- -

Synthesis of Phosphorus-Containing Polyanilines by Electrochemical Copolymerization

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Synthesis of Phosphorus-Containing Polyanilines by Electrochemical Copolymerization

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martínez-Sánchez, Beatriz es_ES
dc.contributor.author Quintero-Jaime, Andrés Felipe es_ES
dc.contributor.author Huerta, Francisco es_ES
dc.contributor.author Cazorla-Amorós, Diego es_ES
dc.contributor.author Morallón, Emilia es_ES
dc.date.accessioned 2021-03-01T08:10:03Z
dc.date.available 2021-03-01T08:10:03Z
dc.date.issued 2020-05 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162601
dc.description.abstract [EN] In this study, the phosphonation of a polyaniline (PANI) backbone was achieved in an acid medium by electrochemical methods using aminophenylphosphonic (APPA) monomers. This was done through the electrochemical copolymerization of aniline with either 2- or 4-aminophenylphosphonic acid. Stable, electroactive polymers were obtained after the oxidation of the monomers up to 1.35 V (reversible hydrogen electrode, RHE). X-ray photoelectron spectroscopy (XPS) results revealed that the position of the phosphonic group in the aromatic ring of the monomer affected the amount of phosphorus incorporated into the copolymer. In addition, the redox transitions of the copolymers were examined by in situ Fourier-transform infrared (FTIR) spectroscopy, and it was concluded that their electroactive structures were analogous to those of PANI. From the APPA monomers it was possible to synthesize, in a controlled manner, polymeric materials with significant amounts of phosphorus in their structure through copolymerization with PANI. es_ES
dc.description.sponsorship The authors would like to thank MINECO, FEDER (MAT2016-76595-R) for financial support. A.F.Q.-J. gratefully acknowledges the Generalitat Valenciana for the financial support through the Santiago Grisolia grant (GRISOLIA/2016/084). B.M.-S. acknowledges the Vice-rectorate for Research and Knowledge Transfer of University of Alicante for financial support (AII2018-16), as well as the Spanish Ministry of Science, Innovation and Universities for the FPU grant (FPU18/05127). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Polymers es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Polyaniline es_ES
dc.subject Phosphorus es_ES
dc.subject Electrochemical polymerization es_ES
dc.subject Modified polyaniline es_ES
dc.subject.classification QUIMICA FISICA es_ES
dc.title Synthesis of Phosphorus-Containing Polyanilines by Electrochemical Copolymerization es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/polym12051029 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2016-76595-R/ES/NUEVAS ESTRATEGIAS DE FUNCIONALIZACION ELECTROQUIMICA DE MATERIALES CARBONOSOS NANOESTRUCTURADOS PARA LA REDUCCION DE OXIGENO Y BIOSENSORES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GRISOLIA%2F2016%2F084/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UA//AII2018-16/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//FPU18%2F05127/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Textil y Papelera - Departament d'Enginyeria Tèxtil i Paperera es_ES
dc.description.bibliographicCitation Martínez-Sánchez, B.; Quintero-Jaime, AF.; Huerta, F.; Cazorla-Amorós, D.; Morallón, E. (2020). Synthesis of Phosphorus-Containing Polyanilines by Electrochemical Copolymerization. Polymers. 12(5):1-16. https://doi.org/10.3390/polym12051029 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/polym12051029 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 5 es_ES
dc.identifier.eissn 2073-4360 es_ES
dc.relation.pasarela S\415814 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Universidad de Alicante es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references A Review on Conducting Polymers-Based Composites for Energy Storage Application. (2019). Journal of Chemical Reviews, 1(1), 19-34. doi:10.33945/sami/jcr.2019.1.1934 es_ES
dc.description.references Ćirić-Marjanović, G. (2013). Recent advances in polyaniline research: Polymerization mechanisms, structural aspects, properties and applications. Synthetic Metals, 177, 1-47. doi:10.1016/j.synthmet.2013.06.004 es_ES
dc.description.references Jaymand, M. (2013). Recent progress in chemical modification of polyaniline. Progress in Polymer Science, 38(9), 1287-1306. doi:10.1016/j.progpolymsci.2013.05.015 es_ES
dc.description.references Pandey, R. K., & Lakshminarayanan, V. (2009). Electro-Oxidation of Formic Acid, Methanol, and Ethanol on Electrodeposited Pd-Polyaniline Nanofiber Films in Acidic and Alkaline Medium. The Journal of Physical Chemistry C, 113(52), 21596-21603. doi:10.1021/jp908239m es_ES
dc.description.references Wei, H., Yan, X., Wu, S., Luo, Z., Wei, S., & Guo, Z. (2012). Electropolymerized Polyaniline Stabilized Tungsten Oxide Nanocomposite Films: Electrochromic Behavior and Electrochemical Energy Storage. The Journal of Physical Chemistry C, 116(47), 25052-25064. doi:10.1021/jp3090777 es_ES
dc.description.references Gabe, A., Mostazo-López, M. J., Salinas-Torres, D., Morallón, E., & Cazorla-Amorós, D. (2017). Synthesis of conducting polymer/carbon material composites and their application in electrical energy storage. Hybrid Polymer Composite Materials, 173-209. doi:10.1016/b978-0-08-100789-1.00008-3 es_ES
dc.description.references Zhai, D., Liu, B., Shi, Y., Pan, L., Wang, Y., Li, W., … Yu, G. (2013). Highly Sensitive Glucose Sensor Based on Pt Nanoparticle/Polyaniline Hydrogel Heterostructures. ACS Nano, 7(4), 3540-3546. doi:10.1021/nn400482d es_ES
dc.description.references Quílez-Bermejo, J., Morallón, E., & Cazorla-Amorós, D. (2018). Oxygen-reduction catalysis of N-doped carbons prepared via heat treatment of polyaniline at over 1100 °C. Chemical Communications, 54(35), 4441-4444. doi:10.1039/c8cc02105h es_ES
dc.description.references Ćirić-Marjanović, G., Pašti, I., Gavrilov, N., Janošević, A., & Mentus, S. (2013). Carbonised polyaniline and polypyrrole: towards advanced nitrogen-containing carbon materials. Chemical Papers, 67(8). doi:10.2478/s11696-013-0312-1 es_ES
dc.description.references Xu, X., Fu, Q., Gu, H., Guo, Y., Zhou, H., Zhang, J., … Guo, Z. (2020). Polyaniline crystalline nanostructures dependent negative permittivity metamaterials. Polymer, 188, 122129. doi:10.1016/j.polymer.2019.122129 es_ES
dc.description.references Malinauskas, A. (2004). Self-doped polyanilines. Journal of Power Sources, 126(1-2), 214-220. doi:10.1016/j.jpowsour.2003.08.008 es_ES
dc.description.references Gu, H., Zhang, H., Lin, J., Shao, Q., Young, D. P., Sun, L., … Guo, Z. (2018). Large negative giant magnetoresistance at room temperature and electrical transport in cobalt ferrite-polyaniline nanocomposites. Polymer, 143, 324-330. doi:10.1016/j.polymer.2018.04.008 es_ES
dc.description.references Yao, Y., Sun, H., Zhang, Y., & Yin, Z. (2020). Corrosion protection of epoxy coatings containing 2-hydroxyphosphonocarboxylic acid doped polyaniline nanofibers. Progress in Organic Coatings, 139, 105470. doi:10.1016/j.porgcoat.2019.105470 es_ES
dc.description.references Shahadat, M., Ali, S. W., Ahammad, S. Z., & Azam, A. (2020). Polyaniline/carbon nanotube-supported nanocomposite electrode for detection of organic pollutants. Handbook of Nanomaterials for Manufacturing Applications, 279-296. doi:10.1016/b978-0-12-821381-0.00012-0 es_ES
dc.description.references Benyoucef, A., Huerta, F., Vázquez, J. L., & Morallon, E. (2005). Synthesis and in situ FTIRS characterization of conducting polymers obtained from aminobenzoic acid isomers at platinum electrodes. European Polymer Journal, 41(4), 843-852. doi:10.1016/j.eurpolymj.2004.10.047 es_ES
dc.description.references Dkhili, S., López-Bernabeu, S., Huerta, F., Montilla, F., Besbes-Hentati, S., & Morallón, E. (2018). A self-doped polyaniline derivative obtained by electrochemical copolymerization of aminoterephthalic acid and aniline. Synthetic Metals, 245, 61-66. doi:10.1016/j.synthmet.2018.08.005 es_ES
dc.description.references Sanchís, C., Salavagione, H. J., Arias-Pardilla, J., & Morallón, E. (2007). Tuning the electroactivity of conductive polymer at physiological pH. Electrochimica Acta, 52(9), 2978-2986. doi:10.1016/j.electacta.2006.09.031 es_ES
dc.description.references Grigoras, M., Catargiu, A. M., Tudorache, F., & Dobromir, M. (2012). Chemical synthesis and characterization of self-doped N-propanesulfonic acid polyaniline derivatives. Iranian Polymer Journal, 21(2), 131-141. doi:10.1007/s13726-011-0011-0 es_ES
dc.description.references Yue, J., & Epstein, A. J. (1990). Synthesis of self-doped conducting polyaniline. Journal of the American Chemical Society, 112(7), 2800-2801. doi:10.1021/ja00163a051 es_ES
dc.description.references Chatterjee, K., Ganguly, S., Kargupta, K., & Banerjee, D. (2011). Bismuth nitrate doped polyaniline – Characterization and properties for thermoelectric application. Synthetic Metals, 161(3-4), 275-279. doi:10.1016/j.synthmet.2010.11.034 es_ES
dc.description.references Wei, Y., Hariharan, R., & Patel, S. A. (1990). Chemical and electrochemical copolymerization of aniline with alkyl ring-substituted anilines. Macromolecules, 23(3), 758-764. doi:10.1021/ma00205a011 es_ES
dc.description.references Probst, M., & Holze, R. (1997). A systematic spectroelectrochemical investigation of alkyl-substituted anilines and their polymers. Macromolecular Chemistry and Physics, 198(5), 1499-1509. doi:10.1002/macp.1997.021980515 es_ES
dc.description.references Salavagione, H. J., Arias, J., Garcés, P., Morallón, E., Barbero, C., & Vázquez, J. L. (2004). Spectroelectrochemical study of the oxidation of aminophenols on platinum electrode in acid medium. Journal of Electroanalytical Chemistry, 565(2), 375-383. doi:10.1016/j.jelechem.2003.11.005 es_ES
dc.description.references Mu, S. (2004). Electrochemical copolymerization of aniline and o-aminophenol. Synthetic Metals, 143(3), 259-268. doi:10.1016/j.synthmet.2003.12.008 es_ES
dc.description.references Zhang, J., Shan, D., & Mu, S. (2007). A promising copolymer of aniline and m-aminophenol: Chemical preparation, novel electric properties and characterization. Polymer, 48(5), 1269-1275. doi:10.1016/j.polymer.2006.12.021 es_ES
dc.description.references Quintero-Jaime, A. F., Cazorla-Amorós, D., & Morallón, E. (2020). Electrochemical functionalization of single wall carbon nanotubes with phosphorus and nitrogen species. Electrochimica Acta, 340, 135935. doi:10.1016/j.electacta.2020.135935 es_ES
dc.description.references Liu, J., Li, R., Chen, T., Liu, C., Mu, D., Sun, S., … Dai, C. (2020). From bulk to porous: Structure transformation of nitrogen and phosphorous co-doped carbon material via sodium chloride assistance and its application in lithium-sulfur batteries. Journal of Alloys and Compounds, 830, 154638. doi:10.1016/j.jallcom.2020.154638 es_ES
dc.description.references Fonsaca, J. E. S., Domingues, S. H., Orth, E. S., & Zarbin, A. J. G. (2020). A black phosphorus-based cathode for aqueous Na-ion batteries operating under ambient conditions. Chemical Communications, 56(5), 802-805. doi:10.1039/c9cc09279j es_ES
dc.description.references Amaya, T., Kurata, I., Inada, Y., Hatai, T., & Hirao, T. (2017). Synthesis of phosphonic acid ring-substituted polyanilines via direct phosphonation to polymer main chains. RSC Advances, 7(62), 39306-39313. doi:10.1039/c7ra04678b es_ES
dc.description.references Ghil, L.-J., Youn, T.-Y., Park, N.-R., & Rhee, H.-W. (2013). Proton Conductive Nano-Channel Membranes Based on Polyaniline with Phosphonic Acid Moieties for Low Relative Humidity. Journal of Nanoscience and Nanotechnology, 13(12), 7912-7915. doi:10.1166/jnn.2013.8118 es_ES
dc.description.references Quílez-Bermejo, J., Ghisolfi, A., Grau-Marín, D., San-Fabián, E., Morallón, E., & Cazorla-Amorós, D. (2019). Post-synthetic efficient functionalization of polyaniline with phosphorus-containing groups. Effect of phosphorus on electrochemical properties. European Polymer Journal, 119, 272-280. doi:10.1016/j.eurpolymj.2019.07.048 es_ES
dc.description.references Zhan, Z., Zhang, Y., & Zhang, Y. (2020). Improving the flame retardancy and electrical conductivity of epoxy resin composites by multifunctional phosphorus-containing polyaniline. Materials Letters, 261, 127092. doi:10.1016/j.matlet.2019.127092 es_ES
dc.description.references Amaya, T., Abe, Y., Inada, Y., & Hirao, T. (2014). Synthesis of self-doped conducting polyaniline bearing phosphonic acid. Tetrahedron Letters, 55(29), 3976-3978. doi:10.1016/j.tetlet.2014.04.115 es_ES
dc.description.references Chan, H. S. O., Ho, P. K. H., Ng, S. C., Tan, B. T. G., & Tan, K. L. (1995). A New Water-Soluble, Self-Doping Conducting Polyaniline from Poly(o-aminobenzylphosphonic acid) and Its Sodium Salts: Synthesis and Characterization. Journal of the American Chemical Society, 117(33), 8517-8523. doi:10.1021/ja00138a004 es_ES
dc.description.references Blanchard, P. E. R., Grosvenor, A. P., Cavell, R. G., & Mar, A. (2008). X-ray Photoelectron and Absorption Spectroscopy of Metal-Rich Phosphides M2P and M3P (M = Cr−Ni). Chemistry of Materials, 20(22), 7081-7088. doi:10.1021/cm802123a es_ES
dc.description.references Yang, H., & Bard, A. J. (1992). The application of fast scan cyclic voltammetry. Mechanistic study of the initial stage of electropolymerization of aniline in aqueous solutions. Journal of Electroanalytical Chemistry, 339(1-2), 423-449. doi:10.1016/0022-0728(92)80466-h es_ES
dc.description.references Yagyu, S., Yoshitake, M., Tsud, N., & Chikyow, T. (2011). Adsorption of Phenylphosphonic Acid on Gold and Platinum Surfaces. Japanese Journal of Applied Physics, 50(8), 081606. doi:10.1143/jjap.50.081606 es_ES
dc.description.references Laska, J., & Widlarz, J. (2005). Spectroscopic and structural characterization of low molecular weight fractions of polyaniline. Polymer, 46(5), 1485-1495. doi:10.1016/j.polymer.2004.12.008 es_ES
dc.description.references Cotarelo, M. A., Huerta, F., Quijada, C., Mallavia, R., & Vázquez, J. L. (2006). Synthesis and Characterization of Electroactive Films Deposited from Aniline Dimers. Journal of The Electrochemical Society, 153(7), D114. doi:10.1149/1.2198010 es_ES
dc.description.references Trchová, M., & Stejskal, J. (2011). Polyaniline: The infrared spectroscopy of conducting polymer nanotubes (IUPAC Technical Report). Pure and Applied Chemistry, 83(10), 1803-1817. doi:10.1351/pac-rep-10-02-01 es_ES
dc.description.references Geniès, E. M., Penneau, J. F., Lapkowski, M., & Boyle, A. (1989). Electropolymerisation reaction mechanism of para-aminodiphenylamine. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 269(1), 63-75. doi:10.1016/0022-0728(89)80104-4 es_ES
dc.description.references Abidi, M., López-Bernabeu, S., Huerta, F., Montilla, F., Besbes-Hentati, S., & Morallón, E. (2017). Spectroelectrochemical study on the copolymerization of o -aminophenol and aminoterephthalic acid. European Polymer Journal, 91, 386-395. doi:10.1016/j.eurpolymj.2017.04.024 es_ES
dc.description.references Puziy, A. M., Poddubnaya, O. I., Socha, R. P., Gurgul, J., & Wisniewski, M. (2008). XPS and NMR studies of phosphoric acid activated carbons. Carbon, 46(15), 2113-2123. doi:10.1016/j.carbon.2008.09.010 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem