- -

How sequence variants of a plastid-replicating viroid with one single nucleotide change initiate disease in its natural host

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


How sequence variants of a plastid-replicating viroid with one single nucleotide change initiate disease in its natural host

Show full item record

Delgado Villar, SG.; Navarro, B.; Serra, P.; Gentit, P.; Cambra, MÁ.; Chiumenti, M.; De Stradis, A.... (2019). How sequence variants of a plastid-replicating viroid with one single nucleotide change initiate disease in its natural host. RNA Biology. 16(7):906-917. https://doi.org/10.1080/15476286.2019.1600396

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162588

Files in this item

Item Metadata

Title: How sequence variants of a plastid-replicating viroid with one single nucleotide change initiate disease in its natural host
Author: Delgado Villar, Sonia Guadalupe Navarro, Beatriz Serra, Pedro Gentit, Pascal Cambra, Miguel Ángel Chiumenti, Michela De Stradis, Angelo Di Serio, Francesco FLORES PEDAUYE, RICARDO
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Issued date:
[EN] Understanding how viruses and subviral agents initiate disease is central to plant pathology. Whether RNA silencing mediates the primary lesion triggered by viroids (small non-protein-coding RNAs), or just intermediate-late ...[+]
Subjects: Chloroplast biogenesis , Non-protein-coding RNAs , PLMVd , RNA silencing , Thylakoid translocase , Viroid pathogenesis
Copyrigths: Cerrado
RNA Biology. (issn: 1547-6286 )
DOI: 10.1080/15476286.2019.1600396
Landes Bioscience
Publisher version: https://doi.org/10.1080/15476286.2019.1600396
Project ID:
This work was funded by grant BFU2014-56812-P (to R.F.) from the Ministerio de Economia y Competitividad of Spain (MINECO). S.D. and P.S. were partly supported by postdoctoral contracts from MINECO. We thank the technical ...[+]
Type: Artículo


Diener, T. O. (2003). Discovering viroids — a personal perspective. Nature Reviews Microbiology, 1(1), 75-80. doi:10.1038/nrmicro736

Kovalskaya, N., & Hammond, R. W. (2014). Molecular biology of viroid–host interactions and disease control strategies. Plant Science, 228, 48-60. doi:10.1016/j.plantsci.2014.05.006

Flores, R., Minoia, S., Carbonell, A., Gisel, A., Delgado, S., López-Carrasco, A., … Di Serio, F. (2015). Viroids, the simplest RNA replicons: How they manipulate their hosts for being propagated and how their hosts react for containing the infection. Virus Research, 209, 136-145. doi:10.1016/j.virusres.2015.02.027 [+]
Diener, T. O. (2003). Discovering viroids — a personal perspective. Nature Reviews Microbiology, 1(1), 75-80. doi:10.1038/nrmicro736

Kovalskaya, N., & Hammond, R. W. (2014). Molecular biology of viroid–host interactions and disease control strategies. Plant Science, 228, 48-60. doi:10.1016/j.plantsci.2014.05.006

Flores, R., Minoia, S., Carbonell, A., Gisel, A., Delgado, S., López-Carrasco, A., … Di Serio, F. (2015). Viroids, the simplest RNA replicons: How they manipulate their hosts for being propagated and how their hosts react for containing the infection. Virus Research, 209, 136-145. doi:10.1016/j.virusres.2015.02.027

Rao, A. L. N., & Kalantidis, K. (2015). Virus-associated small satellite RNAs and viroids display similarities in their replication strategies. Virology, 479-480, 627-636. doi:10.1016/j.virol.2015.02.018

Hadidi, A., Barba, M., Hong, N., & Hallan, V. (2017). Apple Scar Skin Viroid. Viroids and Satellites, 217-228. doi:10.1016/b978-0-12-801498-1.00021-8

Branch, A. D., Benenfeld, B. J., & Robertson, H. D. (1988). Evidence for a single rolling circle in the replication of potato spindle tuber viroid. Proceedings of the National Academy of Sciences, 85(23), 9128-9132. doi:10.1073/pnas.85.23.9128

Feldstein, P. A., Hu, Y., & Owens, R. A. (1998). Precisely full length, circularizable, complementary RNA: An infectious form of potato spindle tuber viroid. Proceedings of the National Academy of Sciences, 95(11), 6560-6565. doi:10.1073/pnas.95.11.6560

Daros, J.-A., & Flores, R. (2004). Arabidopsis thaliana has the enzymatic machinery for replicating representative viroid species of the family Pospiviroidae. Proceedings of the National Academy of Sciences, 101(17), 6792-6797. doi:10.1073/pnas.0401090101

Hutchins, C. J., Rathjen, P. D., Forster, A. C., & Symons, R. H. (1986). Self-cleavage of plus and minus RNA transcripts of avocado sunblotch viroid. Nucleic Acids Research, 14(9), 3627-3640. doi:10.1093/nar/14.9.3627

Daros, J. A., Marcos, J. F., Hernandez, C., & Flores, R. (1994). Replication of avocado sunblotch viroid: evidence for a symmetric pathway with two rolling circles and hammerhead ribozyme processing. Proceedings of the National Academy of Sciences, 91(26), 12813-12817. doi:10.1073/pnas.91.26.12813

Carbonell, A., De la Peña, M., Flores, R., & Gago, S. (2006). Effects of the trinucleotide preceding the self-cleavage site on eggplant latent viroid hammerheads: differences in co- and post-transcriptional self-cleavage may explain the lack of trinucleotide AUC in most natural hammerheads. Nucleic Acids Research, 34(19), 5613-5622. doi:10.1093/nar/gkl717

Carthew, R. W., & Sontheimer, E. J. (2009). Origins and Mechanisms of miRNAs and siRNAs. Cell, 136(4), 642-655. doi:10.1016/j.cell.2009.01.035

Axtell, M. J. (2013). Classification and Comparison of Small RNAs from Plants. Annual Review of Plant Biology, 64(1), 137-159. doi:10.1146/annurev-arplant-050312-120043

Mallory, A., & Vaucheret, H. (2010). Form, Function, and Regulation of ARGONAUTE Proteins. The Plant Cell, 22(12), 3879-3889. doi:10.1105/tpc.110.080671

Fang, X., & Qi, Y. (2016). RNAi in Plants: An Argonaute-Centered View. The Plant Cell, 28(2), 272-285. doi:10.1105/tpc.15.00920

Hernandez, C., & Flores, R. (1992). Plus and minus RNAs of peach latent mosaic viroid self-cleave in vitro via hammerhead structures. Proceedings of the National Academy of Sciences, 89(9), 3711-3715. doi:10.1073/pnas.89.9.3711

Malfitano, M., Di Serio, F., Covelli, L., Ragozzino, A., Hernández, C., & Flores, R. (2003). Peach latent mosaic viroid variants inducing peach calico (extreme chlorosis) contain a characteristic insertion that is responsible for this symptomatology. Virology, 313(2), 492-501. doi:10.1016/s0042-6822(03)00315-5

Rodio, M.-E., Delgado, S., Flores, R., & Serio, F. D. (2006). Variants of Peach latent mosaic viroid inducing peach calico: uneven distribution in infected plants and requirements of the insertion containing the pathogenicity determinant. Journal of General Virology, 87(1), 231-240. doi:10.1099/vir.0.81356-0

Rodio, M.-E., Delgado, S., De Stradis, A., Gómez, M.-D., Flores, R., & Di Serio, F. (2007). A Viroid RNA with a Specific Structural Motif Inhibits Chloroplast Development. The Plant Cell, 19(11), 3610-3626. doi:10.1105/tpc.106.049775

Martínez de Alba, A. E., Flores, R., & Hernández, C. (2002). Two Chloroplastic Viroids Induce the Accumulation of Small RNAs Associated with Posttranscriptional Gene Silencing. Journal of Virology, 76(24), 13094-13096. doi:10.1128/jvi.76.24.13094-13096.2002

Navarro, B., Gisel, A., Rodio, M. E., Delgado, S., Flores, R., & Di Serio, F. (2012). Small RNAs containing the pathogenic determinant of a chloroplast-replicating viroid guide the degradation of a host mRNA as predicted by RNA silencing. The Plant Journal, 70(6), 991-1003. doi:10.1111/j.1365-313x.2012.04940.x

Ambrós, S., Hernández, C., Desvignes, J. C., & Flores, R. (1998). Genomic Structure of Three Phenotypically Different Isolates of Peach Latent Mosaic Viroid: Implications of the Existence of Constraints Limiting the Heterogeneity of Viroid Quasispecies. Journal of Virology, 72(9), 7397-7406. doi:10.1128/jvi.72.9.7397-7406.1998

Ambrós, S., Hernández, C., & Flores, R. (1999). Rapid generation of genetic heterogeneity in progenies from individual cDNA clones of peach latent mosaic viroid in its natural host. Journal of General Virology, 80(8), 2239-2252. doi:10.1099/0022-1317-80-8-2239

Serra, P., Bertolini, E., Martínez, M. C., Cambra, M., & Flores, R. (2017). Interference between variants of peach latent mosaic viroid reveals novel features of its fitness landscape: implications for detection. Scientific Reports, 7(1). doi:10.1038/srep42825

Rogers, K., & Chen, X. (2013). Biogenesis, Turnover, and Mode of Action of Plant MicroRNAs. The Plant Cell, 25(7), 2383-2399. doi:10.1105/tpc.113.113159

Fahlgren, N., & Carrington, J. C. (2009). miRNA Target Prediction in Plants. Plant MicroRNAs, 51-57. doi:10.1007/978-1-60327-005-2_4

Liu, D., Gong, Q., Ma, Y., Li, P., Li, J., Yang, S., … Wang, N. N. (2010). cpSecA, a thylakoid protein translocase subunit, is essential for photosynthetic development in Arabidopsis. Journal of Experimental Botany, 61(6), 1655-1669. doi:10.1093/jxb/erq033

Papaefthimiou, I. (2001). Replicating potato spindle tuber viroid RNA is accompanied by short RNA fragments that are characteristic of post-transcriptional gene silencing. Nucleic Acids Research, 29(11), 2395-2400. doi:10.1093/nar/29.11.2395

Wang, M.-B., Bian, X.-Y., Wu, L.-M., Liu, L.-X., Smith, N. A., Isenegger, D., … Waterhouse, P. M. (2004). On the role of RNA silencing in the pathogenicity and evolution of viroids and viral satellites. Proceedings of the National Academy of Sciences, 101(9), 3275-3280. doi:10.1073/pnas.0400104101

Wang, M.-B., Masuta, C., Smith, N. A., & Shimura, H. (2012). RNA Silencing and Plant Viral Diseases. Molecular Plant-Microbe Interactions®, 25(10), 1275-1285. doi:10.1094/mpmi-04-12-0093-cr

Masuta, C., & Takanami, Y. (1989). Determination of sequence and structural requirements for pathogenicity of a cucumber mosaic virus satellite RNA (Y-satRNA). The Plant Cell, 1(12), 1165-1173. doi:10.1105/tpc.1.12.1165

Shimura, H., Pantaleo, V., Ishihara, T., Myojo, N., Inaba, J., Sueda, K., … Masuta, C. (2011). A Viral Satellite RNA Induces Yellow Symptoms on Tobacco by Targeting a Gene Involved in Chlorophyll Biosynthesis using the RNA Silencing Machinery. PLoS Pathogens, 7(5), e1002021. doi:10.1371/journal.ppat.1002021

Smith, N. A., Eamens, A. L., & Wang, M.-B. (2011). Viral Small Interfering RNAs Target Host Genes to Mediate Disease Symptoms in Plants. PLoS Pathogens, 7(5), e1002022. doi:10.1371/journal.ppat.1002022

Iwakawa, H., & Tomari, Y. (2013). Molecular Insights into microRNA-Mediated Translational Repression in Plants. Molecular Cell, 52(4), 591-601. doi:10.1016/j.molcel.2013.10.033

Mi, S., Cai, T., Hu, Y., Chen, Y., Hodges, E., Ni, F., … Qi, Y. (2008). Sorting of Small RNAs into Arabidopsis Argonaute Complexes Is Directed by the 5′ Terminal Nucleotide. Cell, 133(1), 116-127. doi:10.1016/j.cell.2008.02.034

Minoia, S., Carbonell, A., Di Serio, F., Gisel, A., Carrington, J. C., Navarro, B., & Flores, R. (2014). Specific Argonautes Selectively Bind Small RNAs Derived from Potato Spindle Tuber Viroid and Attenuate Viroid Accumulation In Vivo. Journal of Virology, 88(20), 11933-11945. doi:10.1128/jvi.01404-14

Morel, J.-B., Godon, C., Mourrain, P., Béclin, C., Boutet, S., Feuerbach, F., … Vaucheret, H. (2002). Fertile Hypomorphic ARGONAUTE (ago1) Mutants Impaired in Post-Transcriptional Gene Silencing and Virus Resistance. The Plant Cell, 14(3), 629-639. doi:10.1105/tpc.010358

Baumberger, N., & Baulcombe, D. C. (2005). Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proceedings of the National Academy of Sciences, 102(33), 11928-11933. doi:10.1073/pnas.0505461102

Qi, Y., Denli, A. M., & Hannon, G. J. (2005). Biochemical Specialization within Arabidopsis RNA Silencing Pathways. Molecular Cell, 19(3), 421-428. doi:10.1016/j.molcel.2005.06.014

Carbonell, A., & Carrington, J. C. (2015). Antiviral roles of plant ARGONAUTES. Current Opinion in Plant Biology, 27, 111-117. doi:10.1016/j.pbi.2015.06.013

Zhu, H., Hu, F., Wang, R., Zhou, X., Sze, S.-H., Liou, L. W., … Zhang, X. (2011). Arabidopsis Argonaute10 Specifically Sequesters miR166/165 to Regulate Shoot Apical Meristem Development. Cell, 145(2), 242-256. doi:10.1016/j.cell.2011.03.024

Garcia-Ruiz, H., Carbonell, A., Hoyer, J. S., Fahlgren, N., Gilbert, K. B., Takeda, A., … Carrington, J. C. (2015). Roles and Programming of Arabidopsis ARGONAUTE Proteins during Turnip Mosaic Virus Infection. PLOS Pathogens, 11(3), e1004755. doi:10.1371/journal.ppat.1004755

Wang, L., He, Y., Kang, Y., Hong, N., Farooq, A. B. U., Wang, G., & Xu, W. (2013). Virulence determination and molecular features of peach latent mosaic viroid isolates derived from phenotypically different peach leaves: A nucleotide polymorphism in L11 contributes to symptom alteration. Virus Research, 177(2), 171-178. doi:10.1016/j.virusres.2013.08.005

Bussière, F., Lehoux, J., Thompson, D. A., Skrzeczkowski, L. J., & Perreault, J.-P. (1999). Subcellular Localization and Rolling Circle Replication of Peach Latent Mosaic Viroid: Hallmarks of Group A Viroids. Journal of Virology, 73(8), 6353-6360. doi:10.1128/jvi.73.8.6353-6360.1999

Eamens, A. L., Smith, N. A., Dennis, E. S., Wassenegger, M., & Wang, M.-B. (2014). In Nicotiana species, an artificial microRNA corresponding to the virulence modulating region of Potato spindle tuber viroid directs RNA silencing of a soluble inorganic pyrophosphatase gene and the development of abnormal phenotypes. Virology, 450-451, 266-277. doi:10.1016/j.virol.2013.12.019

Adkar-Purushothama, C. R., Brosseau, C., Giguère, T., Sano, T., Moffett, P., & Perreault, J.-P. (2015). Small RNA Derived from the Virulence Modulating Region of the Potato spindle tuber viroid Silences callose synthase Genes of Tomato Plants. The Plant Cell, 27(8), 2178-2194. doi:10.1105/tpc.15.00523

Avina-Padilla, K., Martinez de la Vega, O., Rivera-Bustamante, R., Martinez-Soriano, J. P., Owens, R. A., Hammond, R. W., & Vielle-Calzada, J.-P. (2015). In silico prediction and validation of potential gene targets for pospiviroid-derived small RNAs during tomato infection. Gene, 564(2), 197-205. doi:10.1016/j.gene.2015.03.076

De Storme, N., & Geelen, D. (2014). Callose homeostasis at plasmodesmata: molecular regulators and developmental relevance. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00138

Owens, R. A., Tech, K. B., Shao, J. Y., Sano, T., & Baker, C. J. (2012). Global Analysis of Tomato Gene Expression During Potato spindle tuber viroid Infection Reveals a Complex Array of Changes Affecting Hormone Signaling. Molecular Plant-Microbe Interactions®, 25(4), 582-598. doi:10.1094/mpmi-09-11-0258

Katsarou, K., Wu, Y., Zhang, R., Bonar, N., Morris, J., Hedley, P. E., … Hornyik, C. (2016). Insight on Genes Affecting Tuber Development in Potato upon Potato spindle tuber viroid (PSTVd) Infection. PLOS ONE, 11(3), e0150711. doi:10.1371/journal.pone.0150711

Zheng, Y., Wang, Y., Ding, B., & Fei, Z. (2017). Comprehensive Transcriptome Analyses Reveal that Potato Spindle Tuber Viroid Triggers Genome-Wide Changes in Alternative Splicing, Inducible trans -Acting Activity of Phased Secondary Small Interfering RNAs, and Immune Responses. Journal of Virology, 91(11). doi:10.1128/jvi.00247-17

Aviña-Padilla, K., Rivera-Bustamante, R., Kovalskaya, N., & Hammond, R. (2018). Pospiviroid Infection of Tomato Regulates the Expression of Genes Involved in Flower and Fruit Development. Viruses, 10(10), 516. doi:10.3390/v10100516

Itaya, A., Matsuda, Y., Gonzales, R. A., Nelson, R. S., & Ding, B. (2002). Potato spindle tuber viroid Strains of Different Pathogenicity Induces and Suppresses Expression of Common and Unique Genes in Infected Tomato. Molecular Plant-Microbe Interactions®, 15(10), 990-999. doi:10.1094/mpmi.2002.15.10.990

Kappagantu, M., Bullock, J. M., Nelson, M. E., & Eastwell, K. C. (2017). Hop stunt viroid: Effect on Host (Humulus lupulus) Transcriptome and Its Interactions With Hop Powdery Mildew (Podospheara macularis). Molecular Plant-Microbe Interactions®, 30(10), 842-851. doi:10.1094/mpmi-03-17-0071-r

Pokorn, T., Radišek, S., Javornik, B., Štajner, N., & Jakše, J. (2017). Development of hop transcriptome to support research into host-viroid interactions. PLOS ONE, 12(9), e0184528. doi:10.1371/journal.pone.0184528

Xia, C., Li, S., Hou, W., Fan, Z., Xiao, H., Lu, M., … Zhang, Z. (2017). Global Transcriptomic Changes Induced by Infection of Cucumber (Cucumis sativus L.) with Mild and Severe Variants of Hop Stunt Viroid. Frontiers in Microbiology, 8. doi:10.3389/fmicb.2017.02427

Mishra, A., Kumar, A., Mishra, D., Nath, V., Jakše, J., Kocábek, T., … Matoušek, J. (2018). Genome-Wide Transcriptomic Analysis Reveals Insights into the Response to Citrus bark cracking viroid (CBCVd) in Hop (Humulus lupulus L.). Viruses, 10(10), 570. doi:10.3390/v10100570

Thibaut, O., & Claude, B. (2018). Innate Immunity Activation and RNAi Interplay in Citrus Exocortis Viroid—Tomato Pathosystem. Viruses, 10(11), 587. doi:10.3390/v10110587

Więsyk, A., Iwanicka-Nowicka, R., Fogtman, A., Zagórski-Ostoja, W., & Góra-Sochacka, A. (2018). Time-Course Microarray Analysis Reveals Differences between Transcriptional Changes in Tomato Leaves Triggered by Mild and Severe Variants of Potato Spindle Tuber Viroid. Viruses, 10(5), 257. doi:10.3390/v10050257

Martinez, G., Castellano, M., Tortosa, M., Pallas, V., & Gomez, G. (2013). A pathogenic non-coding RNA induces changes in dynamic DNA methylation of ribosomal RNA genes in host plants. Nucleic Acids Research, 42(3), 1553-1562. doi:10.1093/nar/gkt968

Lv, D.-Q., Liu, S.-W., Zhao, J.-H., Zhou, B.-J., Wang, S.-P., Guo, H.-S., & Fang, Y.-Y. (2016). Replication of a pathogenic non-coding RNA increases DNA methylation in plants associated with a bromodomain-containing viroid-binding protein. Scientific Reports, 6(1). doi:10.1038/srep35751

Torchetti, E. M., Pegoraro, M., Navarro, B., Catoni, M., Di Serio, F., & Noris, E. (2016). A nuclear-replicating viroid antagonizes infectivity and accumulation of a geminivirus by upregulating methylation-related genes and inducing hypermethylation of viral DNA. Scientific Reports, 6(1). doi:10.1038/srep35101

Dellaporta, S. L., Wood, J., & Hicks, J. B. (1983). A plant DNA minipreparation: Version II. Plant Molecular Biology Reporter, 1(4), 19-21. doi:10.1007/bf02712670

Pallas, V., Navarro, A., & Flores, R. (1987). Isolation of a Viroid-like RNA from Hop Different from Hop Stunt Viroid. Journal of General Virology, 68(12), 3201-3205. doi:10.1099/0022-1317-68-12-3201

Foissac, X., Svanella-Dumas, L., Dulucq, M. J., Candresse, T., & Gentit, P. (2001). POLYVALENT DETECTION OF FRUIT TREE TRICHO, CAPILLO AND FOVEAVIRUSES BY NESTED RT-PCR USING DEGENERATED AND INOSINE CONTAINING PRIMERS (PDO RT-PCR). Acta Horticulturae, (550), 37-44. doi:10.17660/actahortic.2001.550.2

Martelli, G. P., & Russo, M. (1984). Use of Thin Sectioning for Visualization and Identification of Plant Viruses. Methods in Virology, 143-224. doi:10.1016/b978-0-12-470208-0.50011-6

Liu, D., Shi, L., Han, C., Yu, J., Li, D., & Zhang, Y. (2012). Validation of Reference Genes for Gene Expression Studies in Virus-Infected Nicotiana benthamiana Using Quantitative Real-Time PCR. PLoS ONE, 7(9), e46451. doi:10.1371/journal.pone.0046451

Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402-408. doi:10.1006/meth.2001.1262

Bewick, V., Cheek, L., & Ball, J. (2004). Critical Care, 8(2), 130. doi:10.1186/cc2836

Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., … Higgins, D. G. (2011). Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 7(1), 539. doi:10.1038/msb.2011.75

Dai, X., Zhuang, Z., & Zhao, P. X. (2018). psRNATarget: a plant small RNA target analysis server (2017 release). Nucleic Acids Research, 46(W1), W49-W54. doi:10.1093/nar/gky316

Verde, I., Abbott, A. G., Scalabrin, S., Jung, S., Shu, S., … Grimwood, J. (2013). The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nature Genetics, 45(5), 487-494. doi:10.1038/ng.2586

Emanuelsson, O., Nielsen, H., & Heijne, G. V. (1999). ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Science, 8(5), 978-984. doi:10.1110/ps.8.5.978




This item appears in the following Collection(s)

Show full item record