Mostrar el registro sencillo del ítem
dc.contributor.author | Calatayud Gregori, Julia![]() |
es_ES |
dc.contributor.author | Cortés, J.-C.![]() |
es_ES |
dc.contributor.author | Jornet Sanz, Marc![]() |
es_ES |
dc.date.accessioned | 2021-03-01T08:09:40Z | |
dc.date.available | 2021-03-01T08:09:40Z | |
dc.date.issued | 2020-09-02 | es_ES |
dc.identifier.issn | 0736-2994 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/162594 | |
dc.description.abstract | [EN] In this work, we study the full randomized versions of Airy, Hermite and Laguerre differential equations, which depend on a random variable appearing as an equation coefficient as well as two random initial conditions. In previous contributions, the mean square stochastic solutions to the aforementioned random differential equations were constructed via the Frobenius method, under the assumption of exponential growth of the absolute moments of the equation coefficient, which is equivalent to its essential boundedness. In this paper we aim at relaxing the boundedness hypothesis to allow more general probability distributions for the equation coefficient. We prove that the equations are solvable in the mean square sense when the equation coefficient has finite moment-generating function in a neighborhood of the origin. A thorough discussion of the new hypotheses is included. | es_ES |
dc.description.sponsorship | This work has been supported by the Spanish Ministerio de Economia y Competitividad grant MTM2017-89664-P. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | Stochastic Analysis and Applications | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Random differential equation | es_ES |
dc.subject | Second-order linear differential equation | es_ES |
dc.subject | Frobenius method | es_ES |
dc.subject | Mean square calculus | es_ES |
dc.subject | Mean fourth calculus | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Beyond the hypothesis of boundedness for the random coefficient of Airy, Hermite and Laguerre differential equations with uncertainties | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/07362994.2020.1733017 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Calatayud Gregori, J.; Cortés, J.; Jornet Sanz, M. (2020). Beyond the hypothesis of boundedness for the random coefficient of Airy, Hermite and Laguerre differential equations with uncertainties. Stochastic Analysis and Applications. 38(5):875-885. https://doi.org/10.1080/07362994.2020.1733017 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1080/07362994.2020.1733017 | es_ES |
dc.description.upvformatpinicio | 875 | es_ES |
dc.description.upvformatpfin | 885 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 38 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.pasarela | S\402912 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Neckel, T., & Rupp, F. (2013). Random Differential Equations in Scientific Computing. doi:10.2478/9788376560267 | es_ES |
dc.description.references | Villafuerte, L., Braumann, C. A., Cortés, J.-C., & Jódar, L. (2010). Random differential operational calculus: Theory and applications. Computers & Mathematics with Applications, 59(1), 115-125. doi:10.1016/j.camwa.2009.08.061 | es_ES |
dc.description.references | Cortés, J.-C., Jódar, L., Camacho, F., & Villafuerte, L. (2010). Random Airy type differential equations: Mean square exact and numerical solutions. Computers & Mathematics with Applications, 60(5), 1237-1244. doi:10.1016/j.camwa.2010.05.046 | es_ES |
dc.description.references | Calbo, G., Cortés, J.-C., & Jódar, L. (2011). Random Hermite differential equations: Mean square power series solutions and statistical properties. Applied Mathematics and Computation, 218(7), 3654-3666. doi:10.1016/j.amc.2011.09.008 | es_ES |
dc.description.references | Calatayud, J., Cortés, J.-C., & Jornet, M. (2019). Improving the Approximation of the First- and Second-Order Statistics of the Response Stochastic Process to the Random Legendre Differential Equation. Mediterranean Journal of Mathematics, 16(3). doi:10.1007/s00009-019-1338-6 | es_ES |
dc.description.references | Calatayud, J., Cortés, J.-C., Jornet, M., & Villafuerte, L. (2018). Random non-autonomous second order linear differential equations: mean square analytic solutions and their statistical properties. Advances in Difference Equations, 2018(1). doi:10.1186/s13662-018-1848-8 | es_ES |
dc.description.references | Gregori, J., López, J., & Sanz, M. (2018). Some Notes to Extend the Study on Random Non-Autonomous Second Order Linear Differential Equations Appearing in Mathematical Modeling. Mathematical and Computational Applications, 23(4), 76. doi:10.3390/mca23040076 | es_ES |
dc.description.references | Calbo, G., Cortés, J.-C., & Jódar, L. (2010). Mean square power series solution of random linear differential equations. Computers & Mathematics with Applications, 59(1), 559-572. doi:10.1016/j.camwa.2009.06.007 | es_ES |
dc.description.references | Calbo, G., Cortés, J.-C., Jódar, L., & Villafuerte, L. (2010). Analytic stochastic process solutions of second-order random differential equations. Applied Mathematics Letters, 23(12), 1421-1424. doi:10.1016/j.aml.2010.07.011 | es_ES |
dc.description.references | CALBO SANJUÁN, G. (s. f.). Mean Square Analytic Solutions of Random Linear Models. doi:10.4995/thesis/10251/8721 | es_ES |
dc.description.references | Jagadeesan, M. (2017). Simple analysis of sparse, sign-consistent JL. arXiv:1708.02966. | es_ES |
dc.description.references | Lin, G. D. (2017). Recent developments on the moment problem. Journal of Statistical Distributions and Applications, 4(1). doi:10.1186/s40488-017-0059-2 | es_ES |
dc.description.references | Ernst, O. G., Mugler, A., Starkloff, H.-J., & Ullmann, E. (2011). On the convergence of generalized polynomial chaos expansions. ESAIM: Mathematical Modelling and Numerical Analysis, 46(2), 317-339. doi:10.1051/m2an/2011045 | es_ES |
dc.description.references | Calbo, G., Cortés, J.-C., Jódar, L., & Villafuerte, L. (2011). Solving the random Legendre differential equation: Mean square power series solution and its statistical functions. Computers & Mathematics with Applications, 61(9), 2782-2792. doi:10.1016/j.camwa.2011.03.045 | es_ES |