- -

Synthesis of Phosphorus-Containing Polyanilines by Electrochemical Copolymerization

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Synthesis of Phosphorus-Containing Polyanilines by Electrochemical Copolymerization

Mostrar el registro completo del ítem

Martínez-Sánchez, B.; Quintero-Jaime, AF.; Huerta, F.; Cazorla-Amorós, D.; Morallón, E. (2020). Synthesis of Phosphorus-Containing Polyanilines by Electrochemical Copolymerization. Polymers. 12(5):1-16. https://doi.org/10.3390/polym12051029

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162601

Ficheros en el ítem

Metadatos del ítem

Título: Synthesis of Phosphorus-Containing Polyanilines by Electrochemical Copolymerization
Autor: Martínez-Sánchez, Beatriz Quintero-Jaime, Andrés Felipe Huerta, Francisco Cazorla-Amorós, Diego Morallón, Emilia
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Textil y Papelera - Departament d'Enginyeria Tèxtil i Paperera
Fecha difusión:
Resumen:
[EN] In this study, the phosphonation of a polyaniline (PANI) backbone was achieved in an acid medium by electrochemical methods using aminophenylphosphonic (APPA) monomers. This was done through the electrochemical ...[+]
Palabras clave: Polyaniline , Phosphorus , Electrochemical polymerization , Modified polyaniline
Derechos de uso: Reconocimiento (by)
Fuente:
Polymers. (eissn: 2073-4360 )
DOI: 10.3390/polym12051029
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/polym12051029
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MAT2016-76595-R/ES/NUEVAS ESTRATEGIAS DE FUNCIONALIZACION ELECTROQUIMICA DE MATERIALES CARBONOSOS NANOESTRUCTURADOS PARA LA REDUCCION DE OXIGENO Y BIOSENSORES/
info:eu-repo/grantAgreement/GVA//GRISOLIA%2F2016%2F084/
info:eu-repo/grantAgreement/UA//AII2018-16/
info:eu-repo/grantAgreement/AEI//FPU18%2F05127/
Agradecimientos:
The authors would like to thank MINECO, FEDER (MAT2016-76595-R) for financial support. A.F.Q.-J. gratefully acknowledges the Generalitat Valenciana for the financial support through the Santiago Grisolia grant (GRISOLIA/2016/084). ...[+]
Tipo: Artículo

References

A Review on Conducting Polymers-Based Composites for Energy Storage Application. (2019). Journal of Chemical Reviews, 1(1), 19-34. doi:10.33945/sami/jcr.2019.1.1934

Ćirić-Marjanović, G. (2013). Recent advances in polyaniline research: Polymerization mechanisms, structural aspects, properties and applications. Synthetic Metals, 177, 1-47. doi:10.1016/j.synthmet.2013.06.004

Jaymand, M. (2013). Recent progress in chemical modification of polyaniline. Progress in Polymer Science, 38(9), 1287-1306. doi:10.1016/j.progpolymsci.2013.05.015 [+]
A Review on Conducting Polymers-Based Composites for Energy Storage Application. (2019). Journal of Chemical Reviews, 1(1), 19-34. doi:10.33945/sami/jcr.2019.1.1934

Ćirić-Marjanović, G. (2013). Recent advances in polyaniline research: Polymerization mechanisms, structural aspects, properties and applications. Synthetic Metals, 177, 1-47. doi:10.1016/j.synthmet.2013.06.004

Jaymand, M. (2013). Recent progress in chemical modification of polyaniline. Progress in Polymer Science, 38(9), 1287-1306. doi:10.1016/j.progpolymsci.2013.05.015

Pandey, R. K., & Lakshminarayanan, V. (2009). Electro-Oxidation of Formic Acid, Methanol, and Ethanol on Electrodeposited Pd-Polyaniline Nanofiber Films in Acidic and Alkaline Medium. The Journal of Physical Chemistry C, 113(52), 21596-21603. doi:10.1021/jp908239m

Wei, H., Yan, X., Wu, S., Luo, Z., Wei, S., & Guo, Z. (2012). Electropolymerized Polyaniline Stabilized Tungsten Oxide Nanocomposite Films: Electrochromic Behavior and Electrochemical Energy Storage. The Journal of Physical Chemistry C, 116(47), 25052-25064. doi:10.1021/jp3090777

Gabe, A., Mostazo-López, M. J., Salinas-Torres, D., Morallón, E., & Cazorla-Amorós, D. (2017). Synthesis of conducting polymer/carbon material composites and their application in electrical energy storage. Hybrid Polymer Composite Materials, 173-209. doi:10.1016/b978-0-08-100789-1.00008-3

Zhai, D., Liu, B., Shi, Y., Pan, L., Wang, Y., Li, W., … Yu, G. (2013). Highly Sensitive Glucose Sensor Based on Pt Nanoparticle/Polyaniline Hydrogel Heterostructures. ACS Nano, 7(4), 3540-3546. doi:10.1021/nn400482d

Quílez-Bermejo, J., Morallón, E., & Cazorla-Amorós, D. (2018). Oxygen-reduction catalysis of N-doped carbons prepared via heat treatment of polyaniline at over 1100 °C. Chemical Communications, 54(35), 4441-4444. doi:10.1039/c8cc02105h

Ćirić-Marjanović, G., Pašti, I., Gavrilov, N., Janošević, A., & Mentus, S. (2013). Carbonised polyaniline and polypyrrole: towards advanced nitrogen-containing carbon materials. Chemical Papers, 67(8). doi:10.2478/s11696-013-0312-1

Xu, X., Fu, Q., Gu, H., Guo, Y., Zhou, H., Zhang, J., … Guo, Z. (2020). Polyaniline crystalline nanostructures dependent negative permittivity metamaterials. Polymer, 188, 122129. doi:10.1016/j.polymer.2019.122129

Malinauskas, A. (2004). Self-doped polyanilines. Journal of Power Sources, 126(1-2), 214-220. doi:10.1016/j.jpowsour.2003.08.008

Gu, H., Zhang, H., Lin, J., Shao, Q., Young, D. P., Sun, L., … Guo, Z. (2018). Large negative giant magnetoresistance at room temperature and electrical transport in cobalt ferrite-polyaniline nanocomposites. Polymer, 143, 324-330. doi:10.1016/j.polymer.2018.04.008

Yao, Y., Sun, H., Zhang, Y., & Yin, Z. (2020). Corrosion protection of epoxy coatings containing 2-hydroxyphosphonocarboxylic acid doped polyaniline nanofibers. Progress in Organic Coatings, 139, 105470. doi:10.1016/j.porgcoat.2019.105470

Shahadat, M., Ali, S. W., Ahammad, S. Z., & Azam, A. (2020). Polyaniline/carbon nanotube-supported nanocomposite electrode for detection of organic pollutants. Handbook of Nanomaterials for Manufacturing Applications, 279-296. doi:10.1016/b978-0-12-821381-0.00012-0

Benyoucef, A., Huerta, F., Vázquez, J. L., & Morallon, E. (2005). Synthesis and in situ FTIRS characterization of conducting polymers obtained from aminobenzoic acid isomers at platinum electrodes. European Polymer Journal, 41(4), 843-852. doi:10.1016/j.eurpolymj.2004.10.047

Dkhili, S., López-Bernabeu, S., Huerta, F., Montilla, F., Besbes-Hentati, S., & Morallón, E. (2018). A self-doped polyaniline derivative obtained by electrochemical copolymerization of aminoterephthalic acid and aniline. Synthetic Metals, 245, 61-66. doi:10.1016/j.synthmet.2018.08.005

Sanchís, C., Salavagione, H. J., Arias-Pardilla, J., & Morallón, E. (2007). Tuning the electroactivity of conductive polymer at physiological pH. Electrochimica Acta, 52(9), 2978-2986. doi:10.1016/j.electacta.2006.09.031

Grigoras, M., Catargiu, A. M., Tudorache, F., & Dobromir, M. (2012). Chemical synthesis and characterization of self-doped N-propanesulfonic acid polyaniline derivatives. Iranian Polymer Journal, 21(2), 131-141. doi:10.1007/s13726-011-0011-0

Yue, J., & Epstein, A. J. (1990). Synthesis of self-doped conducting polyaniline. Journal of the American Chemical Society, 112(7), 2800-2801. doi:10.1021/ja00163a051

Chatterjee, K., Ganguly, S., Kargupta, K., & Banerjee, D. (2011). Bismuth nitrate doped polyaniline – Characterization and properties for thermoelectric application. Synthetic Metals, 161(3-4), 275-279. doi:10.1016/j.synthmet.2010.11.034

Wei, Y., Hariharan, R., & Patel, S. A. (1990). Chemical and electrochemical copolymerization of aniline with alkyl ring-substituted anilines. Macromolecules, 23(3), 758-764. doi:10.1021/ma00205a011

Probst, M., & Holze, R. (1997). A systematic spectroelectrochemical investigation of alkyl-substituted anilines and their polymers. Macromolecular Chemistry and Physics, 198(5), 1499-1509. doi:10.1002/macp.1997.021980515

Salavagione, H. J., Arias, J., Garcés, P., Morallón, E., Barbero, C., & Vázquez, J. L. (2004). Spectroelectrochemical study of the oxidation of aminophenols on platinum electrode in acid medium. Journal of Electroanalytical Chemistry, 565(2), 375-383. doi:10.1016/j.jelechem.2003.11.005

Mu, S. (2004). Electrochemical copolymerization of aniline and o-aminophenol. Synthetic Metals, 143(3), 259-268. doi:10.1016/j.synthmet.2003.12.008

Zhang, J., Shan, D., & Mu, S. (2007). A promising copolymer of aniline and m-aminophenol: Chemical preparation, novel electric properties and characterization. Polymer, 48(5), 1269-1275. doi:10.1016/j.polymer.2006.12.021

Quintero-Jaime, A. F., Cazorla-Amorós, D., & Morallón, E. (2020). Electrochemical functionalization of single wall carbon nanotubes with phosphorus and nitrogen species. Electrochimica Acta, 340, 135935. doi:10.1016/j.electacta.2020.135935

Liu, J., Li, R., Chen, T., Liu, C., Mu, D., Sun, S., … Dai, C. (2020). From bulk to porous: Structure transformation of nitrogen and phosphorous co-doped carbon material via sodium chloride assistance and its application in lithium-sulfur batteries. Journal of Alloys and Compounds, 830, 154638. doi:10.1016/j.jallcom.2020.154638

Fonsaca, J. E. S., Domingues, S. H., Orth, E. S., & Zarbin, A. J. G. (2020). A black phosphorus-based cathode for aqueous Na-ion batteries operating under ambient conditions. Chemical Communications, 56(5), 802-805. doi:10.1039/c9cc09279j

Amaya, T., Kurata, I., Inada, Y., Hatai, T., & Hirao, T. (2017). Synthesis of phosphonic acid ring-substituted polyanilines via direct phosphonation to polymer main chains. RSC Advances, 7(62), 39306-39313. doi:10.1039/c7ra04678b

Ghil, L.-J., Youn, T.-Y., Park, N.-R., & Rhee, H.-W. (2013). Proton Conductive Nano-Channel Membranes Based on Polyaniline with Phosphonic Acid Moieties for Low Relative Humidity. Journal of Nanoscience and Nanotechnology, 13(12), 7912-7915. doi:10.1166/jnn.2013.8118

Quílez-Bermejo, J., Ghisolfi, A., Grau-Marín, D., San-Fabián, E., Morallón, E., & Cazorla-Amorós, D. (2019). Post-synthetic efficient functionalization of polyaniline with phosphorus-containing groups. Effect of phosphorus on electrochemical properties. European Polymer Journal, 119, 272-280. doi:10.1016/j.eurpolymj.2019.07.048

Zhan, Z., Zhang, Y., & Zhang, Y. (2020). Improving the flame retardancy and electrical conductivity of epoxy resin composites by multifunctional phosphorus-containing polyaniline. Materials Letters, 261, 127092. doi:10.1016/j.matlet.2019.127092

Amaya, T., Abe, Y., Inada, Y., & Hirao, T. (2014). Synthesis of self-doped conducting polyaniline bearing phosphonic acid. Tetrahedron Letters, 55(29), 3976-3978. doi:10.1016/j.tetlet.2014.04.115

Chan, H. S. O., Ho, P. K. H., Ng, S. C., Tan, B. T. G., & Tan, K. L. (1995). A New Water-Soluble, Self-Doping Conducting Polyaniline from Poly(o-aminobenzylphosphonic acid) and Its Sodium Salts: Synthesis and Characterization. Journal of the American Chemical Society, 117(33), 8517-8523. doi:10.1021/ja00138a004

Blanchard, P. E. R., Grosvenor, A. P., Cavell, R. G., & Mar, A. (2008). X-ray Photoelectron and Absorption Spectroscopy of Metal-Rich Phosphides M2P and M3P (M = Cr−Ni). Chemistry of Materials, 20(22), 7081-7088. doi:10.1021/cm802123a

Yang, H., & Bard, A. J. (1992). The application of fast scan cyclic voltammetry. Mechanistic study of the initial stage of electropolymerization of aniline in aqueous solutions. Journal of Electroanalytical Chemistry, 339(1-2), 423-449. doi:10.1016/0022-0728(92)80466-h

Yagyu, S., Yoshitake, M., Tsud, N., & Chikyow, T. (2011). Adsorption of Phenylphosphonic Acid on Gold and Platinum Surfaces. Japanese Journal of Applied Physics, 50(8), 081606. doi:10.1143/jjap.50.081606

Laska, J., & Widlarz, J. (2005). Spectroscopic and structural characterization of low molecular weight fractions of polyaniline. Polymer, 46(5), 1485-1495. doi:10.1016/j.polymer.2004.12.008

Cotarelo, M. A., Huerta, F., Quijada, C., Mallavia, R., & Vázquez, J. L. (2006). Synthesis and Characterization of Electroactive Films Deposited from Aniline Dimers. Journal of The Electrochemical Society, 153(7), D114. doi:10.1149/1.2198010

Trchová, M., & Stejskal, J. (2011). Polyaniline: The infrared spectroscopy of conducting polymer nanotubes (IUPAC Technical Report). Pure and Applied Chemistry, 83(10), 1803-1817. doi:10.1351/pac-rep-10-02-01

Geniès, E. M., Penneau, J. F., Lapkowski, M., & Boyle, A. (1989). Electropolymerisation reaction mechanism of para-aminodiphenylamine. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 269(1), 63-75. doi:10.1016/0022-0728(89)80104-4

Abidi, M., López-Bernabeu, S., Huerta, F., Montilla, F., Besbes-Hentati, S., & Morallón, E. (2017). Spectroelectrochemical study on the copolymerization of o -aminophenol and aminoterephthalic acid. European Polymer Journal, 91, 386-395. doi:10.1016/j.eurpolymj.2017.04.024

Puziy, A. M., Poddubnaya, O. I., Socha, R. P., Gurgul, J., & Wisniewski, M. (2008). XPS and NMR studies of phosphoric acid activated carbons. Carbon, 46(15), 2113-2123. doi:10.1016/j.carbon.2008.09.010

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem