Mostrar el registro sencillo del ítem
dc.contributor.author | Delgado Villar, Sonia Guadalupe![]() |
es_ES |
dc.contributor.author | Navarro, Beatriz![]() |
es_ES |
dc.contributor.author | Serra, Pedro![]() |
es_ES |
dc.contributor.author | Gentit, Pascal![]() |
es_ES |
dc.contributor.author | Cambra, Miguel Ángel![]() |
es_ES |
dc.contributor.author | Chiumenti, Michela![]() |
es_ES |
dc.contributor.author | De Stradis, Angelo![]() |
es_ES |
dc.contributor.author | Di Serio, Francesco![]() |
es_ES |
dc.contributor.author | FLORES PEDAUYE, RICARDO![]() |
es_ES |
dc.date.accessioned | 2021-03-01T08:09:26Z | |
dc.date.available | 2021-03-01T08:09:26Z | |
dc.date.issued | 2019-07-03 | es_ES |
dc.identifier.issn | 1547-6286 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/162588 | |
dc.description.abstract | [EN] Understanding how viruses and subviral agents initiate disease is central to plant pathology. Whether RNA silencing mediates the primary lesion triggered by viroids (small non-protein-coding RNAs), or just intermediate-late steps of a signaling cascade, remains unsolved. While most variants of the plastid-replicating peach latent mosaic viroid (PLMVd) are asymptomatic, some incite peach mosaics or albinism (peach calico, PC). We have previously shown that two 21-nt small RNAs (PLMVd-sRNAs) containing a 12-13-nt PC-associated insertion guide cleavage, via RNA silencing, of the mRNA encoding a heat-shock protein involved in chloroplast biogenesis. To gain evidence supporting that such event is the initial lesion, and more specifically, that different chloroses have different primary causes, here we focused on a PLMVd-induced peach yellow mosaic (PYM) expressed in leaf sectors interspersed with others green. First, sequencing PLMVd-cDNAs from both sectors and bioassays mapped the PYM determinant at one nucleotide, a notion further sustained by the phenotype incited by other natural and artificial PLMVd variants. And second, sRNA deep-sequencing and RNA ligase-mediated RACE identified one PLMVd-sRNA with the PYM-associated change that guides cleavage, as predicted by RNA silencing, of the mRNA encoding a thylakoid translocase subunit required for chloroplast development. RT-qPCR showed lower accumulation of this mRNA in PYM-expressing tissues. Remarkably, PLMVd-sRNAs triggering PYM and PC have 5MODIFIER LETTER PRIME-terminal Us, involving Argonaute 1 in what likely are the initial alterations eliciting distinct chloroses. | es_ES |
dc.description.sponsorship | This work was funded by grant BFU2014-56812-P (to R.F.) from the Ministerio de Economia y Competitividad of Spain (MINECO). S.D. and P.S. were partly supported by postdoctoral contracts from MINECO. We thank the technical assistance of Amparo Ahuir and Maria Pedrote in handling the plants. We apologize to colleagues whose work was not quoted for space limitations. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Landes Bioscience | es_ES |
dc.relation.ispartof | RNA Biology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Chloroplast biogenesis | es_ES |
dc.subject | Non-protein-coding RNAs | es_ES |
dc.subject | PLMVd | es_ES |
dc.subject | RNA silencing | es_ES |
dc.subject | Thylakoid translocase | es_ES |
dc.subject | Viroid pathogenesis | es_ES |
dc.title | How sequence variants of a plastid-replicating viroid with one single nucleotide change initiate disease in its natural host | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/15476286.2019.1600396 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BFU2014-56812-P/ES/VIROIDES, LOS PARASITOS EXTREMOS: EVOLUCION ESPACIO-TEMPORAL, PATOGENESIS MEDIADA POR SILENCIAMIENTO VIA RNA, Y DEGRADACION/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Delgado Villar, SG.; Navarro, B.; Serra, P.; Gentit, P.; Cambra, MÁ.; Chiumenti, M.; De Stradis, A.... (2019). How sequence variants of a plastid-replicating viroid with one single nucleotide change initiate disease in its natural host. RNA Biology. 16(7):906-917. https://doi.org/10.1080/15476286.2019.1600396 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1080/15476286.2019.1600396 | es_ES |
dc.description.upvformatpinicio | 906 | es_ES |
dc.description.upvformatpfin | 917 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 16 | es_ES |
dc.description.issue | 7 | es_ES |
dc.identifier.pmid | 30990352 | es_ES |
dc.identifier.pmcid | PMC6546372 | es_ES |
dc.relation.pasarela | S\406820 | es_ES |
dc.contributor.funder | Ministerio de Ciencia, Innovación y Universidades | es_ES |
dc.description.references | Diener, T. O. (2003). Discovering viroids — a personal perspective. Nature Reviews Microbiology, 1(1), 75-80. doi:10.1038/nrmicro736 | es_ES |
dc.description.references | Kovalskaya, N., & Hammond, R. W. (2014). Molecular biology of viroid–host interactions and disease control strategies. Plant Science, 228, 48-60. doi:10.1016/j.plantsci.2014.05.006 | es_ES |
dc.description.references | Flores, R., Minoia, S., Carbonell, A., Gisel, A., Delgado, S., López-Carrasco, A., … Di Serio, F. (2015). Viroids, the simplest RNA replicons: How they manipulate their hosts for being propagated and how their hosts react for containing the infection. Virus Research, 209, 136-145. doi:10.1016/j.virusres.2015.02.027 | es_ES |
dc.description.references | Rao, A. L. N., & Kalantidis, K. (2015). Virus-associated small satellite RNAs and viroids display similarities in their replication strategies. Virology, 479-480, 627-636. doi:10.1016/j.virol.2015.02.018 | es_ES |
dc.description.references | Hadidi, A., Barba, M., Hong, N., & Hallan, V. (2017). Apple Scar Skin Viroid. Viroids and Satellites, 217-228. doi:10.1016/b978-0-12-801498-1.00021-8 | es_ES |
dc.description.references | Branch, A. D., Benenfeld, B. J., & Robertson, H. D. (1988). Evidence for a single rolling circle in the replication of potato spindle tuber viroid. Proceedings of the National Academy of Sciences, 85(23), 9128-9132. doi:10.1073/pnas.85.23.9128 | es_ES |
dc.description.references | Feldstein, P. A., Hu, Y., & Owens, R. A. (1998). Precisely full length, circularizable, complementary RNA: An infectious form of potato spindle tuber viroid. Proceedings of the National Academy of Sciences, 95(11), 6560-6565. doi:10.1073/pnas.95.11.6560 | es_ES |
dc.description.references | Daros, J.-A., & Flores, R. (2004). Arabidopsis thaliana has the enzymatic machinery for replicating representative viroid species of the family Pospiviroidae. Proceedings of the National Academy of Sciences, 101(17), 6792-6797. doi:10.1073/pnas.0401090101 | es_ES |
dc.description.references | Hutchins, C. J., Rathjen, P. D., Forster, A. C., & Symons, R. H. (1986). Self-cleavage of plus and minus RNA transcripts of avocado sunblotch viroid. Nucleic Acids Research, 14(9), 3627-3640. doi:10.1093/nar/14.9.3627 | es_ES |
dc.description.references | Daros, J. A., Marcos, J. F., Hernandez, C., & Flores, R. (1994). Replication of avocado sunblotch viroid: evidence for a symmetric pathway with two rolling circles and hammerhead ribozyme processing. Proceedings of the National Academy of Sciences, 91(26), 12813-12817. doi:10.1073/pnas.91.26.12813 | es_ES |
dc.description.references | Carbonell, A., De la Peña, M., Flores, R., & Gago, S. (2006). Effects of the trinucleotide preceding the self-cleavage site on eggplant latent viroid hammerheads: differences in co- and post-transcriptional self-cleavage may explain the lack of trinucleotide AUC in most natural hammerheads. Nucleic Acids Research, 34(19), 5613-5622. doi:10.1093/nar/gkl717 | es_ES |
dc.description.references | Carthew, R. W., & Sontheimer, E. J. (2009). Origins and Mechanisms of miRNAs and siRNAs. Cell, 136(4), 642-655. doi:10.1016/j.cell.2009.01.035 | es_ES |
dc.description.references | Axtell, M. J. (2013). Classification and Comparison of Small RNAs from Plants. Annual Review of Plant Biology, 64(1), 137-159. doi:10.1146/annurev-arplant-050312-120043 | es_ES |
dc.description.references | Mallory, A., & Vaucheret, H. (2010). Form, Function, and Regulation of ARGONAUTE Proteins. The Plant Cell, 22(12), 3879-3889. doi:10.1105/tpc.110.080671 | es_ES |
dc.description.references | Fang, X., & Qi, Y. (2016). RNAi in Plants: An Argonaute-Centered View. The Plant Cell, 28(2), 272-285. doi:10.1105/tpc.15.00920 | es_ES |
dc.description.references | Hernandez, C., & Flores, R. (1992). Plus and minus RNAs of peach latent mosaic viroid self-cleave in vitro via hammerhead structures. Proceedings of the National Academy of Sciences, 89(9), 3711-3715. doi:10.1073/pnas.89.9.3711 | es_ES |
dc.description.references | Malfitano, M., Di Serio, F., Covelli, L., Ragozzino, A., Hernández, C., & Flores, R. (2003). Peach latent mosaic viroid variants inducing peach calico (extreme chlorosis) contain a characteristic insertion that is responsible for this symptomatology. Virology, 313(2), 492-501. doi:10.1016/s0042-6822(03)00315-5 | es_ES |
dc.description.references | Rodio, M.-E., Delgado, S., Flores, R., & Serio, F. D. (2006). Variants of Peach latent mosaic viroid inducing peach calico: uneven distribution in infected plants and requirements of the insertion containing the pathogenicity determinant. Journal of General Virology, 87(1), 231-240. doi:10.1099/vir.0.81356-0 | es_ES |
dc.description.references | Rodio, M.-E., Delgado, S., De Stradis, A., Gómez, M.-D., Flores, R., & Di Serio, F. (2007). A Viroid RNA with a Specific Structural Motif Inhibits Chloroplast Development. The Plant Cell, 19(11), 3610-3626. doi:10.1105/tpc.106.049775 | es_ES |
dc.description.references | Martínez de Alba, A. E., Flores, R., & Hernández, C. (2002). Two Chloroplastic Viroids Induce the Accumulation of Small RNAs Associated with Posttranscriptional Gene Silencing. Journal of Virology, 76(24), 13094-13096. doi:10.1128/jvi.76.24.13094-13096.2002 | es_ES |
dc.description.references | Navarro, B., Gisel, A., Rodio, M. E., Delgado, S., Flores, R., & Di Serio, F. (2012). Small RNAs containing the pathogenic determinant of a chloroplast-replicating viroid guide the degradation of a host mRNA as predicted by RNA silencing. The Plant Journal, 70(6), 991-1003. doi:10.1111/j.1365-313x.2012.04940.x | es_ES |
dc.description.references | Ambrós, S., Hernández, C., Desvignes, J. C., & Flores, R. (1998). Genomic Structure of Three Phenotypically Different Isolates of Peach Latent Mosaic Viroid: Implications of the Existence of Constraints Limiting the Heterogeneity of Viroid Quasispecies. Journal of Virology, 72(9), 7397-7406. doi:10.1128/jvi.72.9.7397-7406.1998 | es_ES |
dc.description.references | Ambrós, S., Hernández, C., & Flores, R. (1999). Rapid generation of genetic heterogeneity in progenies from individual cDNA clones of peach latent mosaic viroid in its natural host. Journal of General Virology, 80(8), 2239-2252. doi:10.1099/0022-1317-80-8-2239 | es_ES |
dc.description.references | Serra, P., Bertolini, E., Martínez, M. C., Cambra, M., & Flores, R. (2017). Interference between variants of peach latent mosaic viroid reveals novel features of its fitness landscape: implications for detection. Scientific Reports, 7(1). doi:10.1038/srep42825 | es_ES |
dc.description.references | Rogers, K., & Chen, X. (2013). Biogenesis, Turnover, and Mode of Action of Plant MicroRNAs. The Plant Cell, 25(7), 2383-2399. doi:10.1105/tpc.113.113159 | es_ES |
dc.description.references | Fahlgren, N., & Carrington, J. C. (2009). miRNA Target Prediction in Plants. Plant MicroRNAs, 51-57. doi:10.1007/978-1-60327-005-2_4 | es_ES |
dc.description.references | Liu, D., Gong, Q., Ma, Y., Li, P., Li, J., Yang, S., … Wang, N. N. (2010). cpSecA, a thylakoid protein translocase subunit, is essential for photosynthetic development in Arabidopsis. Journal of Experimental Botany, 61(6), 1655-1669. doi:10.1093/jxb/erq033 | es_ES |
dc.description.references | Papaefthimiou, I. (2001). Replicating potato spindle tuber viroid RNA is accompanied by short RNA fragments that are characteristic of post-transcriptional gene silencing. Nucleic Acids Research, 29(11), 2395-2400. doi:10.1093/nar/29.11.2395 | es_ES |
dc.description.references | Wang, M.-B., Bian, X.-Y., Wu, L.-M., Liu, L.-X., Smith, N. A., Isenegger, D., … Waterhouse, P. M. (2004). On the role of RNA silencing in the pathogenicity and evolution of viroids and viral satellites. Proceedings of the National Academy of Sciences, 101(9), 3275-3280. doi:10.1073/pnas.0400104101 | es_ES |
dc.description.references | Wang, M.-B., Masuta, C., Smith, N. A., & Shimura, H. (2012). RNA Silencing and Plant Viral Diseases. Molecular Plant-Microbe Interactions®, 25(10), 1275-1285. doi:10.1094/mpmi-04-12-0093-cr | es_ES |
dc.description.references | Masuta, C., & Takanami, Y. (1989). Determination of sequence and structural requirements for pathogenicity of a cucumber mosaic virus satellite RNA (Y-satRNA). The Plant Cell, 1(12), 1165-1173. doi:10.1105/tpc.1.12.1165 | es_ES |
dc.description.references | Shimura, H., Pantaleo, V., Ishihara, T., Myojo, N., Inaba, J., Sueda, K., … Masuta, C. (2011). A Viral Satellite RNA Induces Yellow Symptoms on Tobacco by Targeting a Gene Involved in Chlorophyll Biosynthesis using the RNA Silencing Machinery. PLoS Pathogens, 7(5), e1002021. doi:10.1371/journal.ppat.1002021 | es_ES |
dc.description.references | Smith, N. A., Eamens, A. L., & Wang, M.-B. (2011). Viral Small Interfering RNAs Target Host Genes to Mediate Disease Symptoms in Plants. PLoS Pathogens, 7(5), e1002022. doi:10.1371/journal.ppat.1002022 | es_ES |
dc.description.references | Iwakawa, H., & Tomari, Y. (2013). Molecular Insights into microRNA-Mediated Translational Repression in Plants. Molecular Cell, 52(4), 591-601. doi:10.1016/j.molcel.2013.10.033 | es_ES |
dc.description.references | Mi, S., Cai, T., Hu, Y., Chen, Y., Hodges, E., Ni, F., … Qi, Y. (2008). Sorting of Small RNAs into Arabidopsis Argonaute Complexes Is Directed by the 5′ Terminal Nucleotide. Cell, 133(1), 116-127. doi:10.1016/j.cell.2008.02.034 | es_ES |
dc.description.references | Minoia, S., Carbonell, A., Di Serio, F., Gisel, A., Carrington, J. C., Navarro, B., & Flores, R. (2014). Specific Argonautes Selectively Bind Small RNAs Derived from Potato Spindle Tuber Viroid and Attenuate Viroid Accumulation In Vivo. Journal of Virology, 88(20), 11933-11945. doi:10.1128/jvi.01404-14 | es_ES |
dc.description.references | Morel, J.-B., Godon, C., Mourrain, P., Béclin, C., Boutet, S., Feuerbach, F., … Vaucheret, H. (2002). Fertile Hypomorphic ARGONAUTE (ago1) Mutants Impaired in Post-Transcriptional Gene Silencing and Virus Resistance. The Plant Cell, 14(3), 629-639. doi:10.1105/tpc.010358 | es_ES |
dc.description.references | Baumberger, N., & Baulcombe, D. C. (2005). Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proceedings of the National Academy of Sciences, 102(33), 11928-11933. doi:10.1073/pnas.0505461102 | es_ES |
dc.description.references | Qi, Y., Denli, A. M., & Hannon, G. J. (2005). Biochemical Specialization within Arabidopsis RNA Silencing Pathways. Molecular Cell, 19(3), 421-428. doi:10.1016/j.molcel.2005.06.014 | es_ES |
dc.description.references | Carbonell, A., & Carrington, J. C. (2015). Antiviral roles of plant ARGONAUTES. Current Opinion in Plant Biology, 27, 111-117. doi:10.1016/j.pbi.2015.06.013 | es_ES |
dc.description.references | Zhu, H., Hu, F., Wang, R., Zhou, X., Sze, S.-H., Liou, L. W., … Zhang, X. (2011). Arabidopsis Argonaute10 Specifically Sequesters miR166/165 to Regulate Shoot Apical Meristem Development. Cell, 145(2), 242-256. doi:10.1016/j.cell.2011.03.024 | es_ES |
dc.description.references | Garcia-Ruiz, H., Carbonell, A., Hoyer, J. S., Fahlgren, N., Gilbert, K. B., Takeda, A., … Carrington, J. C. (2015). Roles and Programming of Arabidopsis ARGONAUTE Proteins during Turnip Mosaic Virus Infection. PLOS Pathogens, 11(3), e1004755. doi:10.1371/journal.ppat.1004755 | es_ES |
dc.description.references | Wang, L., He, Y., Kang, Y., Hong, N., Farooq, A. B. U., Wang, G., & Xu, W. (2013). Virulence determination and molecular features of peach latent mosaic viroid isolates derived from phenotypically different peach leaves: A nucleotide polymorphism in L11 contributes to symptom alteration. Virus Research, 177(2), 171-178. doi:10.1016/j.virusres.2013.08.005 | es_ES |
dc.description.references | Bussière, F., Lehoux, J., Thompson, D. A., Skrzeczkowski, L. J., & Perreault, J.-P. (1999). Subcellular Localization and Rolling Circle Replication of Peach Latent Mosaic Viroid: Hallmarks of Group A Viroids. Journal of Virology, 73(8), 6353-6360. doi:10.1128/jvi.73.8.6353-6360.1999 | es_ES |
dc.description.references | Eamens, A. L., Smith, N. A., Dennis, E. S., Wassenegger, M., & Wang, M.-B. (2014). In Nicotiana species, an artificial microRNA corresponding to the virulence modulating region of Potato spindle tuber viroid directs RNA silencing of a soluble inorganic pyrophosphatase gene and the development of abnormal phenotypes. Virology, 450-451, 266-277. doi:10.1016/j.virol.2013.12.019 | es_ES |
dc.description.references | Adkar-Purushothama, C. R., Brosseau, C., Giguère, T., Sano, T., Moffett, P., & Perreault, J.-P. (2015). Small RNA Derived from the Virulence Modulating Region of the Potato spindle tuber viroid Silences callose synthase Genes of Tomato Plants. The Plant Cell, 27(8), 2178-2194. doi:10.1105/tpc.15.00523 | es_ES |
dc.description.references | Avina-Padilla, K., Martinez de la Vega, O., Rivera-Bustamante, R., Martinez-Soriano, J. P., Owens, R. A., Hammond, R. W., & Vielle-Calzada, J.-P. (2015). In silico prediction and validation of potential gene targets for pospiviroid-derived small RNAs during tomato infection. Gene, 564(2), 197-205. doi:10.1016/j.gene.2015.03.076 | es_ES |
dc.description.references | De Storme, N., & Geelen, D. (2014). Callose homeostasis at plasmodesmata: molecular regulators and developmental relevance. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00138 | es_ES |
dc.description.references | Owens, R. A., Tech, K. B., Shao, J. Y., Sano, T., & Baker, C. J. (2012). Global Analysis of Tomato Gene Expression During Potato spindle tuber viroid Infection Reveals a Complex Array of Changes Affecting Hormone Signaling. Molecular Plant-Microbe Interactions®, 25(4), 582-598. doi:10.1094/mpmi-09-11-0258 | es_ES |
dc.description.references | Katsarou, K., Wu, Y., Zhang, R., Bonar, N., Morris, J., Hedley, P. E., … Hornyik, C. (2016). Insight on Genes Affecting Tuber Development in Potato upon Potato spindle tuber viroid (PSTVd) Infection. PLOS ONE, 11(3), e0150711. doi:10.1371/journal.pone.0150711 | es_ES |
dc.description.references | Zheng, Y., Wang, Y., Ding, B., & Fei, Z. (2017). Comprehensive Transcriptome Analyses Reveal that Potato Spindle Tuber Viroid Triggers Genome-Wide Changes in Alternative Splicing, Inducible trans -Acting Activity of Phased Secondary Small Interfering RNAs, and Immune Responses. Journal of Virology, 91(11). doi:10.1128/jvi.00247-17 | es_ES |
dc.description.references | Aviña-Padilla, K., Rivera-Bustamante, R., Kovalskaya, N., & Hammond, R. (2018). Pospiviroid Infection of Tomato Regulates the Expression of Genes Involved in Flower and Fruit Development. Viruses, 10(10), 516. doi:10.3390/v10100516 | es_ES |
dc.description.references | Itaya, A., Matsuda, Y., Gonzales, R. A., Nelson, R. S., & Ding, B. (2002). Potato spindle tuber viroid Strains of Different Pathogenicity Induces and Suppresses Expression of Common and Unique Genes in Infected Tomato. Molecular Plant-Microbe Interactions®, 15(10), 990-999. doi:10.1094/mpmi.2002.15.10.990 | es_ES |
dc.description.references | Kappagantu, M., Bullock, J. M., Nelson, M. E., & Eastwell, K. C. (2017). Hop stunt viroid: Effect on Host (Humulus lupulus) Transcriptome and Its Interactions With Hop Powdery Mildew (Podospheara macularis). Molecular Plant-Microbe Interactions®, 30(10), 842-851. doi:10.1094/mpmi-03-17-0071-r | es_ES |
dc.description.references | Pokorn, T., Radišek, S., Javornik, B., Štajner, N., & Jakše, J. (2017). Development of hop transcriptome to support research into host-viroid interactions. PLOS ONE, 12(9), e0184528. doi:10.1371/journal.pone.0184528 | es_ES |
dc.description.references | Xia, C., Li, S., Hou, W., Fan, Z., Xiao, H., Lu, M., … Zhang, Z. (2017). Global Transcriptomic Changes Induced by Infection of Cucumber (Cucumis sativus L.) with Mild and Severe Variants of Hop Stunt Viroid. Frontiers in Microbiology, 8. doi:10.3389/fmicb.2017.02427 | es_ES |
dc.description.references | Mishra, A., Kumar, A., Mishra, D., Nath, V., Jakše, J., Kocábek, T., … Matoušek, J. (2018). Genome-Wide Transcriptomic Analysis Reveals Insights into the Response to Citrus bark cracking viroid (CBCVd) in Hop (Humulus lupulus L.). Viruses, 10(10), 570. doi:10.3390/v10100570 | es_ES |
dc.description.references | Thibaut, O., & Claude, B. (2018). Innate Immunity Activation and RNAi Interplay in Citrus Exocortis Viroid—Tomato Pathosystem. Viruses, 10(11), 587. doi:10.3390/v10110587 | es_ES |
dc.description.references | Więsyk, A., Iwanicka-Nowicka, R., Fogtman, A., Zagórski-Ostoja, W., & Góra-Sochacka, A. (2018). Time-Course Microarray Analysis Reveals Differences between Transcriptional Changes in Tomato Leaves Triggered by Mild and Severe Variants of Potato Spindle Tuber Viroid. Viruses, 10(5), 257. doi:10.3390/v10050257 | es_ES |
dc.description.references | Martinez, G., Castellano, M., Tortosa, M., Pallas, V., & Gomez, G. (2013). A pathogenic non-coding RNA induces changes in dynamic DNA methylation of ribosomal RNA genes in host plants. Nucleic Acids Research, 42(3), 1553-1562. doi:10.1093/nar/gkt968 | es_ES |
dc.description.references | Lv, D.-Q., Liu, S.-W., Zhao, J.-H., Zhou, B.-J., Wang, S.-P., Guo, H.-S., & Fang, Y.-Y. (2016). Replication of a pathogenic non-coding RNA increases DNA methylation in plants associated with a bromodomain-containing viroid-binding protein. Scientific Reports, 6(1). doi:10.1038/srep35751 | es_ES |
dc.description.references | Torchetti, E. M., Pegoraro, M., Navarro, B., Catoni, M., Di Serio, F., & Noris, E. (2016). A nuclear-replicating viroid antagonizes infectivity and accumulation of a geminivirus by upregulating methylation-related genes and inducing hypermethylation of viral DNA. Scientific Reports, 6(1). doi:10.1038/srep35101 | es_ES |
dc.description.references | Dellaporta, S. L., Wood, J., & Hicks, J. B. (1983). A plant DNA minipreparation: Version II. Plant Molecular Biology Reporter, 1(4), 19-21. doi:10.1007/bf02712670 | es_ES |
dc.description.references | Pallas, V., Navarro, A., & Flores, R. (1987). Isolation of a Viroid-like RNA from Hop Different from Hop Stunt Viroid. Journal of General Virology, 68(12), 3201-3205. doi:10.1099/0022-1317-68-12-3201 | es_ES |
dc.description.references | Foissac, X., Svanella-Dumas, L., Dulucq, M. J., Candresse, T., & Gentit, P. (2001). POLYVALENT DETECTION OF FRUIT TREE TRICHO, CAPILLO AND FOVEAVIRUSES BY NESTED RT-PCR USING DEGENERATED AND INOSINE CONTAINING PRIMERS (PDO RT-PCR). Acta Horticulturae, (550), 37-44. doi:10.17660/actahortic.2001.550.2 | es_ES |
dc.description.references | Martelli, G. P., & Russo, M. (1984). Use of Thin Sectioning for Visualization and Identification of Plant Viruses. Methods in Virology, 143-224. doi:10.1016/b978-0-12-470208-0.50011-6 | es_ES |
dc.description.references | Liu, D., Shi, L., Han, C., Yu, J., Li, D., & Zhang, Y. (2012). Validation of Reference Genes for Gene Expression Studies in Virus-Infected Nicotiana benthamiana Using Quantitative Real-Time PCR. PLoS ONE, 7(9), e46451. doi:10.1371/journal.pone.0046451 | es_ES |
dc.description.references | Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402-408. doi:10.1006/meth.2001.1262 | es_ES |
dc.description.references | Bewick, V., Cheek, L., & Ball, J. (2004). Critical Care, 8(2), 130. doi:10.1186/cc2836 | es_ES |
dc.description.references | Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., … Higgins, D. G. (2011). Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 7(1), 539. doi:10.1038/msb.2011.75 | es_ES |
dc.description.references | Dai, X., Zhuang, Z., & Zhao, P. X. (2018). psRNATarget: a plant small RNA target analysis server (2017 release). Nucleic Acids Research, 46(W1), W49-W54. doi:10.1093/nar/gky316 | es_ES |
dc.description.references | Verde, I., Abbott, A. G., Scalabrin, S., Jung, S., Shu, S., … Grimwood, J. (2013). The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nature Genetics, 45(5), 487-494. doi:10.1038/ng.2586 | es_ES |
dc.description.references | Emanuelsson, O., Nielsen, H., & Heijne, G. V. (1999). ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Science, 8(5), 978-984. doi:10.1110/ps.8.5.978 | es_ES |