- -

Galacto-conjugation of Navitoclax as an efficient strategy to increase senolytic specificity and reduce platelet toxicity

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Galacto-conjugation of Navitoclax as an efficient strategy to increase senolytic specificity and reduce platelet toxicity

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author González-Gualda, Estela es_ES
dc.contributor.author Pàez-Rives, Marta es_ES
dc.contributor.author Lozano-Torres, Beatriz es_ES
dc.contributor.author Macias, David es_ES
dc.contributor.author Wilson III, Joseph R. es_ES
dc.contributor.author González-López, Cristina es_ES
dc.contributor.author Ou, Hui-Ling es_ES
dc.contributor.author MIrón-Barroso, Sofía es_ES
dc.contributor.author Zhang, Zhenguang es_ES
dc.contributor.author Lérida-Viso, Araceli es_ES
dc.contributor.author Blandez, Juan F. es_ES
dc.contributor.author Bernardos Bau, Andrea es_ES
dc.contributor.author Sancenón Galarza, Félix es_ES
dc.contributor.author Rovira, Miguel es_ES
dc.contributor.author Fruk, Ljiljana es_ES
dc.contributor.author Martins, Carla P. es_ES
dc.contributor.author Serrano, Manuel es_ES
dc.contributor.author Doherty, Gary J. es_ES
dc.contributor.author Martínez-Máñez, Ramón es_ES
dc.contributor.author Muñoz-Espín, Daniel es_ES
dc.date.accessioned 2021-03-01T08:09:50Z
dc.date.available 2021-03-01T08:09:50Z
dc.date.issued 2020-04 es_ES
dc.identifier.issn 1474-9718 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162597
dc.description.abstract [EN] Pharmacologically active compounds with preferential cytotoxic activity for senescent cells, known as senolytics, can ameliorate or even revert pathological manifestations of senescence in numerous preclinical mouse disease models, including cancer models. However, translation of senolytic therapies to human disease is hampered by their suboptimal specificity for senescent cells and important toxicities that narrow their therapeutic windows. We have previously shown that the high levels of senescence-associated lysosomal beta-galactosidase (SA-beta-gal) found within senescent cells can be exploited to specifically release tracers and cytotoxic cargoes from galactose-encapsulated nanoparticles within these cells. Here, we show that galacto-conjugation of the BCL-2 family inhibitor Navitoclax results in a potent senolytic prodrug (Nav-Gal), that can be preferentially activated by SA-beta-gal activity in a wide range of cell types. Nav-Gal selectively induces senescent cell apoptosis and has a higher senolytic index than Navitoclax (through reduced activation in nonsenescent cells). Nav-Gal enhances the cytotoxicity of standard senescence-inducing chemotherapy (cisplatin) in human A549 lung cancer cells. Concomitant treatment with cisplatin and Nav-Gal in vivo results in the eradication of senescent lung cancer cells and significantly reduces tumour growth. Importantly, galacto-conjugation reduces Navitoclax-induced platelet apoptosis in human and murine blood samples treated ex vivo, and thrombocytopenia at therapeutically effective concentrations in murine lung cancer models. Taken together, we provide a potentially versatile strategy for generating effective senolytic prodrugs with reduced toxicities. es_ES
dc.description.sponsorship Royal Society, Grant/Award Number: RG160806; Medical Research Council, Grant/Award Number: MR/R000530/1; Cancer Research UK, Grant/Award Number: C62187/A26989 and C62187/A29760; CRUK Cambridge Centre Early Detection Programme, Grant/Award Number: RG86786 es_ES
dc.language Inglés es_ES
dc.publisher Blackwell Publishing es_ES
dc.relation.ispartof Aging Cell es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Cellular senescence es_ES
dc.subject Chemotherapy-induced senescence es_ES
dc.subject Lung cancer es_ES
dc.subject Navitoclax (ABT-263) es_ES
dc.subject Prodrug es_ES
dc.subject Senolytics es_ES
dc.subject Thrombocytopenia es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.title Galacto-conjugation of Navitoclax as an efficient strategy to increase senolytic specificity and reduce platelet toxicity es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/acel.13142 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Royal Society//RG160806/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UKRI//MR%2FR000530%2F1/GB/Cellular plasticity and senescence at the origin of lung cancer/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CRUK//C62187%2FA26989/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CRUK//RG86786/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//IJCI-2014-21534/ES/IJCI-2014-21534/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU15%2F02707/ES/FPU15%2F02707/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F024/ES/Sistemas avanzados de liberación controlada/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-100910-B-C41/ES/MATERIALES POROSOS INTELIGENTES MULTIFUNCIONALES Y DISPOSITIVOS ELECTRONICOS PARA LA LIBERACION DE FARMACOS, DETECCION DE DROGAS Y BIOMARCADORES Y COMUNICACION A NANOESCALA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation González-Gualda, E.; Pàez-Rives, M.; Lozano-Torres, B.; Macias, D.; Wilson Iii, JR.; González-López, C.; Ou, H.... (2020). Galacto-conjugation of Navitoclax as an efficient strategy to increase senolytic specificity and reduce platelet toxicity. Aging Cell. 19(4):1-19. https://doi.org/10.1111/acel.13142 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1111/acel.13142 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 4 es_ES
dc.identifier.pmid 32233024 es_ES
dc.identifier.pmcid PMC7189993 es_ES
dc.relation.pasarela S\407591 es_ES
dc.contributor.funder Royal Society, Reino Unido es_ES
dc.contributor.funder UK Research and Innovation es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Cancer Research, Reino Unido es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Medical Research Council, Reino Unido es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Agostini, A., Mondragón, L., Bernardos, A., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Murguía, J. R. (2012). Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 51(42), 10556-10560. doi:10.1002/anie.201204663 es_ES
dc.description.references Baar, M. P., Brandt, R. M. C., Putavet, D. A., Klein, J. D. D., Derks, K. W. J., Bourgeois, B. R. M., … de Keizer, P. L. J. (2017). Targeted Apoptosis of Senescent Cells Restores Tissue Homeostasis in Response to Chemotoxicity and Aging. Cell, 169(1), 132-147.e16. doi:10.1016/j.cell.2017.02.031 es_ES
dc.description.references Baker, D. J., Childs, B. G., Durik, M., Wijers, M. E., Sieben, C. J., Zhong, J., … van Deursen, J. M. (2016). Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature, 530(7589), 184-189. doi:10.1038/nature16932 es_ES
dc.description.references Cang, S., Iragavarapu, C., Savooji, J., Song, Y., & Liu, D. (2015). ABT-199 (venetoclax) and BCL-2 inhibitors in clinical development. Journal of Hematology & Oncology, 8(1). doi:10.1186/s13045-015-0224-3 es_ES
dc.description.references Chang, J., Wang, Y., Shao, L., Laberge, R.-M., Demaria, M., Campisi, J., … Zhou, D. (2015). Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nature Medicine, 22(1), 78-83. doi:10.1038/nm.4010 es_ES
dc.description.references Childs, B. G., Gluscevic, M., Baker, D. J., Laberge, R.-M., Marquess, D., Dananberg, J., & van Deursen, J. M. (2017). Senescent cells: an emerging target for diseases of ageing. Nature Reviews Drug Discovery, 16(10), 718-735. doi:10.1038/nrd.2017.116 es_ES
dc.description.references Demaria, M., O’Leary, M. N., Chang, J., Shao, L., Liu, S., Alimirah, F., … Campisi, J. (2016). Cellular Senescence Promotes Adverse Effects of Chemotherapy and Cancer Relapse. Cancer Discovery, 7(2), 165-176. doi:10.1158/2159-8290.cd-16-0241 es_ES
dc.description.references Dimri, G. P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., … Pereira-Smith, O. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proceedings of the National Academy of Sciences, 92(20), 9363-9367. doi:10.1073/pnas.92.20.9363 es_ES
dc.description.references Faget, D. V., Ren, Q., & Stewart, S. A. (2019). Unmasking senescence: context-dependent effects of SASP in cancer. Nature Reviews Cancer, 19(8), 439-453. doi:10.1038/s41568-019-0156-2 es_ES
dc.description.references Fuhrmann-Stroissnigg, H., Ling, Y. Y., Zhao, J., McGowan, S. J., Zhu, Y., Brooks, R. W., … Robbins, P. D. (2017). Identification of HSP90 inhibitors as a novel class of senolytics. Nature Communications, 8(1). doi:10.1038/s41467-017-00314-z es_ES
dc.description.references Gonzalez-Meljem, J. M., Apps, J. R., Fraser, H. C., & Martinez-Barbera, J. P. (2018). Paracrine roles of cellular senescence in promoting tumourigenesis. British Journal of Cancer, 118(10), 1283-1288. doi:10.1038/s41416-018-0066-1 es_ES
dc.description.references Gorgoulis, V., Adams, P. D., Alimonti, A., Bennett, D. C., Bischof, O., Bishop, C., … Demaria, M. (2019). Cellular Senescence: Defining a Path Forward. Cell, 179(4), 813-827. doi:10.1016/j.cell.2019.10.005 es_ES
dc.description.references Guerrero, A., Herranz, N., Sun, B., Wagner, V., Gallage, S., Guiho, R., … Gil, J. (2019). Cardiac glycosides are broad-spectrum senolytics. Nature Metabolism, 1(11), 1074-1088. doi:10.1038/s42255-019-0122-z es_ES
dc.description.references Hernandez-Segura, A., Nehme, J., & Demaria, M. (2018). Hallmarks of Cellular Senescence. Trends in Cell Biology, 28(6), 436-453. doi:10.1016/j.tcb.2018.02.001 es_ES
dc.description.references Jackson, E. L., Olive, K. P., Tuveson, D. A., Bronson, R., Crowley, D., Brown, M., & Jacks, T. (2005). The Differential Effects of Mutant p53 Alleles on Advanced Murine Lung Cancer. Cancer Research, 65(22), 10280-10288. doi:10.1158/0008-5472.can-05-2193 es_ES
dc.description.references Khan, S., Zhang, X., Lv, D., Zhang, Q., He, Y., Zhang, P., … Zhou, D. (2019). A selective BCL-XL PROTAC degrader achieves safe and potent antitumor activity. Nature Medicine, 25(12), 1938-1947. doi:10.1038/s41591-019-0668-z es_ES
dc.description.references Lee, S.-U., Li, C. F., Mortales, C.-L., Pawling, J., Dennis, J. W., Grigorian, A., & Demetriou, M. (2019). Increasing cell permeability of N-acetylglucosamine via 6-acetylation enhances capacity to suppress T-helper 1 (TH1)/TH17 responses and autoimmunity. PLOS ONE, 14(3), e0214253. doi:10.1371/journal.pone.0214253 es_ES
dc.description.references Lee, S., & Schmitt, C. A. (2019). The dynamic nature of senescence in cancer. Nature Cell Biology, 21(1), 94-101. doi:10.1038/s41556-018-0249-2 es_ES
dc.description.references Liu, X., Zhang, Y., Huang, W., Tan, W., & Zhang, A. (2018). Design, synthesis and pharmacological evaluation of new acyl sulfonamides as potent and selective Bcl-2 inhibitors. Bioorganic & Medicinal Chemistry, 26(2), 443-454. doi:10.1016/j.bmc.2017.12.001 es_ES
dc.description.references Lozano-Torres, B., Estepa-Fernández, A., Rovira, M., Orzáez, M., Serrano, M., Martínez-Máñez, R., & Sancenón, F. (2019). The chemistry of senescence. Nature Reviews Chemistry, 3(7), 426-441. doi:10.1038/s41570-019-0108-0 es_ES
dc.description.references Lozano-Torres, B., Galiana, I., Rovira, M., Garrido, E., Chaib, S., Bernardos, A., … Sancenón, F. (2017). An OFF–ON Two-Photon Fluorescent Probe for Tracking Cell Senescence in Vivo. Journal of the American Chemical Society, 139(26), 8808-8811. doi:10.1021/jacs.7b04985 es_ES
dc.description.references Luo, X., Fu, Y., Loza, A. J., Murali, B., Leahy, K. M., Ruhland, M. K., … Stewart, S. A. (2016). Stromal-Initiated Changes in the Bone Promote Metastatic Niche Development. Cell Reports, 14(1), 82-92. doi:10.1016/j.celrep.2015.12.016 es_ES
dc.description.references Mason, K. D., Carpinelli, M. R., Fletcher, J. I., Collinge, J. E., Hilton, A. A., Ellis, S., … Kile, B. T. (2007). Programmed Anuclear Cell Death Delimits Platelet Life Span. Cell, 128(6), 1173-1186. doi:10.1016/j.cell.2007.01.037 es_ES
dc.description.references McHugh, D., & Gil, J. (2017). Senescence and aging: Causes, consequences, and therapeutic avenues. Journal of Cell Biology, 217(1), 65-77. doi:10.1083/jcb.201708092 es_ES
dc.description.references Muñoz‐Espín, D., Rovira, M., Galiana, I., Giménez, C., Lozano‐Torres, B., Paez‐Ribes, M., … Serrano, M. (2018). A versatile drug delivery system targeting senescent cells. EMBO Molecular Medicine, 10(9). doi:10.15252/emmm.201809355 es_ES
dc.description.references Muñoz-Espín, D., & Serrano, M. (2014). Cellular senescence: from physiology to pathology. Nature Reviews Molecular Cell Biology, 15(7), 482-496. doi:10.1038/nrm3823 es_ES
dc.description.references Paez‐Ribes, M., González‐Gualda, E., Doherty, G. J., & Muñoz‐Espín, D. (2019). Targeting senescent cells in translational medicine. EMBO Molecular Medicine, 11(12). doi:10.15252/emmm.201810234 es_ES
dc.description.references Roberson, R. S., Kussick, S. J., Vallieres, E., Chen, S.-Y. J., & Wu, D. Y. (2005). Escape from Therapy-Induced Accelerated Cellular Senescence in p53-Null Lung Cancer Cells and in Human Lung Cancers. Cancer Research, 65(7), 2795-2803. doi:10.1158/0008-5472.can-04-1270 es_ES
dc.description.references Ruhland, M. K., Loza, A. J., Capietto, A.-H., Luo, X., Knolhoff, B. L., Flanagan, K. C., … Stewart, S. A. (2016). Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis. Nature Communications, 7(1). doi:10.1038/ncomms11762 es_ES
dc.description.references Sharpless, N. E., & Sherr, C. J. (2015). Forging a signature of in vivo senescence. Nature Reviews Cancer, 15(7), 397-408. doi:10.1038/nrc3960 es_ES
dc.description.references Shi, J., Kantoff, P. W., Wooster, R., & Farokhzad, O. C. (2016). Cancer nanomedicine: progress, challenges and opportunities. Nature Reviews Cancer, 17(1), 20-37. doi:10.1038/nrc.2016.108 es_ES
dc.description.references Triana-Martínez, F., Picallos-Rabina, P., Da Silva-Álvarez, S., Pietrocola, F., Llanos, S., Rodilla, V., … Collado, M. (2019). Identification and characterization of Cardiac Glycosides as senolytic compounds. Nature Communications, 10(1). doi:10.1038/s41467-019-12888-x es_ES
dc.description.references Tse, C., Shoemaker, A. R., Adickes, J., Anderson, M. G., Chen, J., Jin, S., … Elmore, S. W. (2008). ABT-263: A Potent and Orally Bioavailable Bcl-2 Family Inhibitor. Cancer Research, 68(9), 3421-3428. doi:10.1158/0008-5472.can-07-5836 es_ES
dc.description.references Turrell, F. K., Kerr, E. M., Gao, M., Thorpe, H., Doherty, G. J., Cridge, J., … Martins, C. P. (2017). Lung tumors with distinct p53 mutations respond similarly to p53 targeted therapy but exhibit genotype-specific statin sensitivity. Genes & Development, 31(13), 1339-1353. doi:10.1101/gad.298463.117 es_ES
dc.description.references Vogler, M., Hamali, H. A., Sun, X.-M., Bampton, E. T. W., Dinsdale, D., Snowden, R. T., … Cohen, G. M. (2011). BCL2/BCL-XL inhibition induces apoptosis, disrupts cellular calcium homeostasis, and prevents platelet activation. Blood, 117(26), 7145-7154. doi:10.1182/blood-2011-03-344812 es_ES
dc.description.references Wang, Y., Chang, J., Liu, X., Zhang, X., Zhang, S., Zhang, X., … Zheng, G. (2016). Discovery of piperlongumine as a potential novel lead for the development of senolytic agents. Aging, 8(11), 2915-2926. doi:10.18632/aging.101100 es_ES
dc.description.references Wilson, W. H., O’Connor, O. A., Czuczman, M. S., LaCasce, A. S., Gerecitano, J. F., Leonard, J. P., … Humerickhouse, R. A. (2010). Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. The Lancet Oncology, 11(12), 1149-1159. doi:10.1016/s1470-2045(10)70261-8 es_ES
dc.description.references Yosef, R., Pilpel, N., Tokarsky-Amiel, R., Biran, A., Ovadya, Y., Cohen, S., … Krizhanovsky, V. (2016). Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nature Communications, 7(1). doi:10.1038/ncomms11190 es_ES
dc.description.references Yousefzadeh, M. J., Zhu, Y., McGowan, S. J., Angelini, L., Fuhrmann-Stroissnigg, H., Xu, M., … Niedernhofer, L. J. (2018). Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine, 36, 18-28. doi:10.1016/j.ebiom.2018.09.015 es_ES
dc.description.references Zhao, Y., GAO, J., Ji, J., Gao, M., Yin, Q., Qiu, Q., … Wang, X. (2014). Cytotoxicity enhancement in MDA-MB-231 cells by the combination treatment of tetrahydropalmatine and berberine derived from Corydalis yanhusuo W. T. Wang. Journal of Intercultural Ethnopharmacology, 3(2), 68. doi:10.5455/jice.20140123040224 es_ES
dc.description.references Zhu, Y., Tchkonia, T., Fuhrmann‐Stroissnigg, H., Dai, H. M., Ling, Y. Y., Stout, M. B., … Kirkland, J. L. (2016). Identification of a novel senolytic agent, navitoclax, targeting the Bcl‐2 family of anti‐apoptotic factors. Aging Cell, 15(3), 428-435. doi:10.1111/acel.12445 es_ES
dc.description.references Zhu, Y., Tchkonia, T., Pirtskhalava, T., Gower, A. C., Ding, H., Giorgadze, N., … Kirkland, J. L. (2015). The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell, 14(4), 644-658. doi:10.1111/acel.12344 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem