- -

How sequence variants of a plastid-replicating viroid with one single nucleotide change initiate disease in its natural host

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

How sequence variants of a plastid-replicating viroid with one single nucleotide change initiate disease in its natural host

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Delgado Villar, Sonia Guadalupe es_ES
dc.contributor.author Navarro, Beatriz es_ES
dc.contributor.author Serra, Pedro es_ES
dc.contributor.author Gentit, Pascal es_ES
dc.contributor.author Cambra, Miguel Ángel es_ES
dc.contributor.author Chiumenti, Michela es_ES
dc.contributor.author De Stradis, Angelo es_ES
dc.contributor.author Di Serio, Francesco es_ES
dc.contributor.author FLORES PEDAUYE, RICARDO es_ES
dc.date.accessioned 2021-03-01T08:09:26Z
dc.date.available 2021-03-01T08:09:26Z
dc.date.issued 2019-07-03 es_ES
dc.identifier.issn 1547-6286 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162588
dc.description.abstract [EN] Understanding how viruses and subviral agents initiate disease is central to plant pathology. Whether RNA silencing mediates the primary lesion triggered by viroids (small non-protein-coding RNAs), or just intermediate-late steps of a signaling cascade, remains unsolved. While most variants of the plastid-replicating peach latent mosaic viroid (PLMVd) are asymptomatic, some incite peach mosaics or albinism (peach calico, PC). We have previously shown that two 21-nt small RNAs (PLMVd-sRNAs) containing a 12-13-nt PC-associated insertion guide cleavage, via RNA silencing, of the mRNA encoding a heat-shock protein involved in chloroplast biogenesis. To gain evidence supporting that such event is the initial lesion, and more specifically, that different chloroses have different primary causes, here we focused on a PLMVd-induced peach yellow mosaic (PYM) expressed in leaf sectors interspersed with others green. First, sequencing PLMVd-cDNAs from both sectors and bioassays mapped the PYM determinant at one nucleotide, a notion further sustained by the phenotype incited by other natural and artificial PLMVd variants. And second, sRNA deep-sequencing and RNA ligase-mediated RACE identified one PLMVd-sRNA with the PYM-associated change that guides cleavage, as predicted by RNA silencing, of the mRNA encoding a thylakoid translocase subunit required for chloroplast development. RT-qPCR showed lower accumulation of this mRNA in PYM-expressing tissues. Remarkably, PLMVd-sRNAs triggering PYM and PC have 5MODIFIER LETTER PRIME-terminal Us, involving Argonaute 1 in what likely are the initial alterations eliciting distinct chloroses. es_ES
dc.description.sponsorship This work was funded by grant BFU2014-56812-P (to R.F.) from the Ministerio de Economia y Competitividad of Spain (MINECO). S.D. and P.S. were partly supported by postdoctoral contracts from MINECO. We thank the technical assistance of Amparo Ahuir and Maria Pedrote in handling the plants. We apologize to colleagues whose work was not quoted for space limitations. es_ES
dc.language Inglés es_ES
dc.publisher Landes Bioscience es_ES
dc.relation.ispartof RNA Biology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Chloroplast biogenesis es_ES
dc.subject Non-protein-coding RNAs es_ES
dc.subject PLMVd es_ES
dc.subject RNA silencing es_ES
dc.subject Thylakoid translocase es_ES
dc.subject Viroid pathogenesis es_ES
dc.title How sequence variants of a plastid-replicating viroid with one single nucleotide change initiate disease in its natural host es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/15476286.2019.1600396 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2014-56812-P/ES/VIROIDES, LOS PARASITOS EXTREMOS: EVOLUCION ESPACIO-TEMPORAL, PATOGENESIS MEDIADA POR SILENCIAMIENTO VIA RNA, Y DEGRADACION/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Delgado Villar, SG.; Navarro, B.; Serra, P.; Gentit, P.; Cambra, MÁ.; Chiumenti, M.; De Stradis, A.... (2019). How sequence variants of a plastid-replicating viroid with one single nucleotide change initiate disease in its natural host. RNA Biology. 16(7):906-917. https://doi.org/10.1080/15476286.2019.1600396 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1080/15476286.2019.1600396 es_ES
dc.description.upvformatpinicio 906 es_ES
dc.description.upvformatpfin 917 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 16 es_ES
dc.description.issue 7 es_ES
dc.identifier.pmid 30990352 es_ES
dc.identifier.pmcid PMC6546372 es_ES
dc.relation.pasarela S\406820 es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES
dc.description.references Diener, T. O. (2003). Discovering viroids — a personal perspective. Nature Reviews Microbiology, 1(1), 75-80. doi:10.1038/nrmicro736 es_ES
dc.description.references Kovalskaya, N., & Hammond, R. W. (2014). Molecular biology of viroid–host interactions and disease control strategies. Plant Science, 228, 48-60. doi:10.1016/j.plantsci.2014.05.006 es_ES
dc.description.references Flores, R., Minoia, S., Carbonell, A., Gisel, A., Delgado, S., López-Carrasco, A., … Di Serio, F. (2015). Viroids, the simplest RNA replicons: How they manipulate their hosts for being propagated and how their hosts react for containing the infection. Virus Research, 209, 136-145. doi:10.1016/j.virusres.2015.02.027 es_ES
dc.description.references Rao, A. L. N., & Kalantidis, K. (2015). Virus-associated small satellite RNAs and viroids display similarities in their replication strategies. Virology, 479-480, 627-636. doi:10.1016/j.virol.2015.02.018 es_ES
dc.description.references Hadidi, A., Barba, M., Hong, N., & Hallan, V. (2017). Apple Scar Skin Viroid. Viroids and Satellites, 217-228. doi:10.1016/b978-0-12-801498-1.00021-8 es_ES
dc.description.references Branch, A. D., Benenfeld, B. J., & Robertson, H. D. (1988). Evidence for a single rolling circle in the replication of potato spindle tuber viroid. Proceedings of the National Academy of Sciences, 85(23), 9128-9132. doi:10.1073/pnas.85.23.9128 es_ES
dc.description.references Feldstein, P. A., Hu, Y., & Owens, R. A. (1998). Precisely full length, circularizable, complementary RNA: An infectious form of potato spindle tuber viroid. Proceedings of the National Academy of Sciences, 95(11), 6560-6565. doi:10.1073/pnas.95.11.6560 es_ES
dc.description.references Daros, J.-A., & Flores, R. (2004). Arabidopsis thaliana has the enzymatic machinery for replicating representative viroid species of the family Pospiviroidae. Proceedings of the National Academy of Sciences, 101(17), 6792-6797. doi:10.1073/pnas.0401090101 es_ES
dc.description.references Hutchins, C. J., Rathjen, P. D., Forster, A. C., & Symons, R. H. (1986). Self-cleavage of plus and minus RNA transcripts of avocado sunblotch viroid. Nucleic Acids Research, 14(9), 3627-3640. doi:10.1093/nar/14.9.3627 es_ES
dc.description.references Daros, J. A., Marcos, J. F., Hernandez, C., & Flores, R. (1994). Replication of avocado sunblotch viroid: evidence for a symmetric pathway with two rolling circles and hammerhead ribozyme processing. Proceedings of the National Academy of Sciences, 91(26), 12813-12817. doi:10.1073/pnas.91.26.12813 es_ES
dc.description.references Carbonell, A., De la Peña, M., Flores, R., & Gago, S. (2006). Effects of the trinucleotide preceding the self-cleavage site on eggplant latent viroid hammerheads: differences in co- and post-transcriptional self-cleavage may explain the lack of trinucleotide AUC in most natural hammerheads. Nucleic Acids Research, 34(19), 5613-5622. doi:10.1093/nar/gkl717 es_ES
dc.description.references Carthew, R. W., & Sontheimer, E. J. (2009). Origins and Mechanisms of miRNAs and siRNAs. Cell, 136(4), 642-655. doi:10.1016/j.cell.2009.01.035 es_ES
dc.description.references Axtell, M. J. (2013). Classification and Comparison of Small RNAs from Plants. Annual Review of Plant Biology, 64(1), 137-159. doi:10.1146/annurev-arplant-050312-120043 es_ES
dc.description.references Mallory, A., & Vaucheret, H. (2010). Form, Function, and Regulation of ARGONAUTE Proteins. The Plant Cell, 22(12), 3879-3889. doi:10.1105/tpc.110.080671 es_ES
dc.description.references Fang, X., & Qi, Y. (2016). RNAi in Plants: An Argonaute-Centered View. The Plant Cell, 28(2), 272-285. doi:10.1105/tpc.15.00920 es_ES
dc.description.references Hernandez, C., & Flores, R. (1992). Plus and minus RNAs of peach latent mosaic viroid self-cleave in vitro via hammerhead structures. Proceedings of the National Academy of Sciences, 89(9), 3711-3715. doi:10.1073/pnas.89.9.3711 es_ES
dc.description.references Malfitano, M., Di Serio, F., Covelli, L., Ragozzino, A., Hernández, C., & Flores, R. (2003). Peach latent mosaic viroid variants inducing peach calico (extreme chlorosis) contain a characteristic insertion that is responsible for this symptomatology. Virology, 313(2), 492-501. doi:10.1016/s0042-6822(03)00315-5 es_ES
dc.description.references Rodio, M.-E., Delgado, S., Flores, R., & Serio, F. D. (2006). Variants of Peach latent mosaic viroid inducing peach calico: uneven distribution in infected plants and requirements of the insertion containing the pathogenicity determinant. Journal of General Virology, 87(1), 231-240. doi:10.1099/vir.0.81356-0 es_ES
dc.description.references Rodio, M.-E., Delgado, S., De Stradis, A., Gómez, M.-D., Flores, R., & Di Serio, F. (2007). A Viroid RNA with a Specific Structural Motif Inhibits Chloroplast Development. The Plant Cell, 19(11), 3610-3626. doi:10.1105/tpc.106.049775 es_ES
dc.description.references Martínez de Alba, A. E., Flores, R., & Hernández, C. (2002). Two Chloroplastic Viroids Induce the Accumulation of Small RNAs Associated with Posttranscriptional Gene Silencing. Journal of Virology, 76(24), 13094-13096. doi:10.1128/jvi.76.24.13094-13096.2002 es_ES
dc.description.references Navarro, B., Gisel, A., Rodio, M. E., Delgado, S., Flores, R., & Di Serio, F. (2012). Small RNAs containing the pathogenic determinant of a chloroplast-replicating viroid guide the degradation of a host mRNA as predicted by RNA silencing. The Plant Journal, 70(6), 991-1003. doi:10.1111/j.1365-313x.2012.04940.x es_ES
dc.description.references Ambrós, S., Hernández, C., Desvignes, J. C., & Flores, R. (1998). Genomic Structure of Three Phenotypically Different Isolates of Peach Latent Mosaic Viroid: Implications of the Existence of Constraints Limiting the Heterogeneity of Viroid Quasispecies. Journal of Virology, 72(9), 7397-7406. doi:10.1128/jvi.72.9.7397-7406.1998 es_ES
dc.description.references Ambrós, S., Hernández, C., & Flores, R. (1999). Rapid generation of genetic heterogeneity in progenies from individual cDNA clones of peach latent mosaic viroid in its natural host. Journal of General Virology, 80(8), 2239-2252. doi:10.1099/0022-1317-80-8-2239 es_ES
dc.description.references Serra, P., Bertolini, E., Martínez, M. C., Cambra, M., & Flores, R. (2017). Interference between variants of peach latent mosaic viroid reveals novel features of its fitness landscape: implications for detection. Scientific Reports, 7(1). doi:10.1038/srep42825 es_ES
dc.description.references Rogers, K., & Chen, X. (2013). Biogenesis, Turnover, and Mode of Action of Plant MicroRNAs. The Plant Cell, 25(7), 2383-2399. doi:10.1105/tpc.113.113159 es_ES
dc.description.references Fahlgren, N., & Carrington, J. C. (2009). miRNA Target Prediction in Plants. Plant MicroRNAs, 51-57. doi:10.1007/978-1-60327-005-2_4 es_ES
dc.description.references Liu, D., Gong, Q., Ma, Y., Li, P., Li, J., Yang, S., … Wang, N. N. (2010). cpSecA, a thylakoid protein translocase subunit, is essential for photosynthetic development in Arabidopsis. Journal of Experimental Botany, 61(6), 1655-1669. doi:10.1093/jxb/erq033 es_ES
dc.description.references Papaefthimiou, I. (2001). Replicating potato spindle tuber viroid RNA is accompanied by short RNA fragments that are characteristic of post-transcriptional gene silencing. Nucleic Acids Research, 29(11), 2395-2400. doi:10.1093/nar/29.11.2395 es_ES
dc.description.references Wang, M.-B., Bian, X.-Y., Wu, L.-M., Liu, L.-X., Smith, N. A., Isenegger, D., … Waterhouse, P. M. (2004). On the role of RNA silencing in the pathogenicity and evolution of viroids and viral satellites. Proceedings of the National Academy of Sciences, 101(9), 3275-3280. doi:10.1073/pnas.0400104101 es_ES
dc.description.references Wang, M.-B., Masuta, C., Smith, N. A., & Shimura, H. (2012). RNA Silencing and Plant Viral Diseases. Molecular Plant-Microbe Interactions®, 25(10), 1275-1285. doi:10.1094/mpmi-04-12-0093-cr es_ES
dc.description.references Masuta, C., & Takanami, Y. (1989). Determination of sequence and structural requirements for pathogenicity of a cucumber mosaic virus satellite RNA (Y-satRNA). The Plant Cell, 1(12), 1165-1173. doi:10.1105/tpc.1.12.1165 es_ES
dc.description.references Shimura, H., Pantaleo, V., Ishihara, T., Myojo, N., Inaba, J., Sueda, K., … Masuta, C. (2011). A Viral Satellite RNA Induces Yellow Symptoms on Tobacco by Targeting a Gene Involved in Chlorophyll Biosynthesis using the RNA Silencing Machinery. PLoS Pathogens, 7(5), e1002021. doi:10.1371/journal.ppat.1002021 es_ES
dc.description.references Smith, N. A., Eamens, A. L., & Wang, M.-B. (2011). Viral Small Interfering RNAs Target Host Genes to Mediate Disease Symptoms in Plants. PLoS Pathogens, 7(5), e1002022. doi:10.1371/journal.ppat.1002022 es_ES
dc.description.references Iwakawa, H., & Tomari, Y. (2013). Molecular Insights into microRNA-Mediated Translational Repression in Plants. Molecular Cell, 52(4), 591-601. doi:10.1016/j.molcel.2013.10.033 es_ES
dc.description.references Mi, S., Cai, T., Hu, Y., Chen, Y., Hodges, E., Ni, F., … Qi, Y. (2008). Sorting of Small RNAs into Arabidopsis Argonaute Complexes Is Directed by the 5′ Terminal Nucleotide. Cell, 133(1), 116-127. doi:10.1016/j.cell.2008.02.034 es_ES
dc.description.references Minoia, S., Carbonell, A., Di Serio, F., Gisel, A., Carrington, J. C., Navarro, B., & Flores, R. (2014). Specific Argonautes Selectively Bind Small RNAs Derived from Potato Spindle Tuber Viroid and Attenuate Viroid Accumulation In Vivo. Journal of Virology, 88(20), 11933-11945. doi:10.1128/jvi.01404-14 es_ES
dc.description.references Morel, J.-B., Godon, C., Mourrain, P., Béclin, C., Boutet, S., Feuerbach, F., … Vaucheret, H. (2002). Fertile Hypomorphic ARGONAUTE (ago1) Mutants Impaired in Post-Transcriptional Gene Silencing and Virus Resistance. The Plant Cell, 14(3), 629-639. doi:10.1105/tpc.010358 es_ES
dc.description.references Baumberger, N., & Baulcombe, D. C. (2005). Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proceedings of the National Academy of Sciences, 102(33), 11928-11933. doi:10.1073/pnas.0505461102 es_ES
dc.description.references Qi, Y., Denli, A. M., & Hannon, G. J. (2005). Biochemical Specialization within Arabidopsis RNA Silencing Pathways. Molecular Cell, 19(3), 421-428. doi:10.1016/j.molcel.2005.06.014 es_ES
dc.description.references Carbonell, A., & Carrington, J. C. (2015). Antiviral roles of plant ARGONAUTES. Current Opinion in Plant Biology, 27, 111-117. doi:10.1016/j.pbi.2015.06.013 es_ES
dc.description.references Zhu, H., Hu, F., Wang, R., Zhou, X., Sze, S.-H., Liou, L. W., … Zhang, X. (2011). Arabidopsis Argonaute10 Specifically Sequesters miR166/165 to Regulate Shoot Apical Meristem Development. Cell, 145(2), 242-256. doi:10.1016/j.cell.2011.03.024 es_ES
dc.description.references Garcia-Ruiz, H., Carbonell, A., Hoyer, J. S., Fahlgren, N., Gilbert, K. B., Takeda, A., … Carrington, J. C. (2015). Roles and Programming of Arabidopsis ARGONAUTE Proteins during Turnip Mosaic Virus Infection. PLOS Pathogens, 11(3), e1004755. doi:10.1371/journal.ppat.1004755 es_ES
dc.description.references Wang, L., He, Y., Kang, Y., Hong, N., Farooq, A. B. U., Wang, G., & Xu, W. (2013). Virulence determination and molecular features of peach latent mosaic viroid isolates derived from phenotypically different peach leaves: A nucleotide polymorphism in L11 contributes to symptom alteration. Virus Research, 177(2), 171-178. doi:10.1016/j.virusres.2013.08.005 es_ES
dc.description.references Bussière, F., Lehoux, J., Thompson, D. A., Skrzeczkowski, L. J., & Perreault, J.-P. (1999). Subcellular Localization and Rolling Circle Replication of Peach Latent Mosaic Viroid: Hallmarks of Group A Viroids. Journal of Virology, 73(8), 6353-6360. doi:10.1128/jvi.73.8.6353-6360.1999 es_ES
dc.description.references Eamens, A. L., Smith, N. A., Dennis, E. S., Wassenegger, M., & Wang, M.-B. (2014). In Nicotiana species, an artificial microRNA corresponding to the virulence modulating region of Potato spindle tuber viroid directs RNA silencing of a soluble inorganic pyrophosphatase gene and the development of abnormal phenotypes. Virology, 450-451, 266-277. doi:10.1016/j.virol.2013.12.019 es_ES
dc.description.references Adkar-Purushothama, C. R., Brosseau, C., Giguère, T., Sano, T., Moffett, P., & Perreault, J.-P. (2015). Small RNA Derived from the Virulence Modulating Region of the Potato spindle tuber viroid Silences callose synthase Genes of Tomato Plants. The Plant Cell, 27(8), 2178-2194. doi:10.1105/tpc.15.00523 es_ES
dc.description.references Avina-Padilla, K., Martinez de la Vega, O., Rivera-Bustamante, R., Martinez-Soriano, J. P., Owens, R. A., Hammond, R. W., & Vielle-Calzada, J.-P. (2015). In silico prediction and validation of potential gene targets for pospiviroid-derived small RNAs during tomato infection. Gene, 564(2), 197-205. doi:10.1016/j.gene.2015.03.076 es_ES
dc.description.references De Storme, N., & Geelen, D. (2014). Callose homeostasis at plasmodesmata: molecular regulators and developmental relevance. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00138 es_ES
dc.description.references Owens, R. A., Tech, K. B., Shao, J. Y., Sano, T., & Baker, C. J. (2012). Global Analysis of Tomato Gene Expression During Potato spindle tuber viroid Infection Reveals a Complex Array of Changes Affecting Hormone Signaling. Molecular Plant-Microbe Interactions®, 25(4), 582-598. doi:10.1094/mpmi-09-11-0258 es_ES
dc.description.references Katsarou, K., Wu, Y., Zhang, R., Bonar, N., Morris, J., Hedley, P. E., … Hornyik, C. (2016). Insight on Genes Affecting Tuber Development in Potato upon Potato spindle tuber viroid (PSTVd) Infection. PLOS ONE, 11(3), e0150711. doi:10.1371/journal.pone.0150711 es_ES
dc.description.references Zheng, Y., Wang, Y., Ding, B., & Fei, Z. (2017). Comprehensive Transcriptome Analyses Reveal that Potato Spindle Tuber Viroid Triggers Genome-Wide Changes in Alternative Splicing, Inducible trans -Acting Activity of Phased Secondary Small Interfering RNAs, and Immune Responses. Journal of Virology, 91(11). doi:10.1128/jvi.00247-17 es_ES
dc.description.references Aviña-Padilla, K., Rivera-Bustamante, R., Kovalskaya, N., & Hammond, R. (2018). Pospiviroid Infection of Tomato Regulates the Expression of Genes Involved in Flower and Fruit Development. Viruses, 10(10), 516. doi:10.3390/v10100516 es_ES
dc.description.references Itaya, A., Matsuda, Y., Gonzales, R. A., Nelson, R. S., & Ding, B. (2002). Potato spindle tuber viroid Strains of Different Pathogenicity Induces and Suppresses Expression of Common and Unique Genes in Infected Tomato. Molecular Plant-Microbe Interactions®, 15(10), 990-999. doi:10.1094/mpmi.2002.15.10.990 es_ES
dc.description.references Kappagantu, M., Bullock, J. M., Nelson, M. E., & Eastwell, K. C. (2017). Hop stunt viroid: Effect on Host (Humulus lupulus) Transcriptome and Its Interactions With Hop Powdery Mildew (Podospheara macularis). Molecular Plant-Microbe Interactions®, 30(10), 842-851. doi:10.1094/mpmi-03-17-0071-r es_ES
dc.description.references Pokorn, T., Radišek, S., Javornik, B., Štajner, N., & Jakše, J. (2017). Development of hop transcriptome to support research into host-viroid interactions. PLOS ONE, 12(9), e0184528. doi:10.1371/journal.pone.0184528 es_ES
dc.description.references Xia, C., Li, S., Hou, W., Fan, Z., Xiao, H., Lu, M., … Zhang, Z. (2017). Global Transcriptomic Changes Induced by Infection of Cucumber (Cucumis sativus L.) with Mild and Severe Variants of Hop Stunt Viroid. Frontiers in Microbiology, 8. doi:10.3389/fmicb.2017.02427 es_ES
dc.description.references Mishra, A., Kumar, A., Mishra, D., Nath, V., Jakše, J., Kocábek, T., … Matoušek, J. (2018). Genome-Wide Transcriptomic Analysis Reveals Insights into the Response to Citrus bark cracking viroid (CBCVd) in Hop (Humulus lupulus L.). Viruses, 10(10), 570. doi:10.3390/v10100570 es_ES
dc.description.references Thibaut, O., & Claude, B. (2018). Innate Immunity Activation and RNAi Interplay in Citrus Exocortis Viroid—Tomato Pathosystem. Viruses, 10(11), 587. doi:10.3390/v10110587 es_ES
dc.description.references Więsyk, A., Iwanicka-Nowicka, R., Fogtman, A., Zagórski-Ostoja, W., & Góra-Sochacka, A. (2018). Time-Course Microarray Analysis Reveals Differences between Transcriptional Changes in Tomato Leaves Triggered by Mild and Severe Variants of Potato Spindle Tuber Viroid. Viruses, 10(5), 257. doi:10.3390/v10050257 es_ES
dc.description.references Martinez, G., Castellano, M., Tortosa, M., Pallas, V., & Gomez, G. (2013). A pathogenic non-coding RNA induces changes in dynamic DNA methylation of ribosomal RNA genes in host plants. Nucleic Acids Research, 42(3), 1553-1562. doi:10.1093/nar/gkt968 es_ES
dc.description.references Lv, D.-Q., Liu, S.-W., Zhao, J.-H., Zhou, B.-J., Wang, S.-P., Guo, H.-S., & Fang, Y.-Y. (2016). Replication of a pathogenic non-coding RNA increases DNA methylation in plants associated with a bromodomain-containing viroid-binding protein. Scientific Reports, 6(1). doi:10.1038/srep35751 es_ES
dc.description.references Torchetti, E. M., Pegoraro, M., Navarro, B., Catoni, M., Di Serio, F., & Noris, E. (2016). A nuclear-replicating viroid antagonizes infectivity and accumulation of a geminivirus by upregulating methylation-related genes and inducing hypermethylation of viral DNA. Scientific Reports, 6(1). doi:10.1038/srep35101 es_ES
dc.description.references Dellaporta, S. L., Wood, J., & Hicks, J. B. (1983). A plant DNA minipreparation: Version II. Plant Molecular Biology Reporter, 1(4), 19-21. doi:10.1007/bf02712670 es_ES
dc.description.references Pallas, V., Navarro, A., & Flores, R. (1987). Isolation of a Viroid-like RNA from Hop Different from Hop Stunt Viroid. Journal of General Virology, 68(12), 3201-3205. doi:10.1099/0022-1317-68-12-3201 es_ES
dc.description.references Foissac, X., Svanella-Dumas, L., Dulucq, M. J., Candresse, T., & Gentit, P. (2001). POLYVALENT DETECTION OF FRUIT TREE TRICHO, CAPILLO AND FOVEAVIRUSES BY NESTED RT-PCR USING DEGENERATED AND INOSINE CONTAINING PRIMERS (PDO RT-PCR). Acta Horticulturae, (550), 37-44. doi:10.17660/actahortic.2001.550.2 es_ES
dc.description.references Martelli, G. P., & Russo, M. (1984). Use of Thin Sectioning for Visualization and Identification of Plant Viruses. Methods in Virology, 143-224. doi:10.1016/b978-0-12-470208-0.50011-6 es_ES
dc.description.references Liu, D., Shi, L., Han, C., Yu, J., Li, D., & Zhang, Y. (2012). Validation of Reference Genes for Gene Expression Studies in Virus-Infected Nicotiana benthamiana Using Quantitative Real-Time PCR. PLoS ONE, 7(9), e46451. doi:10.1371/journal.pone.0046451 es_ES
dc.description.references Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402-408. doi:10.1006/meth.2001.1262 es_ES
dc.description.references Bewick, V., Cheek, L., & Ball, J. (2004). Critical Care, 8(2), 130. doi:10.1186/cc2836 es_ES
dc.description.references Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., … Higgins, D. G. (2011). Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 7(1), 539. doi:10.1038/msb.2011.75 es_ES
dc.description.references Dai, X., Zhuang, Z., & Zhao, P. X. (2018). psRNATarget: a plant small RNA target analysis server (2017 release). Nucleic Acids Research, 46(W1), W49-W54. doi:10.1093/nar/gky316 es_ES
dc.description.references Verde, I., Abbott, A. G., Scalabrin, S., Jung, S., Shu, S., … Grimwood, J. (2013). The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nature Genetics, 45(5), 487-494. doi:10.1038/ng.2586 es_ES
dc.description.references Emanuelsson, O., Nielsen, H., & Heijne, G. V. (1999). ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Science, 8(5), 978-984. doi:10.1110/ps.8.5.978 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem