Mostrar el registro sencillo del ítem
dc.contributor.author | Martínez-Sánchez, Beatriz | es_ES |
dc.contributor.author | Quintero-Jaime, Andrés Felipe | es_ES |
dc.contributor.author | Huerta, Francisco | es_ES |
dc.contributor.author | Cazorla-Amorós, Diego | es_ES |
dc.contributor.author | Morallón, Emilia | es_ES |
dc.date.accessioned | 2021-03-01T08:10:03Z | |
dc.date.available | 2021-03-01T08:10:03Z | |
dc.date.issued | 2020-05 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/162601 | |
dc.description.abstract | [EN] In this study, the phosphonation of a polyaniline (PANI) backbone was achieved in an acid medium by electrochemical methods using aminophenylphosphonic (APPA) monomers. This was done through the electrochemical copolymerization of aniline with either 2- or 4-aminophenylphosphonic acid. Stable, electroactive polymers were obtained after the oxidation of the monomers up to 1.35 V (reversible hydrogen electrode, RHE). X-ray photoelectron spectroscopy (XPS) results revealed that the position of the phosphonic group in the aromatic ring of the monomer affected the amount of phosphorus incorporated into the copolymer. In addition, the redox transitions of the copolymers were examined by in situ Fourier-transform infrared (FTIR) spectroscopy, and it was concluded that their electroactive structures were analogous to those of PANI. From the APPA monomers it was possible to synthesize, in a controlled manner, polymeric materials with significant amounts of phosphorus in their structure through copolymerization with PANI. | es_ES |
dc.description.sponsorship | The authors would like to thank MINECO, FEDER (MAT2016-76595-R) for financial support. A.F.Q.-J. gratefully acknowledges the Generalitat Valenciana for the financial support through the Santiago Grisolia grant (GRISOLIA/2016/084). B.M.-S. acknowledges the Vice-rectorate for Research and Knowledge Transfer of University of Alicante for financial support (AII2018-16), as well as the Spanish Ministry of Science, Innovation and Universities for the FPU grant (FPU18/05127). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Polymers | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Polyaniline | es_ES |
dc.subject | Phosphorus | es_ES |
dc.subject | Electrochemical polymerization | es_ES |
dc.subject | Modified polyaniline | es_ES |
dc.subject.classification | QUIMICA FISICA | es_ES |
dc.title | Synthesis of Phosphorus-Containing Polyanilines by Electrochemical Copolymerization | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/polym12051029 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2016-76595-R/ES/NUEVAS ESTRATEGIAS DE FUNCIONALIZACION ELECTROQUIMICA DE MATERIALES CARBONOSOS NANOESTRUCTURADOS PARA LA REDUCCION DE OXIGENO Y BIOSENSORES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//GRISOLIA%2F2016%2F084/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UA//AII2018-16/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//FPU18%2F05127/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Textil y Papelera - Departament d'Enginyeria Tèxtil i Paperera | es_ES |
dc.description.bibliographicCitation | Martínez-Sánchez, B.; Quintero-Jaime, AF.; Huerta, F.; Cazorla-Amorós, D.; Morallón, E. (2020). Synthesis of Phosphorus-Containing Polyanilines by Electrochemical Copolymerization. Polymers. 12(5):1-16. https://doi.org/10.3390/polym12051029 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/polym12051029 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 16 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 5 | es_ES |
dc.identifier.eissn | 2073-4360 | es_ES |
dc.relation.pasarela | S\415814 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Universidad de Alicante | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | A Review on Conducting Polymers-Based Composites for Energy Storage Application. (2019). Journal of Chemical Reviews, 1(1), 19-34. doi:10.33945/sami/jcr.2019.1.1934 | es_ES |
dc.description.references | Ćirić-Marjanović, G. (2013). Recent advances in polyaniline research: Polymerization mechanisms, structural aspects, properties and applications. Synthetic Metals, 177, 1-47. doi:10.1016/j.synthmet.2013.06.004 | es_ES |
dc.description.references | Jaymand, M. (2013). Recent progress in chemical modification of polyaniline. Progress in Polymer Science, 38(9), 1287-1306. doi:10.1016/j.progpolymsci.2013.05.015 | es_ES |
dc.description.references | Pandey, R. K., & Lakshminarayanan, V. (2009). Electro-Oxidation of Formic Acid, Methanol, and Ethanol on Electrodeposited Pd-Polyaniline Nanofiber Films in Acidic and Alkaline Medium. The Journal of Physical Chemistry C, 113(52), 21596-21603. doi:10.1021/jp908239m | es_ES |
dc.description.references | Wei, H., Yan, X., Wu, S., Luo, Z., Wei, S., & Guo, Z. (2012). Electropolymerized Polyaniline Stabilized Tungsten Oxide Nanocomposite Films: Electrochromic Behavior and Electrochemical Energy Storage. The Journal of Physical Chemistry C, 116(47), 25052-25064. doi:10.1021/jp3090777 | es_ES |
dc.description.references | Gabe, A., Mostazo-López, M. J., Salinas-Torres, D., Morallón, E., & Cazorla-Amorós, D. (2017). Synthesis of conducting polymer/carbon material composites and their application in electrical energy storage. Hybrid Polymer Composite Materials, 173-209. doi:10.1016/b978-0-08-100789-1.00008-3 | es_ES |
dc.description.references | Zhai, D., Liu, B., Shi, Y., Pan, L., Wang, Y., Li, W., … Yu, G. (2013). Highly Sensitive Glucose Sensor Based on Pt Nanoparticle/Polyaniline Hydrogel Heterostructures. ACS Nano, 7(4), 3540-3546. doi:10.1021/nn400482d | es_ES |
dc.description.references | Quílez-Bermejo, J., Morallón, E., & Cazorla-Amorós, D. (2018). Oxygen-reduction catalysis of N-doped carbons prepared via heat treatment of polyaniline at over 1100 °C. Chemical Communications, 54(35), 4441-4444. doi:10.1039/c8cc02105h | es_ES |
dc.description.references | Ćirić-Marjanović, G., Pašti, I., Gavrilov, N., Janošević, A., & Mentus, S. (2013). Carbonised polyaniline and polypyrrole: towards advanced nitrogen-containing carbon materials. Chemical Papers, 67(8). doi:10.2478/s11696-013-0312-1 | es_ES |
dc.description.references | Xu, X., Fu, Q., Gu, H., Guo, Y., Zhou, H., Zhang, J., … Guo, Z. (2020). Polyaniline crystalline nanostructures dependent negative permittivity metamaterials. Polymer, 188, 122129. doi:10.1016/j.polymer.2019.122129 | es_ES |
dc.description.references | Malinauskas, A. (2004). Self-doped polyanilines. Journal of Power Sources, 126(1-2), 214-220. doi:10.1016/j.jpowsour.2003.08.008 | es_ES |
dc.description.references | Gu, H., Zhang, H., Lin, J., Shao, Q., Young, D. P., Sun, L., … Guo, Z. (2018). Large negative giant magnetoresistance at room temperature and electrical transport in cobalt ferrite-polyaniline nanocomposites. Polymer, 143, 324-330. doi:10.1016/j.polymer.2018.04.008 | es_ES |
dc.description.references | Yao, Y., Sun, H., Zhang, Y., & Yin, Z. (2020). Corrosion protection of epoxy coatings containing 2-hydroxyphosphonocarboxylic acid doped polyaniline nanofibers. Progress in Organic Coatings, 139, 105470. doi:10.1016/j.porgcoat.2019.105470 | es_ES |
dc.description.references | Shahadat, M., Ali, S. W., Ahammad, S. Z., & Azam, A. (2020). Polyaniline/carbon nanotube-supported nanocomposite electrode for detection of organic pollutants. Handbook of Nanomaterials for Manufacturing Applications, 279-296. doi:10.1016/b978-0-12-821381-0.00012-0 | es_ES |
dc.description.references | Benyoucef, A., Huerta, F., Vázquez, J. L., & Morallon, E. (2005). Synthesis and in situ FTIRS characterization of conducting polymers obtained from aminobenzoic acid isomers at platinum electrodes. European Polymer Journal, 41(4), 843-852. doi:10.1016/j.eurpolymj.2004.10.047 | es_ES |
dc.description.references | Dkhili, S., López-Bernabeu, S., Huerta, F., Montilla, F., Besbes-Hentati, S., & Morallón, E. (2018). A self-doped polyaniline derivative obtained by electrochemical copolymerization of aminoterephthalic acid and aniline. Synthetic Metals, 245, 61-66. doi:10.1016/j.synthmet.2018.08.005 | es_ES |
dc.description.references | Sanchís, C., Salavagione, H. J., Arias-Pardilla, J., & Morallón, E. (2007). Tuning the electroactivity of conductive polymer at physiological pH. Electrochimica Acta, 52(9), 2978-2986. doi:10.1016/j.electacta.2006.09.031 | es_ES |
dc.description.references | Grigoras, M., Catargiu, A. M., Tudorache, F., & Dobromir, M. (2012). Chemical synthesis and characterization of self-doped N-propanesulfonic acid polyaniline derivatives. Iranian Polymer Journal, 21(2), 131-141. doi:10.1007/s13726-011-0011-0 | es_ES |
dc.description.references | Yue, J., & Epstein, A. J. (1990). Synthesis of self-doped conducting polyaniline. Journal of the American Chemical Society, 112(7), 2800-2801. doi:10.1021/ja00163a051 | es_ES |
dc.description.references | Chatterjee, K., Ganguly, S., Kargupta, K., & Banerjee, D. (2011). Bismuth nitrate doped polyaniline – Characterization and properties for thermoelectric application. Synthetic Metals, 161(3-4), 275-279. doi:10.1016/j.synthmet.2010.11.034 | es_ES |
dc.description.references | Wei, Y., Hariharan, R., & Patel, S. A. (1990). Chemical and electrochemical copolymerization of aniline with alkyl ring-substituted anilines. Macromolecules, 23(3), 758-764. doi:10.1021/ma00205a011 | es_ES |
dc.description.references | Probst, M., & Holze, R. (1997). A systematic spectroelectrochemical investigation of alkyl-substituted anilines and their polymers. Macromolecular Chemistry and Physics, 198(5), 1499-1509. doi:10.1002/macp.1997.021980515 | es_ES |
dc.description.references | Salavagione, H. J., Arias, J., Garcés, P., Morallón, E., Barbero, C., & Vázquez, J. L. (2004). Spectroelectrochemical study of the oxidation of aminophenols on platinum electrode in acid medium. Journal of Electroanalytical Chemistry, 565(2), 375-383. doi:10.1016/j.jelechem.2003.11.005 | es_ES |
dc.description.references | Mu, S. (2004). Electrochemical copolymerization of aniline and o-aminophenol. Synthetic Metals, 143(3), 259-268. doi:10.1016/j.synthmet.2003.12.008 | es_ES |
dc.description.references | Zhang, J., Shan, D., & Mu, S. (2007). A promising copolymer of aniline and m-aminophenol: Chemical preparation, novel electric properties and characterization. Polymer, 48(5), 1269-1275. doi:10.1016/j.polymer.2006.12.021 | es_ES |
dc.description.references | Quintero-Jaime, A. F., Cazorla-Amorós, D., & Morallón, E. (2020). Electrochemical functionalization of single wall carbon nanotubes with phosphorus and nitrogen species. Electrochimica Acta, 340, 135935. doi:10.1016/j.electacta.2020.135935 | es_ES |
dc.description.references | Liu, J., Li, R., Chen, T., Liu, C., Mu, D., Sun, S., … Dai, C. (2020). From bulk to porous: Structure transformation of nitrogen and phosphorous co-doped carbon material via sodium chloride assistance and its application in lithium-sulfur batteries. Journal of Alloys and Compounds, 830, 154638. doi:10.1016/j.jallcom.2020.154638 | es_ES |
dc.description.references | Fonsaca, J. E. S., Domingues, S. H., Orth, E. S., & Zarbin, A. J. G. (2020). A black phosphorus-based cathode for aqueous Na-ion batteries operating under ambient conditions. Chemical Communications, 56(5), 802-805. doi:10.1039/c9cc09279j | es_ES |
dc.description.references | Amaya, T., Kurata, I., Inada, Y., Hatai, T., & Hirao, T. (2017). Synthesis of phosphonic acid ring-substituted polyanilines via direct phosphonation to polymer main chains. RSC Advances, 7(62), 39306-39313. doi:10.1039/c7ra04678b | es_ES |
dc.description.references | Ghil, L.-J., Youn, T.-Y., Park, N.-R., & Rhee, H.-W. (2013). Proton Conductive Nano-Channel Membranes Based on Polyaniline with Phosphonic Acid Moieties for Low Relative Humidity. Journal of Nanoscience and Nanotechnology, 13(12), 7912-7915. doi:10.1166/jnn.2013.8118 | es_ES |
dc.description.references | Quílez-Bermejo, J., Ghisolfi, A., Grau-Marín, D., San-Fabián, E., Morallón, E., & Cazorla-Amorós, D. (2019). Post-synthetic efficient functionalization of polyaniline with phosphorus-containing groups. Effect of phosphorus on electrochemical properties. European Polymer Journal, 119, 272-280. doi:10.1016/j.eurpolymj.2019.07.048 | es_ES |
dc.description.references | Zhan, Z., Zhang, Y., & Zhang, Y. (2020). Improving the flame retardancy and electrical conductivity of epoxy resin composites by multifunctional phosphorus-containing polyaniline. Materials Letters, 261, 127092. doi:10.1016/j.matlet.2019.127092 | es_ES |
dc.description.references | Amaya, T., Abe, Y., Inada, Y., & Hirao, T. (2014). Synthesis of self-doped conducting polyaniline bearing phosphonic acid. Tetrahedron Letters, 55(29), 3976-3978. doi:10.1016/j.tetlet.2014.04.115 | es_ES |
dc.description.references | Chan, H. S. O., Ho, P. K. H., Ng, S. C., Tan, B. T. G., & Tan, K. L. (1995). A New Water-Soluble, Self-Doping Conducting Polyaniline from Poly(o-aminobenzylphosphonic acid) and Its Sodium Salts: Synthesis and Characterization. Journal of the American Chemical Society, 117(33), 8517-8523. doi:10.1021/ja00138a004 | es_ES |
dc.description.references | Blanchard, P. E. R., Grosvenor, A. P., Cavell, R. G., & Mar, A. (2008). X-ray Photoelectron and Absorption Spectroscopy of Metal-Rich Phosphides M2P and M3P (M = Cr−Ni). Chemistry of Materials, 20(22), 7081-7088. doi:10.1021/cm802123a | es_ES |
dc.description.references | Yang, H., & Bard, A. J. (1992). The application of fast scan cyclic voltammetry. Mechanistic study of the initial stage of electropolymerization of aniline in aqueous solutions. Journal of Electroanalytical Chemistry, 339(1-2), 423-449. doi:10.1016/0022-0728(92)80466-h | es_ES |
dc.description.references | Yagyu, S., Yoshitake, M., Tsud, N., & Chikyow, T. (2011). Adsorption of Phenylphosphonic Acid on Gold and Platinum Surfaces. Japanese Journal of Applied Physics, 50(8), 081606. doi:10.1143/jjap.50.081606 | es_ES |
dc.description.references | Laska, J., & Widlarz, J. (2005). Spectroscopic and structural characterization of low molecular weight fractions of polyaniline. Polymer, 46(5), 1485-1495. doi:10.1016/j.polymer.2004.12.008 | es_ES |
dc.description.references | Cotarelo, M. A., Huerta, F., Quijada, C., Mallavia, R., & Vázquez, J. L. (2006). Synthesis and Characterization of Electroactive Films Deposited from Aniline Dimers. Journal of The Electrochemical Society, 153(7), D114. doi:10.1149/1.2198010 | es_ES |
dc.description.references | Trchová, M., & Stejskal, J. (2011). Polyaniline: The infrared spectroscopy of conducting polymer nanotubes (IUPAC Technical Report). Pure and Applied Chemistry, 83(10), 1803-1817. doi:10.1351/pac-rep-10-02-01 | es_ES |
dc.description.references | Geniès, E. M., Penneau, J. F., Lapkowski, M., & Boyle, A. (1989). Electropolymerisation reaction mechanism of para-aminodiphenylamine. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 269(1), 63-75. doi:10.1016/0022-0728(89)80104-4 | es_ES |
dc.description.references | Abidi, M., López-Bernabeu, S., Huerta, F., Montilla, F., Besbes-Hentati, S., & Morallón, E. (2017). Spectroelectrochemical study on the copolymerization of o -aminophenol and aminoterephthalic acid. European Polymer Journal, 91, 386-395. doi:10.1016/j.eurpolymj.2017.04.024 | es_ES |
dc.description.references | Puziy, A. M., Poddubnaya, O. I., Socha, R. P., Gurgul, J., & Wisniewski, M. (2008). XPS and NMR studies of phosphoric acid activated carbons. Carbon, 46(15), 2113-2123. doi:10.1016/j.carbon.2008.09.010 | es_ES |