- -

MUC1 Aptamer-Capped Mesoporous Silica Nanoparticles for Navitoclax Resistance Overcoming in Triple-Negative Breast Cancer

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

MUC1 Aptamer-Capped Mesoporous Silica Nanoparticles for Navitoclax Resistance Overcoming in Triple-Negative Breast Cancer

Mostrar el registro completo del ítem

Vivo-Llorca, G.; Candela-Noguera, V.; Alfonso-Navarro, M.; García-Fernández, A.; Orzáez, M.; Sancenón Galarza, F.; Martínez-Máñez, R. (2020). MUC1 Aptamer-Capped Mesoporous Silica Nanoparticles for Navitoclax Resistance Overcoming in Triple-Negative Breast Cancer. Chemistry - A European Journal. 26:16318-16327. https://doi.org/10.1002/chem.202001579

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162606

Ficheros en el ítem

Metadatos del ítem

Título: MUC1 Aptamer-Capped Mesoporous Silica Nanoparticles for Navitoclax Resistance Overcoming in Triple-Negative Breast Cancer
Autor: Vivo-Llorca, Gema Candela-Noguera, Vicente Alfonso-Navarro, María García-Fernández, Alba Orzáez, Mar Sancenón Galarza, Félix Martínez-Máñez, Ramón
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype. In the last years, navitoclax has emerged as a possible treatment for TNBC. Nevertheless, rapid navitoclax resistance onset has been ...[+]
Palabras clave: Apoptosis , Cancer , Drug delivery , Nanoparticles , Targeting
Derechos de uso: Cerrado
Fuente:
Chemistry - A European Journal. (issn: 0947-6539 )
DOI: 10.1002/chem.202001579
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/chem.202001579
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/SAF2017-84689-R/ES/DESCIFRANDO Y MODULANDO EL INTERACTOMA TRANSMEMBRANA DE LAS PROTEINAS BCL-2 COMO DIANA ANTITUMORAL/
...[+]
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/SAF2017-84689-R/ES/DESCIFRANDO Y MODULANDO EL INTERACTOMA TRANSMEMBRANA DE LAS PROTEINAS BCL-2 COMO DIANA ANTITUMORAL/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F065/
info:eu-repo/grantAgreement/MECD//FPU15%2F02753/ES/FPU15%2F02753/
info:eu-repo/grantAgreement/GVA//ACIF%2F2017%2F072/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F024/ES/Sistemas avanzados de liberación controlada/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-100910-B-C41/ES/MATERIALES POROSOS INTELIGENTES MULTIFUNCIONALES Y DISPOSITIVOS ELECTRONICOS PARA LA LIBERACION DE FARMACOS, DETECCION DE DROGAS Y BIOMARCADORES Y COMUNICACION A NANOESCALA/
[-]
Agradecimientos:
Gema Vivo-Llorca thanks the Generalitat Valenciana for her fellowship ACIF/2017/072. Vicente Candela-Noguera thanks the Spanish Government for his fellowship FPU15/02753. We would like to thank Servier for the workart used ...[+]
Tipo: Artículo

References

Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394-424. doi:10.3322/caac.21492

Globocan Globoscan2018 947 2018.

Turashvili, G., Lightbody, E. D., Tyryshkin, K., SenGupta, S. K., Elliott, B. E., Madarnas, Y., … Nicol, C. J. B. (2018). Novel prognostic and predictive microRNA targets for triple‐negative breast cancer. The FASEB Journal, 32(11), 5937-5954. doi:10.1096/fj.201800120r [+]
Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394-424. doi:10.3322/caac.21492

Globocan Globoscan2018 947 2018.

Turashvili, G., Lightbody, E. D., Tyryshkin, K., SenGupta, S. K., Elliott, B. E., Madarnas, Y., … Nicol, C. J. B. (2018). Novel prognostic and predictive microRNA targets for triple‐negative breast cancer. The FASEB Journal, 32(11), 5937-5954. doi:10.1096/fj.201800120r

Li, H., Liu, L., Chang, H., Zou, Z., & Xing, D. (2018). Downregulation of MCL-1 and upregulation of PUMA using mTOR inhibitors enhance antitumor efficacy of BH3 mimetics in triple-negative breast cancer. Cell Death & Disease, 9(2). doi:10.1038/s41419-017-0169-2

Dai, X., Xiang, L., Li, T., & Bai, Z. (2016). Cancer Hallmarks, Biomarkers and Breast Cancer Molecular Subtypes. Journal of Cancer, 7(10), 1281-1294. doi:10.7150/jca.13141

Opferman, J. T. (2015). Attacking cancer’s Achilles heel: antagonism of anti-apoptotic BCL-2 family members. The FEBS Journal, 283(14), 2661-2675. doi:10.1111/febs.13472

Kalkavan, H., & Green, D. R. (2017). MOMP, cell suicide as a BCL-2 family business. Cell Death & Differentiation, 25(1), 46-55. doi:10.1038/cdd.2017.179

Wei, M. C., Zong, W.-X., Cheng, E. H.-Y., Lindsten, T., Panoutsakopoulou, V., Ross, A. J., … Korsmeyer, S. J. (2001). Proapoptotic BAX and BAK: A Requisite Gateway to Mitochondrial Dysfunction and Death. Science, 292(5517), 727-730. doi:10.1126/science.1059108

Ottman, R., Nguyen, C., Lorch, R., & Chakrabarti, R. (2014). MicroRNA expressions associated with progression of prostate cancer cells to antiandrogen therapy resistance. Molecular Cancer, 13(1). doi:10.1186/1476-4598-13-1

Belmar, J., & Fesik, S. W. (2015). Small molecule Mcl-1 inhibitors for the treatment of cancer. Pharmacology & Therapeutics, 145, 76-84. doi:10.1016/j.pharmthera.2014.08.003

Cancer. Gov.2019 1–2.

Kaefer, A., Yang, J., Noertersheuser, P., Mensing, S., Humerickhouse, R., Awni, W., & Xiong, H. (2014). Mechanism-based pharmacokinetic/pharmacodynamic meta-analysis of navitoclax (ABT-263) induced thrombocytopenia. Cancer Chemotherapy and Pharmacology, 74(3), 593-602. doi:10.1007/s00280-014-2530-9

Louault, K., Bonneaud, T. L., Séveno, C., Gomez-Bougie, P., Nguyen, F., Gautier, F., … Souazé, F. (2019). Interactions between cancer-associated fibroblasts and tumor cells promote MCL-1 dependency in estrogen receptor-positive breast cancers. Oncogene, 38(17), 3261-3273. doi:10.1038/s41388-018-0635-z

Campbell, K. J., Dhayade, S., Ferrari, N., Sims, A. H., Johnson, E., Mason, S. M., … Blyth, K. (2018). MCL-1 is a prognostic indicator and drug target in breast cancer. Cell Death & Disease, 9(2). doi:10.1038/s41419-017-0035-2

Kotschy, A., Szlavik, Z., Murray, J., Davidson, J., Maragno, A. L., Le Toumelin-Braizat, G., … Moujalled, D. M. (2016). The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature, 538(7626), 477-482. doi:10.1038/nature19830

Merino, D., Whittle, J. R., Vaillant, F., Serrano, A., Gong, J.-N., Giner, G., … Lindeman, G. J. (2017). Synergistic action of the MCL-1 inhibitor S63845 with current therapies in preclinical models of triple-negative and HER2-amplified breast cancer. Science Translational Medicine, 9(401). doi:10.1126/scitranslmed.aam7049

Barenholz, Y. (Chezy). (2012). Doxil® — The first FDA-approved nano-drug: Lessons learned. Journal of Controlled Release, 160(2), 117-134. doi:10.1016/j.jconrel.2012.03.020

Wolfram, J., Zhu, M., Yang, Y., Shen, J., Gentile, E., Paolino, D., … Zhao, Y. (2015). Safety of Nanoparticles in Medicine. Current Drug Targets, 16(14), 1671-1681. doi:10.2174/1389450115666140804124808

Yu, M., Gu, Z., Ottewell, T., & Yu, C. (2017). Silica-based nanoparticles for therapeutic protein delivery. Journal of Materials Chemistry B, 5(18), 3241-3252. doi:10.1039/c7tb00244k

Fang, J., Nakamura, H., & Maeda, H. (2011). The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Advanced Drug Delivery Reviews, 63(3), 136-151. doi:10.1016/j.addr.2010.04.009

Lu, J., Liong, M., Li, Z., Zink, J. I., & Tamanoi, F. (2010). Biocompatibility, Biodistribution, and Drug-Delivery Efficiency of Mesoporous Silica Nanoparticles for Cancer Therapy in Animals. Small, 6(16), 1794-1805. doi:10.1002/smll.201000538

Hanafi-Bojd, M. Y., Moosavian Kalat, S. A., Taghdisi, S. M., Ansari, L., Abnous, K., & Malaekeh-Nikouei, B. (2017). MUC1 aptamer-conjugated mesoporous silica nanoparticles effectively target breast cancer cells. Drug Development and Industrial Pharmacy, 44(1), 13-18. doi:10.1080/03639045.2017.1371734

Wang, Y., Zhao, Q., Han, N., Bai, L., Li, J., Liu, J., … Wang, S. (2015). Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine: Nanotechnology, Biology and Medicine, 11(2), 313-327. doi:10.1016/j.nano.2014.09.014

Yang, Y., & Yu, C. (2016). Advances in silica based nanoparticles for targeted cancer therapy. Nanomedicine: Nanotechnology, Biology and Medicine, 12(2), 317-332. doi:10.1016/j.nano.2015.10.018

Zhao, S., Xu, M., Cao, C., Yu, Q., Zhou, Y., & Liu, J. (2017). A redox-responsive strategy using mesoporous silica nanoparticles for co-delivery of siRNA and doxorubicin. Journal of Materials Chemistry B, 5(33), 6908-6919. doi:10.1039/c7tb00613f

Pei, P., Yang, F., Liu, J., Hu, H., Du, X., Hanagata, N., … Zhu, Y. (2018). Composite-dissolving microneedle patches for chemotherapy and photothermal therapy in superficial tumor treatment. Biomaterials Science, 6(6), 1414-1423. doi:10.1039/c8bm00005k

Florek, J., Caillard, R., & Kleitz, F. (2017). Evaluation of mesoporous silica nanoparticles for oral drug delivery – current status and perspective of MSNs drug carriers. Nanoscale, 9(40), 15252-15277. doi:10.1039/c7nr05762h

Farjadian, F., Roointan, A., Mohammadi-Samani, S., & Hosseini, M. (2019). Mesoporous silica nanoparticles: Synthesis, pharmaceutical applications, biodistribution, and biosafety assessment. Chemical Engineering Journal, 359, 684-705. doi:10.1016/j.cej.2018.11.156

Mamaeva, V., Sahlgren, C., & Lindén, M. (2013). Mesoporous silica nanoparticles in medicine—Recent advances. Advanced Drug Delivery Reviews, 65(5), 689-702. doi:10.1016/j.addr.2012.07.018

Wu, S.-H., Mou, C.-Y., & Lin, H.-P. (2013). Synthesis of mesoporous silica nanoparticles. Chemical Society Reviews, 42(9), 3862. doi:10.1039/c3cs35405a

Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456

Aznar, E., Villalonga, R., Giménez, C., Sancenón, F., Marcos, M. D., Martínez-Máñez, R., … Amorós, P. (2013). Glucose-triggered release using enzyme-gated mesoporous silica nanoparticles. Chemical Communications, 49(57), 6391. doi:10.1039/c3cc42210k

Giménez, C., de la Torre, C., Gorbe, M., Aznar, E., Sancenón, F., Murguía, J. R., … Amorós, P. (2015). Gated Mesoporous Silica Nanoparticles for the Controlled Delivery of Drugs in Cancer Cells. Langmuir, 31(12), 3753-3762. doi:10.1021/acs.langmuir.5b00139

Llopis-Lorente, A., Lozano-Torres, B., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2017). Mesoporous silica materials for controlled delivery based on enzymes. Journal of Materials Chemistry B, 5(17), 3069-3083. doi:10.1039/c7tb00348j

García‐Fernández, A., Aznar, E., Martínez‐Máñez, R., & Sancenón, F. (2019). New Advances in In Vivo Applications of Gated Mesoporous Silica as Drug Delivery Nanocarriers. Small, 16(3), 1902242. doi:10.1002/smll.201902242

Mekaru, H., Lu, J., & Tamanoi, F. (2015). Development of mesoporous silica-based nanoparticles with controlled release capability for cancer therapy. Advanced Drug Delivery Reviews, 95, 40-49. doi:10.1016/j.addr.2015.09.009

Möller, K., & Bein, T. (2016). Talented Mesoporous Silica Nanoparticles. Chemistry of Materials, 29(1), 371-388. doi:10.1021/acs.chemmater.6b03629

Wen, J., Yang, K., Liu, F., Li, H., Xu, Y., & Sun, S. (2017). Diverse gatekeepers for mesoporous silica nanoparticle based drug delivery systems. Chemical Society Reviews, 46(19), 6024-6045. doi:10.1039/c7cs00219j

Croissant, J. G., Fatieiev, Y., Almalik, A., & Khashab, N. M. (2017). Mesoporous Silica and Organosilica Nanoparticles: Physical Chemistry, Biosafety, Delivery Strategies, and Biomedical Applications. Advanced Healthcare Materials, 7(4), 1700831. doi:10.1002/adhm.201700831

Argyo, C., Weiss, V., Bräuchle, C., & Bein, T. (2013). Multifunctional Mesoporous Silica Nanoparticles as a Universal Platform for Drug Delivery. Chemistry of Materials, 26(1), 435-451. doi:10.1021/cm402592t

Lim, W. Q., Phua, S. Z. F., Xu, H. V., Sreejith, S., & Zhao, Y. (2016). Recent advances in multifunctional silica-based hybrid nanocarriers for bioimaging and cancer therapy. Nanoscale, 8(25), 12510-12519. doi:10.1039/c5nr07853a

Nimjee, S. M., Rusconi, C. P., & Sullenger, B. A. (2005). Aptamers: An Emerging Class of Therapeutics. Annual Review of Medicine, 56(1), 555-583. doi:10.1146/annurev.med.56.062904.144915

Hernandez, F. J., Hernandez, L. I., Pinto, A., Schäfer, T., & Özalp, V. C. (2013). Targeting cancer cells with controlled release nanocapsules based on a single aptamer. Chemical Communications, 49(13), 1285. doi:10.1039/c2cc37370j

Poonia, N., Lather, V., & Pandita, D. (2018). Mesoporous silica nanoparticles: a smart nanosystem for management of breast cancer. Drug Discovery Today, 23(2), 315-332. doi:10.1016/j.drudis.2017.10.022

Vandghanooni, S., Barar, J., Eskandani, M., & Omidi, Y. (2020). Aptamer-conjugated mesoporous silica nanoparticles for simultaneous imaging and therapy of cancer. TrAC Trends in Analytical Chemistry, 123, 115759. doi:10.1016/j.trac.2019.115759

Xie, X., Li, F., Zhang, H., Lu, Y., Lian, S., Lin, H., … Jia, L. (2016). EpCAM aptamer-functionalized mesoporous silica nanoparticles for efficient colon cancer cell-targeted drug delivery. European Journal of Pharmaceutical Sciences, 83, 28-35. doi:10.1016/j.ejps.2015.12.014

Shen, Y., Li, M., Liu, T., Liu, J., Xie, Y., Zhang, J., … Liu, H. (2019). <p>A dual-functional HER2 aptamer-conjugated, pH-activated mesoporous silica nanocarrier-based drug delivery system provides in vitro synergistic cytotoxicity in HER2-positive breast cancer cells</p>. International Journal of Nanomedicine, Volume 14, 4029-4044. doi:10.2147/ijn.s201688

Yang, Y., Zhao, W., Tan, W., Lai, Z., Fang, D., Jiang, L., … Lai, Y. (2019). An Efficient Cell-Targeting Drug Delivery System Based on Aptamer-Modified Mesoporous Silica Nanoparticles. Nanoscale Research Letters, 14(1). doi:10.1186/s11671-019-3208-3

Pascual, L., Cerqueira-Coutinho, C., García-Fernández, A., de Luis, B., Bernardes, E. S., Albernaz, M. S., … Sancenón, F. (2017). MUC1 aptamer-capped mesoporous silica nanoparticles for controlled drug delivery and radio-imaging applications. Nanomedicine: Nanotechnology, Biology and Medicine, 13(8), 2495-2505. doi:10.1016/j.nano.2017.08.006

Banyay, M., Sarkar, M., & Gräslund, A. (2003). A library of IR bands of nucleic acids in solution. Biophysical Chemistry, 104(2), 477-488. doi:10.1016/s0301-4622(03)00035-8

Wang, R., Yang, L., Li, S., Ye, D., Yang, L., Liu, Q., … Li, X. (2018). Quercetin Inhibits Breast Cancer Stem Cells via Downregulation of Aldehyde Dehydrogenase 1A1 (ALDH1A1), Chemokine Receptor Type 4 (CXCR4), Mucin 1 (MUC1), and Epithelial Cell Adhesion Molecule (EpCAM). Medical Science Monitor, 24, 412-420. doi:10.12659/msm.908022

Wilson, W. H., O’Connor, O. A., Czuczman, M. S., LaCasce, A. S., Gerecitano, J. F., Leonard, J. P., … Humerickhouse, R. A. (2010). Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. The Lancet Oncology, 11(12), 1149-1159. doi:10.1016/s1470-2045(10)70261-8

Gandhi, L., Camidge, D. R., Ribeiro de Oliveira, M., Bonomi, P., Gandara, D., Khaira, D., … Rudin, C. M. (2011). Phase I Study of Navitoclax (ABT-263), a Novel Bcl-2 Family Inhibitor, in Patients With Small-Cell Lung Cancer and Other Solid Tumors. Journal of Clinical Oncology, 29(7), 909-916. doi:10.1200/jco.2010.31.6208

Tse, C., Shoemaker, A. R., Adickes, J., Anderson, M. G., Chen, J., Jin, S., … Elmore, S. W. (2008). ABT-263: A Potent and Orally Bioavailable Bcl-2 Family Inhibitor. Cancer Research, 68(9), 3421-3428. doi:10.1158/0008-5472.can-07-5836

Debrincat, M. A., Pleines, I., Lebois, M., Lane, R. M., Holmes, M. L., Corbin, J., … Josefsson, E. C. (2015). BCL-2 is dispensable for thrombopoiesis and platelet survival. Cell Death & Disease, 6(4), e1721-e1721. doi:10.1038/cddis.2015.97

Schoenwaelder, S. M., Jarman, K. E., Gardiner, E. E., Hua, M., Qiao, J., White, M. J., … Jackson, S. P. (2011). Bcl-xL–inhibitory BH3 mimetics can induce a transient thrombocytopathy that undermines the hemostatic function of platelets. Blood, 118(6), 1663-1674. doi:10.1182/blood-2011-04-347849

Muñoz‐Espín, D., Rovira, M., Galiana, I., Giménez, C., Lozano‐Torres, B., Paez‐Ribes, M., … Serrano, M. (2018). A versatile drug delivery system targeting senescent cells. EMBO Molecular Medicine, 10(9). doi:10.15252/emmm.201809355

Zhang, L., Chen, Y., Li, Z., Li, L., Saint-Cricq, P., Li, C., … Zink, J. I. (2016). Tailored Synthesis of Octopus-type Janus Nanoparticles for Synergistic Actively-Targeted and Chemo-Photothermal Therapy. Angewandte Chemie International Edition, 55(6), 2118-2121. doi:10.1002/anie.201510409

Zhang, L., Chen, Y., Li, Z., Li, L., Saint-Cricq, P., Li, C., … Zink, J. I. (2016). Tailored Synthesis of Octopus-type Janus Nanoparticles for Synergistic Actively-Targeted and Chemo-Photothermal Therapy. Angewandte Chemie, 128(6), 2158-2161. doi:10.1002/ange.201510409

Schmid, D., Jarvis, G. E., Fay, F., Small, D. M., Greene, M. K., Majkut, J., … Scott, C. J. (2014). Nanoencapsulation of ABT-737 and camptothecin enhances their clinical potential through synergistic antitumor effects and reduction of systemic toxicity. Cell Death & Disease, 5(10), e1454-e1454. doi:10.1038/cddis.2014.413

Janicka, M., & Gubernator, J. (2016). Use of nanotechnology for improved pharmacokinetics and activity of immunogenic cell death inducers used in cancer chemotherapy. Expert Opinion on Drug Delivery, 14(9), 1059-1075. doi:10.1080/17425247.2017.1266333

Chun, K.-H., Park, J. H., & Fan, S. (2017). Predicting and Overcoming Chemotherapeutic Resistance in Breast Cancer. Translational Research in Breast Cancer, 59-104. doi:10.1007/978-981-10-6020-5_4

Yin, P. T., Pongkulapa, T., Cho, H.-Y., Han, J., Pasquale, N. J., Rabie, H., … Lee, K.-B. (2018). Overcoming Chemoresistance in Cancer via Combined MicroRNA Therapeutics with Anticancer Drugs Using Multifunctional Magnetic Core–Shell Nanoparticles. ACS Applied Materials & Interfaces, 10(32), 26954-26963. doi:10.1021/acsami.8b09086

Cai, Q., Luo, Z.-S., Pang, W.-Q., Fan, Y.-W., Chen, X.-H., & Cui, F.-Z. (2001). Dilute Solution Routes to Various Controllable Morphologies of MCM-41 Silica with a Basic Medium. Chemistry of Materials, 13(2), 258-263. doi:10.1021/cm990661z

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem