Mostrar el registro sencillo del ítem
dc.contributor.author | González-Gualda, Estela | es_ES |
dc.contributor.author | Pàez-Rives, Marta | es_ES |
dc.contributor.author | Lozano-Torres, Beatriz | es_ES |
dc.contributor.author | Macias, David | es_ES |
dc.contributor.author | Wilson III, Joseph R. | es_ES |
dc.contributor.author | González-López, Cristina | es_ES |
dc.contributor.author | Ou, Hui-Ling | es_ES |
dc.contributor.author | MIrón-Barroso, Sofía | es_ES |
dc.contributor.author | Zhang, Zhenguang | es_ES |
dc.contributor.author | Lérida-Viso, Araceli | es_ES |
dc.contributor.author | Blandez, Juan F. | es_ES |
dc.contributor.author | Bernardos Bau, Andrea | es_ES |
dc.contributor.author | Sancenón Galarza, Félix | es_ES |
dc.contributor.author | Rovira, Miguel | es_ES |
dc.contributor.author | Fruk, Ljiljana | es_ES |
dc.contributor.author | Martins, Carla P. | es_ES |
dc.contributor.author | Serrano, Manuel | es_ES |
dc.contributor.author | Doherty, Gary J. | es_ES |
dc.contributor.author | Martínez-Máñez, Ramón | es_ES |
dc.contributor.author | Muñoz-Espín, Daniel | es_ES |
dc.date.accessioned | 2021-03-01T08:09:50Z | |
dc.date.available | 2021-03-01T08:09:50Z | |
dc.date.issued | 2020-04 | es_ES |
dc.identifier.issn | 1474-9718 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/162597 | |
dc.description.abstract | [EN] Pharmacologically active compounds with preferential cytotoxic activity for senescent cells, known as senolytics, can ameliorate or even revert pathological manifestations of senescence in numerous preclinical mouse disease models, including cancer models. However, translation of senolytic therapies to human disease is hampered by their suboptimal specificity for senescent cells and important toxicities that narrow their therapeutic windows. We have previously shown that the high levels of senescence-associated lysosomal beta-galactosidase (SA-beta-gal) found within senescent cells can be exploited to specifically release tracers and cytotoxic cargoes from galactose-encapsulated nanoparticles within these cells. Here, we show that galacto-conjugation of the BCL-2 family inhibitor Navitoclax results in a potent senolytic prodrug (Nav-Gal), that can be preferentially activated by SA-beta-gal activity in a wide range of cell types. Nav-Gal selectively induces senescent cell apoptosis and has a higher senolytic index than Navitoclax (through reduced activation in nonsenescent cells). Nav-Gal enhances the cytotoxicity of standard senescence-inducing chemotherapy (cisplatin) in human A549 lung cancer cells. Concomitant treatment with cisplatin and Nav-Gal in vivo results in the eradication of senescent lung cancer cells and significantly reduces tumour growth. Importantly, galacto-conjugation reduces Navitoclax-induced platelet apoptosis in human and murine blood samples treated ex vivo, and thrombocytopenia at therapeutically effective concentrations in murine lung cancer models. Taken together, we provide a potentially versatile strategy for generating effective senolytic prodrugs with reduced toxicities. | es_ES |
dc.description.sponsorship | Royal Society, Grant/Award Number: RG160806; Medical Research Council, Grant/Award Number: MR/R000530/1; Cancer Research UK, Grant/Award Number: C62187/A26989 and C62187/A29760; CRUK Cambridge Centre Early Detection Programme, Grant/Award Number: RG86786 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Blackwell Publishing | es_ES |
dc.relation.ispartof | Aging Cell | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Cellular senescence | es_ES |
dc.subject | Chemotherapy-induced senescence | es_ES |
dc.subject | Lung cancer | es_ES |
dc.subject | Navitoclax (ABT-263) | es_ES |
dc.subject | Prodrug | es_ES |
dc.subject | Senolytics | es_ES |
dc.subject | Thrombocytopenia | es_ES |
dc.subject.classification | QUIMICA ANALITICA | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.subject.classification | QUIMICA INORGANICA | es_ES |
dc.title | Galacto-conjugation of Navitoclax as an efficient strategy to increase senolytic specificity and reduce platelet toxicity | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1111/acel.13142 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Royal Society//RG160806/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UKRI//MR%2FR000530%2F1/GB/Cellular plasticity and senescence at the origin of lung cancer/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CRUK//C62187%2FA26989/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CRUK//RG86786/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//IJCI-2014-21534/ES/IJCI-2014-21534/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU15%2F02707/ES/FPU15%2F02707/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F024/ES/Sistemas avanzados de liberación controlada/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-100910-B-C41/ES/MATERIALES POROSOS INTELIGENTES MULTIFUNCIONALES Y DISPOSITIVOS ELECTRONICOS PARA LA LIBERACION DE FARMACOS, DETECCION DE DROGAS Y BIOMARCADORES Y COMUNICACION A NANOESCALA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | González-Gualda, E.; Pàez-Rives, M.; Lozano-Torres, B.; Macias, D.; Wilson Iii, JR.; González-López, C.; Ou, H.... (2020). Galacto-conjugation of Navitoclax as an efficient strategy to increase senolytic specificity and reduce platelet toxicity. Aging Cell. 19(4):1-19. https://doi.org/10.1111/acel.13142 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1111/acel.13142 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 19 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 19 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.pmid | 32233024 | es_ES |
dc.identifier.pmcid | PMC7189993 | es_ES |
dc.relation.pasarela | S\407591 | es_ES |
dc.contributor.funder | Royal Society, Reino Unido | es_ES |
dc.contributor.funder | UK Research and Innovation | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Cancer Research, Reino Unido | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Medical Research Council, Reino Unido | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Agostini, A., Mondragón, L., Bernardos, A., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Murguía, J. R. (2012). Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 51(42), 10556-10560. doi:10.1002/anie.201204663 | es_ES |
dc.description.references | Baar, M. P., Brandt, R. M. C., Putavet, D. A., Klein, J. D. D., Derks, K. W. J., Bourgeois, B. R. M., … de Keizer, P. L. J. (2017). Targeted Apoptosis of Senescent Cells Restores Tissue Homeostasis in Response to Chemotoxicity and Aging. Cell, 169(1), 132-147.e16. doi:10.1016/j.cell.2017.02.031 | es_ES |
dc.description.references | Baker, D. J., Childs, B. G., Durik, M., Wijers, M. E., Sieben, C. J., Zhong, J., … van Deursen, J. M. (2016). Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature, 530(7589), 184-189. doi:10.1038/nature16932 | es_ES |
dc.description.references | Cang, S., Iragavarapu, C., Savooji, J., Song, Y., & Liu, D. (2015). ABT-199 (venetoclax) and BCL-2 inhibitors in clinical development. Journal of Hematology & Oncology, 8(1). doi:10.1186/s13045-015-0224-3 | es_ES |
dc.description.references | Chang, J., Wang, Y., Shao, L., Laberge, R.-M., Demaria, M., Campisi, J., … Zhou, D. (2015). Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nature Medicine, 22(1), 78-83. doi:10.1038/nm.4010 | es_ES |
dc.description.references | Childs, B. G., Gluscevic, M., Baker, D. J., Laberge, R.-M., Marquess, D., Dananberg, J., & van Deursen, J. M. (2017). Senescent cells: an emerging target for diseases of ageing. Nature Reviews Drug Discovery, 16(10), 718-735. doi:10.1038/nrd.2017.116 | es_ES |
dc.description.references | Demaria, M., O’Leary, M. N., Chang, J., Shao, L., Liu, S., Alimirah, F., … Campisi, J. (2016). Cellular Senescence Promotes Adverse Effects of Chemotherapy and Cancer Relapse. Cancer Discovery, 7(2), 165-176. doi:10.1158/2159-8290.cd-16-0241 | es_ES |
dc.description.references | Dimri, G. P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., … Pereira-Smith, O. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proceedings of the National Academy of Sciences, 92(20), 9363-9367. doi:10.1073/pnas.92.20.9363 | es_ES |
dc.description.references | Faget, D. V., Ren, Q., & Stewart, S. A. (2019). Unmasking senescence: context-dependent effects of SASP in cancer. Nature Reviews Cancer, 19(8), 439-453. doi:10.1038/s41568-019-0156-2 | es_ES |
dc.description.references | Fuhrmann-Stroissnigg, H., Ling, Y. Y., Zhao, J., McGowan, S. J., Zhu, Y., Brooks, R. W., … Robbins, P. D. (2017). Identification of HSP90 inhibitors as a novel class of senolytics. Nature Communications, 8(1). doi:10.1038/s41467-017-00314-z | es_ES |
dc.description.references | Gonzalez-Meljem, J. M., Apps, J. R., Fraser, H. C., & Martinez-Barbera, J. P. (2018). Paracrine roles of cellular senescence in promoting tumourigenesis. British Journal of Cancer, 118(10), 1283-1288. doi:10.1038/s41416-018-0066-1 | es_ES |
dc.description.references | Gorgoulis, V., Adams, P. D., Alimonti, A., Bennett, D. C., Bischof, O., Bishop, C., … Demaria, M. (2019). Cellular Senescence: Defining a Path Forward. Cell, 179(4), 813-827. doi:10.1016/j.cell.2019.10.005 | es_ES |
dc.description.references | Guerrero, A., Herranz, N., Sun, B., Wagner, V., Gallage, S., Guiho, R., … Gil, J. (2019). Cardiac glycosides are broad-spectrum senolytics. Nature Metabolism, 1(11), 1074-1088. doi:10.1038/s42255-019-0122-z | es_ES |
dc.description.references | Hernandez-Segura, A., Nehme, J., & Demaria, M. (2018). Hallmarks of Cellular Senescence. Trends in Cell Biology, 28(6), 436-453. doi:10.1016/j.tcb.2018.02.001 | es_ES |
dc.description.references | Jackson, E. L., Olive, K. P., Tuveson, D. A., Bronson, R., Crowley, D., Brown, M., & Jacks, T. (2005). The Differential Effects of Mutant p53 Alleles on Advanced Murine Lung Cancer. Cancer Research, 65(22), 10280-10288. doi:10.1158/0008-5472.can-05-2193 | es_ES |
dc.description.references | Khan, S., Zhang, X., Lv, D., Zhang, Q., He, Y., Zhang, P., … Zhou, D. (2019). A selective BCL-XL PROTAC degrader achieves safe and potent antitumor activity. Nature Medicine, 25(12), 1938-1947. doi:10.1038/s41591-019-0668-z | es_ES |
dc.description.references | Lee, S.-U., Li, C. F., Mortales, C.-L., Pawling, J., Dennis, J. W., Grigorian, A., & Demetriou, M. (2019). Increasing cell permeability of N-acetylglucosamine via 6-acetylation enhances capacity to suppress T-helper 1 (TH1)/TH17 responses and autoimmunity. PLOS ONE, 14(3), e0214253. doi:10.1371/journal.pone.0214253 | es_ES |
dc.description.references | Lee, S., & Schmitt, C. A. (2019). The dynamic nature of senescence in cancer. Nature Cell Biology, 21(1), 94-101. doi:10.1038/s41556-018-0249-2 | es_ES |
dc.description.references | Liu, X., Zhang, Y., Huang, W., Tan, W., & Zhang, A. (2018). Design, synthesis and pharmacological evaluation of new acyl sulfonamides as potent and selective Bcl-2 inhibitors. Bioorganic & Medicinal Chemistry, 26(2), 443-454. doi:10.1016/j.bmc.2017.12.001 | es_ES |
dc.description.references | Lozano-Torres, B., Estepa-Fernández, A., Rovira, M., Orzáez, M., Serrano, M., Martínez-Máñez, R., & Sancenón, F. (2019). The chemistry of senescence. Nature Reviews Chemistry, 3(7), 426-441. doi:10.1038/s41570-019-0108-0 | es_ES |
dc.description.references | Lozano-Torres, B., Galiana, I., Rovira, M., Garrido, E., Chaib, S., Bernardos, A., … Sancenón, F. (2017). An OFF–ON Two-Photon Fluorescent Probe for Tracking Cell Senescence in Vivo. Journal of the American Chemical Society, 139(26), 8808-8811. doi:10.1021/jacs.7b04985 | es_ES |
dc.description.references | Luo, X., Fu, Y., Loza, A. J., Murali, B., Leahy, K. M., Ruhland, M. K., … Stewart, S. A. (2016). Stromal-Initiated Changes in the Bone Promote Metastatic Niche Development. Cell Reports, 14(1), 82-92. doi:10.1016/j.celrep.2015.12.016 | es_ES |
dc.description.references | Mason, K. D., Carpinelli, M. R., Fletcher, J. I., Collinge, J. E., Hilton, A. A., Ellis, S., … Kile, B. T. (2007). Programmed Anuclear Cell Death Delimits Platelet Life Span. Cell, 128(6), 1173-1186. doi:10.1016/j.cell.2007.01.037 | es_ES |
dc.description.references | McHugh, D., & Gil, J. (2017). Senescence and aging: Causes, consequences, and therapeutic avenues. Journal of Cell Biology, 217(1), 65-77. doi:10.1083/jcb.201708092 | es_ES |
dc.description.references | Muñoz‐Espín, D., Rovira, M., Galiana, I., Giménez, C., Lozano‐Torres, B., Paez‐Ribes, M., … Serrano, M. (2018). A versatile drug delivery system targeting senescent cells. EMBO Molecular Medicine, 10(9). doi:10.15252/emmm.201809355 | es_ES |
dc.description.references | Muñoz-Espín, D., & Serrano, M. (2014). Cellular senescence: from physiology to pathology. Nature Reviews Molecular Cell Biology, 15(7), 482-496. doi:10.1038/nrm3823 | es_ES |
dc.description.references | Paez‐Ribes, M., González‐Gualda, E., Doherty, G. J., & Muñoz‐Espín, D. (2019). Targeting senescent cells in translational medicine. EMBO Molecular Medicine, 11(12). doi:10.15252/emmm.201810234 | es_ES |
dc.description.references | Roberson, R. S., Kussick, S. J., Vallieres, E., Chen, S.-Y. J., & Wu, D. Y. (2005). Escape from Therapy-Induced Accelerated Cellular Senescence in p53-Null Lung Cancer Cells and in Human Lung Cancers. Cancer Research, 65(7), 2795-2803. doi:10.1158/0008-5472.can-04-1270 | es_ES |
dc.description.references | Ruhland, M. K., Loza, A. J., Capietto, A.-H., Luo, X., Knolhoff, B. L., Flanagan, K. C., … Stewart, S. A. (2016). Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis. Nature Communications, 7(1). doi:10.1038/ncomms11762 | es_ES |
dc.description.references | Sharpless, N. E., & Sherr, C. J. (2015). Forging a signature of in vivo senescence. Nature Reviews Cancer, 15(7), 397-408. doi:10.1038/nrc3960 | es_ES |
dc.description.references | Shi, J., Kantoff, P. W., Wooster, R., & Farokhzad, O. C. (2016). Cancer nanomedicine: progress, challenges and opportunities. Nature Reviews Cancer, 17(1), 20-37. doi:10.1038/nrc.2016.108 | es_ES |
dc.description.references | Triana-Martínez, F., Picallos-Rabina, P., Da Silva-Álvarez, S., Pietrocola, F., Llanos, S., Rodilla, V., … Collado, M. (2019). Identification and characterization of Cardiac Glycosides as senolytic compounds. Nature Communications, 10(1). doi:10.1038/s41467-019-12888-x | es_ES |
dc.description.references | Tse, C., Shoemaker, A. R., Adickes, J., Anderson, M. G., Chen, J., Jin, S., … Elmore, S. W. (2008). ABT-263: A Potent and Orally Bioavailable Bcl-2 Family Inhibitor. Cancer Research, 68(9), 3421-3428. doi:10.1158/0008-5472.can-07-5836 | es_ES |
dc.description.references | Turrell, F. K., Kerr, E. M., Gao, M., Thorpe, H., Doherty, G. J., Cridge, J., … Martins, C. P. (2017). Lung tumors with distinct p53 mutations respond similarly to p53 targeted therapy but exhibit genotype-specific statin sensitivity. Genes & Development, 31(13), 1339-1353. doi:10.1101/gad.298463.117 | es_ES |
dc.description.references | Vogler, M., Hamali, H. A., Sun, X.-M., Bampton, E. T. W., Dinsdale, D., Snowden, R. T., … Cohen, G. M. (2011). BCL2/BCL-XL inhibition induces apoptosis, disrupts cellular calcium homeostasis, and prevents platelet activation. Blood, 117(26), 7145-7154. doi:10.1182/blood-2011-03-344812 | es_ES |
dc.description.references | Wang, Y., Chang, J., Liu, X., Zhang, X., Zhang, S., Zhang, X., … Zheng, G. (2016). Discovery of piperlongumine as a potential novel lead for the development of senolytic agents. Aging, 8(11), 2915-2926. doi:10.18632/aging.101100 | es_ES |
dc.description.references | Wilson, W. H., O’Connor, O. A., Czuczman, M. S., LaCasce, A. S., Gerecitano, J. F., Leonard, J. P., … Humerickhouse, R. A. (2010). Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. The Lancet Oncology, 11(12), 1149-1159. doi:10.1016/s1470-2045(10)70261-8 | es_ES |
dc.description.references | Yosef, R., Pilpel, N., Tokarsky-Amiel, R., Biran, A., Ovadya, Y., Cohen, S., … Krizhanovsky, V. (2016). Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nature Communications, 7(1). doi:10.1038/ncomms11190 | es_ES |
dc.description.references | Yousefzadeh, M. J., Zhu, Y., McGowan, S. J., Angelini, L., Fuhrmann-Stroissnigg, H., Xu, M., … Niedernhofer, L. J. (2018). Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine, 36, 18-28. doi:10.1016/j.ebiom.2018.09.015 | es_ES |
dc.description.references | Zhao, Y., GAO, J., Ji, J., Gao, M., Yin, Q., Qiu, Q., … Wang, X. (2014). Cytotoxicity enhancement in MDA-MB-231 cells by the combination treatment of tetrahydropalmatine and berberine derived from Corydalis yanhusuo W. T. Wang. Journal of Intercultural Ethnopharmacology, 3(2), 68. doi:10.5455/jice.20140123040224 | es_ES |
dc.description.references | Zhu, Y., Tchkonia, T., Fuhrmann‐Stroissnigg, H., Dai, H. M., Ling, Y. Y., Stout, M. B., … Kirkland, J. L. (2016). Identification of a novel senolytic agent, navitoclax, targeting the Bcl‐2 family of anti‐apoptotic factors. Aging Cell, 15(3), 428-435. doi:10.1111/acel.12445 | es_ES |
dc.description.references | Zhu, Y., Tchkonia, T., Pirtskhalava, T., Gower, A. C., Ding, H., Giorgadze, N., … Kirkland, J. L. (2015). The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell, 14(4), 644-658. doi:10.1111/acel.12344 | es_ES |