- -

Sound Absorption Properties of Perforated Recycled Polyurethane Foams Reinforced with Woven Fabric

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Sound Absorption Properties of Perforated Recycled Polyurethane Foams Reinforced with Woven Fabric

Mostrar el registro completo del ítem

Atiénzar-Navarro, R.; Rey Tormos, RMD.; Alba, J.; Sánchez Morcillo, VJ.; Picó Vila, R. (2020). Sound Absorption Properties of Perforated Recycled Polyurethane Foams Reinforced with Woven Fabric. Polymers. 12(2):1-18. https://doi.org/10.3390/polym12020401

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162595

Ficheros en el ítem

Metadatos del ítem

Título: Sound Absorption Properties of Perforated Recycled Polyurethane Foams Reinforced with Woven Fabric
Autor: Atiénzar-Navarro, Roberto Rey Tormos, Romina María del Alba, Jesus Sánchez Morcillo, Víctor José Picó Vila, Rubén
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres
Fecha difusión:
Resumen:
[EN] The acoustic properties of recycled polyurethane foams are well known. Such foams are used as a part of acoustic solutions in different fields such as building or transport. This paper aims to seek improvements in the ...[+]
Palabras clave: Sound absorption , Textile fabrics , Recycled polyurethane foam , Finite element
Derechos de uso: Reconocimiento (by)
Fuente:
Polymers. (eissn: 2073-4360 )
DOI: 10.3390/polym12020401
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/polym12020401
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//FIS2015-65998-C2-2-P/ES/ONDAS ACUSTICAS EN CRISTALES, MEDIOS ESTRUCTURADOS Y METAMATERIALES/
info:eu-repo/grantAgreement/GVA//AICO%2F2016%2F060/
info:eu-repo/grantAgreement/GVA//ACIF%2F2017%2F073/
Agradecimientos:
This research was financially supported by the Ministry of Economy and Innovation (MINECO) and the European Union FEDER through project FIS2015-65998-C2-2 and by projects AICO/2016/060 and ACIF/2017/073 by Regional Ministry ...[+]
Tipo: Artículo

References

Hamernik, R. P., & Ahroon, W. A. (1998). Interrupted noise exposures: Threshold shift dynamics and permanent effects. The Journal of the Acoustical Society of America, 103(6), 3478-3488. doi:10.1121/1.423056

Ramis, J., Alba, J., Del Rey, R., Escuder, E., & Sanchís, V. J. (2010). Nuevos materiales absorbentes acústicos basados en fibra de kenaf. Materiales de Construcción, 60(299), 133-143. doi:10.3989/mc.2010.50809

Ramis, J., Del Rey, R., Alba, J., Godinho, L., & Carbajo, J. (2014). A model for acoustic absorbent materials derived from coconut fiber. Materiales de Construcción, 64(313), e008. doi:10.3989/mc.2014.00513 [+]
Hamernik, R. P., & Ahroon, W. A. (1998). Interrupted noise exposures: Threshold shift dynamics and permanent effects. The Journal of the Acoustical Society of America, 103(6), 3478-3488. doi:10.1121/1.423056

Ramis, J., Alba, J., Del Rey, R., Escuder, E., & Sanchís, V. J. (2010). Nuevos materiales absorbentes acústicos basados en fibra de kenaf. Materiales de Construcción, 60(299), 133-143. doi:10.3989/mc.2010.50809

Ramis, J., Del Rey, R., Alba, J., Godinho, L., & Carbajo, J. (2014). A model for acoustic absorbent materials derived from coconut fiber. Materiales de Construcción, 64(313), e008. doi:10.3989/mc.2014.00513

Yang, W., Dong, Q., Liu, S., Xie, H., Liu, L., & Li, J. (2012). Recycling and Disposal Methods for Polyurethane Foam Wastes. Procedia Environmental Sciences, 16, 167-175. doi:10.1016/j.proenv.2012.10.023

Gama, N., Silva, R., Carvalho, A. P. O., Ferreira, A., & Barros-Timmons, A. (2017). Sound absorption properties of polyurethane foams derived from crude glycerol and liquefied coffee grounds polyol. Polymer Testing, 62, 13-22. doi:10.1016/j.polymertesting.2017.05.042

Rey, R. del, Alba, J., Arenas, J. P., & Sanchis, V. J. (2012). An empirical modelling of porous sound absorbing materials made of recycled foam. Applied Acoustics, 73(6-7), 604-609. doi:10.1016/j.apacoust.2011.12.009

Chen, S., & Jiang, Y. (2016). The acoustic property study of polyurethane foam with addition of bamboo leaves particles. Polymer Composites, 39(4), 1370-1381. doi:10.1002/pc.24078

Delany, M. E., & Bazley, E. N. (1970). Acoustical properties of fibrous absorbent materials. Applied Acoustics, 3(2), 105-116. doi:10.1016/0003-682x(70)90031-9

Johnson, D. L., Koplik, J., & Dashen, R. (1987). Theory of dynamic permeability and tortuosity in fluid-saturated porous media. Journal of Fluid Mechanics, 176(-1), 379. doi:10.1017/s0022112087000727

Allard, J., & Champoux, Y. (1992). New empirical equations for sound propagation in rigid frame fibrous materials. The Journal of the Acoustical Society of America, 91(6), 3346-3353. doi:10.1121/1.402824

Voronina, N. (1994). Acoustic properties of fibrous materials. Applied Acoustics, 42(2), 165-174. doi:10.1016/0003-682x(94)90005-1

Umnova, O., Attenborough, K., Shin, H.-C., & Cummings, A. (2005). Deduction of tortuosity and porosity from acoustic reflection and transmission measurements on thick samples of rigid-porous materials. Applied Acoustics, 66(6), 607-624. doi:10.1016/j.apacoust.2004.02.005

Zhang, C., Li, J., Hu, Z., Zhu, F., & Huang, Y. (2012). Correlation between the acoustic and porous cell morphology of polyurethane foam: Effect of interconnected porosity. Materials & Design, 41, 319-325. doi:10.1016/j.matdes.2012.04.031

Chevillotte, F. (2012). Controlling sound absorption by an upstream resistive layer. Applied Acoustics, 73(1), 56-60. doi:10.1016/j.apacoust.2011.07.005

Lou, C.-W., Huang, S.-Y., Huang, C.-H., Pan, Y.-J., Yan, R., Hsieh, C.-T., & Lin, J.-H. (2015). Effects of structure design on resilience and acoustic absorption properties of porous flexible-foam based perforated composites. Fibers and Polymers, 16(12), 2652-2662. doi:10.1007/s12221-015-5164-6

Lin, J.-H., Chuang, Y.-C., Li, T.-T., Huang, C.-H., Huang, C.-L., Chen, Y.-S., & Lou, C.-W. (2016). Effects of Perforation on Rigid PU Foam Plates: Acoustic and Mechanical Properties. Materials, 9(12), 1000. doi:10.3390/ma9121000

Xia, X., Zhang, Z., Zhao, W., Li, C., Ding, J., Liu, C., & Liu, Y. (2017). Acoustic properties of closed-cell aluminum foams with different macrostructures. Journal of Materials Science & Technology, 33(11), 1227-1234. doi:10.1016/j.jmst.2017.07.012

ATALLA, N., PANNETON, R., SGARD, F. C., & OLNY, X. (2001). ACOUSTIC ABSORPTION OF MACRO-PERFORATED POROUS MATERIALS. Journal of Sound and Vibration, 243(4), 659-678. doi:10.1006/jsvi.2000.3435

Olny, X., & Boutin, C. (2003). Acoustic wave propagation in double porosity media. The Journal of the Acoustical Society of America, 114(1), 73-89. doi:10.1121/1.1534607

Sgard, F. C., Olny, X., Atalla, N., & Castel, F. (2005). On the use of perforations to improve the sound absorption of porous materials. Applied Acoustics, 66(6), 625-651. doi:10.1016/j.apacoust.2004.09.008

Carbajo, J., Prieto, A., Ramis, J., & Río-Martín, L. (2019). A non-parametric fluid-equivalent approach for the acoustic characterization of rigid porous materials. Applied Mathematical Modelling, 76, 330-347. doi:10.1016/j.apm.2019.05.046

Ekici, B., Kentli, A., & Küçük, H. (2012). Improving Sound Absorption Property of Polyurethane Foams by Adding Tea-Leaf Fibers. Archives of Acoustics, 37(4), 515-520. doi:10.2478/v10168-012-0052-1

Segura Alcaraz, M. P., Bonet-Aracil, M., Segura Alcaraz, J. G., & Montava Seguí, I. (2017). Sound absorption of textile material using a microfibres resistive layer. IOP Conference Series: Materials Science and Engineering, 254, 072022. doi:10.1088/1757-899x/254/7/072022

Pieren, R. (2012). Sound absorption modeling of thin woven fabrics backed by an air cavity. Textile Research Journal, 82(9), 864-874. doi:10.1177/0040517511429604

Romero-García, V., Theocharis, G., Richoux, O., & Pagneux, V. (2016). Use of complex frequency plane to design broadband and sub-wavelength absorbers. The Journal of the Acoustical Society of America, 139(6), 3395-3403. doi:10.1121/1.4950708

Ingard, K. U., & Dear, T. A. (1985). Measurement of acoustic flow resistance. Journal of Sound and Vibration, 103(4), 567-572. doi:10.1016/s0022-460x(85)80024-9

Jayabal, S., & Natarajan, U. (2011). Drilling analysis of coir-fibre-reinforced polyester composites. Bulletin of Materials Science, 34(7), 1563-1567. doi:10.1007/s12034-011-0359-y

Del Rey, R., Alba, J., Blanes, M., & Marco, B. (2013). Absorción acústica de cortinas textiles en función del vuelo. Materiales de Construcción, 63(312), 569-580. doi:10.3989/mc.2013.05512

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem