson, A., Steingrimsdottir, T., Terrien, J., Marque, C., & Karlsson, B. (2015). The Icelandic 16-electrode electrohysterogram database. Scientific Data, 2(1). doi:10.1038/sdata.2015.17

Maner, W. (2003). Predicting term and preterm delivery with transabdominal uterine electromyography. Obstetrics & Gynecology, 101(6), 1254-1260. doi:10.1016/s0029-7844(03)00341-7

Maner, W. L., & Garfield, R. E. (2007). Identification of Human Term and Preterm Labor using Artificial Neural Networks on Uterine Electromyography Data. Annals of Biomedical Engineering, 35(3), 465-473. doi:10.1007/s10439-006-9248-8

Mas-Cabo, J., Prats-Boluda, G., Garcia-Casado, J., Alberola-Rubio, J., Perales, A., & Ye-Lin, Y. (2019). Design and Assessment of a Robust and Generalizable ANN-Based Classifier for the Prediction of Premature Birth by means of Multichannel Electrohysterographic Records. Journal of Sensors, 2019, 1-13. doi:10.1155/2019/5373810

Terrien, J., Marque, C., & Karlsson, B. (2007). Spectral characterization of human EHG frequency components based on the extraction and reconstruction of the ridges in the scalogram. 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. doi:10.1109/iembs.2007.4352680

Rooijakkers, M. J., Rabotti, C., Oei, S. G., Aarts, R. M., & Mischi, M. (2014). Low-complexity intrauterine pressure estimation using the Teager energy operator on electrohysterographic recordings. Physiological Measurement, 35(7), 1215-1228. doi:10.1088/0967-3334/35/7/1215

Ahmed, M., Chanwimalueang, T., Thayyil, S., & Mandic, D. (2016). A Multivariate Multiscale Fuzzy Entropy Algorithm with Application to Uterine EMG Complexity Analysis. Entropy, 19(1), 2. doi:10.3390/e19010002

Karmakar, C. K., Khandoker, A. H., Gubbi, J., & Palaniswami, M. (2009). Complex Correlation Measure: a novel descriptor for Poincaré plot. BioMedical Engineering OnLine, 8(1), 17. doi:10.1186/1475-925x-8-17

Roy, B., & Ghatak, S. (2013). Nonlinear Methods to Assess Changes in Heart Rate Variability in Type 2 Diabetic Patients. Arquivos Brasileiros de Cardiologia. doi:10.5935/abc.20130181

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16, 321-357. doi:10.1613/jair.953

Smrdel, A., & Jager, F. (2015). Separating sets of term and pre-term uterine EMG records. Physiological Measurement, 36(2), 341-355. doi:10.1088/0967-3334/36/2/341

Kl. Comparison between Using Linear and Non-linear Features to Classify Uterine Electromyography Signals of Term and Preterm Deliveries. (2013). 2013 30th National Radio Science Conference (NRSC). doi:10.1109/nrsc.2013.6587953

Aditya, S., & Tibarewala, D. N. (2012). Comparing ANN, LDA, QDA, KNN and SVM algorithms in classifying relaxed and stressful mental state from two-channel prefrontal EEG data. International Journal of Artificial Intelligence and Soft Computing, 3(2), 143. doi:10.1504/ijaisc.2012.049010

Li, Q., Rajagopalan, C., & Clifford, G. D. (2014). A machine learning approach to multi-level ECG signal quality classification. Computer Methods and Programs in Biomedicine, 117(3), 435-447. doi:10.1016/j.cmpb.2014.09.002

Li, Z., Zhang, Q., & Zhao, X. (2017). Performance analysis of K-nearest neighbor, support vector machine, and artificial neural network classifiers for driver drowsiness detection with different road geometries. International Journal of Distributed Sensor Networks, 13(9), 155014771773339. doi:10.1177/1550147717733391

Murthy, H. S. N., & Meenakshi, D. M. (2015). ANN, SVM and KNN Classifiers for Prognosis of Cardiac Ischemia- A Comparison. Bonfring International Journal of Research in Communication Engineering, 5(2), 07-11. doi:10.9756/bijrce.8030

Ren, J. (2012). ANN vs. SVM: Which one performs better in classification of MCCs in mammogram imaging. Knowledge-Based Systems, 26, 144-153. doi:10.1016/j.knosys.2011.07.016

Zhang, G., Eddy Patuwo, B., & Y. Hu, M. (1998). Forecasting with artificial neural networks: International Journal of Forecasting, 14(1), 35-62. doi:10.1016/s0169-2070(97)00044-7

Lawrence, S., & Giles, C. L. (2000). Overfitting and neural networks: conjugate gradient and backpropagation. Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium. doi:10.1109/ijcnn.2000.857823

Diab, A., Hassan, M., Boudaoud, S., Marque, C., & Karlsson, B. (2013). Nonlinear estimation of coupling and directionality between signals: Application to uterine EMG propagation. 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). doi:10.1109/embc.2013.6610513

Most, O., Langer, O., Kerner, R., Ben David, G., & Calderon, I. (2008). Can myometrial electrical activity identify patients in preterm labor? American Journal of Obstetrics and Gynecology, 199(4), 378.e1-378.e6. doi:10.1016/j.ajog.2008.08.003

Mas-Cabo, J., Prats-Boluda, G., Ye-Lin, Y., Alberola-Rubio, J., Perales, A., & Garcia-Casado, J. (2019). Characterization of the effects of Atosiban on uterine electromyograms recorded in women with threatened preterm labor. Biomedical Signal Processing and Control, 52, 198-205. doi:10.1016/j.bspc.2019.04.001

You, J., Kim, Y., Seok, W., Lee, S., Sim, D., Park, K. S., & Park, C. (2019). Multivariate Time–Frequency Analysis of Electrohysterogram for Classification of Term and Preterm Labor. Journal of Electrical Engineering & Technology, 14(2), 897-916. doi:10.1007/s42835-019-00118-9

Schuit, E., Scheepers, H., Bloemenkamp, K., Bolte, A., Duvekot, H., … van Eyck, J. (2015). Predictive Factors for Delivery within 7 Days after Successful 48-Hour Treatment of Threatened Preterm Labor. American Journal of Perinatology Reports, 05(02), e141-e149. doi:10.1055/s-0035-1552930

Liao, J. B., Buhimschi, C. S., & Norwitz, E. R. (2005). Normal Labor: Mechanism and Duration. Obstetrics and Gynecology Clinics of North America, 32(2), 145-164. doi:10.1016/j.ogc.2005.01.001

Ye-Lin, Y., Garcia-Casado, J., Prats-Boluda, G., Alberola-Rubio, J., & Perales, A. (2014). Automatic Identification of Motion Artifacts in EHG Recording for Robust Analysis of Uterine Contractions. Computational and Mathematical Methods in Medicine, 2014, 1-11. doi:10.1155/2014/470786

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem