Mostrar el registro sencillo del ítem
dc.contributor.author | Castellanos-Soriano, Jorge | es_ES |
dc.contributor.author | Herrera-Luna, Jorge Carlos | es_ES |
dc.contributor.author | Díaz Díaz, David | es_ES |
dc.contributor.author | Jiménez Molero, María Consuelo | es_ES |
dc.contributor.author | Pérez-Ruiz, Raúl | es_ES |
dc.date.accessioned | 2021-03-01T08:10:23Z | |
dc.date.available | 2021-03-01T08:10:23Z | |
dc.date.issued | 2020-07-07 | es_ES |
dc.identifier.issn | 2052-4110 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/162607 | |
dc.description.abstract | [EN] Currently, evolution of chemical transformations by visible light irradiation is highly desirable from cost, safety, availability, and environmental friendliness points of view. Besides, activation of less reactive substrates under very mild conditions becomes one of the most challenging tasks in organic synthesis. However, the insufficient energy provided by one photon of visible light for their activation definitely makes necessary the development of new protocols together with the design of new photocatalytic systems to overcome this limitation. In this context, the implementation of biphotonic processes has been found to be a solution for these drawbacks. This new mechanistic paradigm which combines light upconversion processes with energy/electron transfers holds great potential for high energy demanding bond activations, expanding the accessible reactivity window. Here, we wish to highlight the recent applications of biphotonic processes in organic synthesis. | es_ES |
dc.description.sponsorship | Financial support from the Generalitat Valenciana (CIDEGENT/2018/044) and the Spanish Government (CTQ2016-78875-P, BES-2017-080215 and BEAGAL18/00166) is gratefully acknowledged. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Organic Chemistry Frontiers | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Recent Applications of Biphotonic Processes to Organic Synthesis | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/D0QO00466A | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//BEAGAL18%2F00166/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2016-78875-P/ES/CONTROL SUPRAMOLECULAR DE LA FOTORREACTIVIDAD EN MEDIOS MICROHETEROGENOS BASADOS EN AMINOACIDOS: GELES MOLECULARES Y PROTEINAS TRANSPORTADORAS COMO NANORREACTORES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//BES-2017-080215/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//CIDEGENT%2F2018%2F044/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Castellanos-Soriano, J.; Herrera-Luna, JC.; Díaz Díaz, D.; Jiménez Molero, MC.; Pérez-Ruiz, R. (2020). Recent Applications of Biphotonic Processes to Organic Synthesis. Organic Chemistry Frontiers. 7(13):1709-1716. https://doi.org/10.1039/D0QO00466A | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1039/D0QO00466A | es_ES |
dc.description.upvformatpinicio | 1709 | es_ES |
dc.description.upvformatpfin | 1716 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 7 | es_ES |
dc.description.issue | 13 | es_ES |
dc.relation.pasarela | S\413406 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Ciencia, Innovación y Universidades | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Scholes, G. D., Fleming, G. R., Olaya-Castro, A., & van Grondelle, R. (2011). Lessons from nature about solar light harvesting. Nature Chemistry, 3(10), 763-774. doi:10.1038/nchem.1145 | es_ES |
dc.description.references | Scholes, G. D., Mirkovic, T., Turner, D. B., Fassioli, F., & Buchleitner, A. (2012). Solar light harvesting by energy transfer: from ecology to coherence. Energy & Environmental Science, 5(11), 9374. doi:10.1039/c2ee23013e | es_ES |
dc.description.references | Demmig-Adams, B., Stewart, J. J., Burch, T. A., & Adams, W. W. (2014). Insights from Placing Photosynthetic Light Harvesting into Context. The Journal of Physical Chemistry Letters, 5(16), 2880-2889. doi:10.1021/jz5010768 | es_ES |
dc.description.references | Balzani, V., Bergamini, G., & Ceroni, P. (2015). Light: A Very Peculiar Reactant and Product. Angewandte Chemie International Edition, 54(39), 11320-11337. doi:10.1002/anie.201502325 | es_ES |
dc.description.references | Hoffmann, N. (2008). Photochemical Reactions as Key Steps in Organic Synthesis. Chemical Reviews, 108(3), 1052-1103. doi:10.1021/cr0680336 | es_ES |
dc.description.references | N. J. Turro , V.Ramamurthy and J. C.Scaiano , Modern Molecular Photochemistry of Organic Molecules , University Science Books , Sausalito, CA , 2010 , p. 1084 | es_ES |
dc.description.references | A. G. Griesbeck , M.Oelgemöller and F.Ghetti , CRC Handbook of Organic Photochemistry and Photobiology , CRC Press , Boca Raton, FL , 3rd edn, 2012 , p. 1694 | es_ES |
dc.description.references | A. Albini and M.Fagnoni , Handbook of Synthetic Photochemistry , Wiley-VCH , Weinheim , 2009 , p. 463 | es_ES |
dc.description.references | M. Montaldi , A.Credi , L.Prodi and T. M.Gandolfi , CRC Handbook of Photochemistry , CRC Press , Boca Raton, FL , 3rd edn, 2006 , p. 664 | es_ES |
dc.description.references | A. G. Griesbeck and J.Mattay , Synthetic Organic Photochemistry , Marcel Dekker , New York , 2005 , p. 648 | es_ES |
dc.description.references | Hossain, A., Bhattacharyya, A., & Reiser, O. (2019). Copper’s rapid ascent in visible-light photoredox catalysis. Science, 364(6439). doi:10.1126/science.aav9713 | es_ES |
dc.description.references | Zhou, Q., Zou, Y., Lu, L., & Xiao, W. (2018). Visible‐Light‐Induced Organic Photochemical Reactions through Energy‐Transfer Pathways. Angewandte Chemie International Edition, 58(6), 1586-1604. doi:10.1002/anie.201803102 | es_ES |
dc.description.references | Strieth-Kalthoff, F., James, M. J., Teders, M., Pitzer, L., & Glorius, F. (2018). Energy transfer catalysis mediated by visible light: principles, applications, directions. Chemical Society Reviews, 47(19), 7190-7202. doi:10.1039/c8cs00054a | es_ES |
dc.description.references | Twilton, J., Le, C., Zhang, P., Shaw, M. H., Evans, R. W., & MacMillan, D. W. C. (2017). The merger of transition metal and photocatalysis. Nature Reviews Chemistry, 1(7). doi:10.1038/s41570-017-0052 | es_ES |
dc.description.references | Romero, N. A., & Nicewicz, D. A. (2016). Organic Photoredox Catalysis. Chemical Reviews, 116(17), 10075-10166. doi:10.1021/acs.chemrev.6b00057 | es_ES |
dc.description.references | Skubi, K. L., Blum, T. R., & Yoon, T. P. (2016). Dual Catalysis Strategies in Photochemical Synthesis. Chemical Reviews, 116(17), 10035-10074. doi:10.1021/acs.chemrev.6b00018 | es_ES |
dc.description.references | Prier, C. K., Rankic, D. A., & MacMillan, D. W. C. (2013). Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis. Chemical Reviews, 113(7), 5322-5363. doi:10.1021/cr300503r | es_ES |
dc.description.references | Schultz, D. M., & Yoon, T. P. (2014). Solar Synthesis: Prospects in Visible Light Photocatalysis. Science, 343(6174). doi:10.1126/science.1239176 | es_ES |
dc.description.references | Zhang, M., Lin, Y., Mullen, T. J., Lin, W., Sun, L.-D., Yan, C.-H., … Liu, G. (2012). Improving Hematite’s Solar Water Splitting Efficiency by Incorporating Rare-Earth Upconversion Nanomaterials. The Journal of Physical Chemistry Letters, 3(21), 3188-3192. doi:10.1021/jz301444a | es_ES |
dc.description.references | Gonell, F., Haro, M., Sánchez, R. S., Negro, P., Mora-Seró, I., Bisquert, J., … Gimenez, S. (2014). Photon Up-Conversion with Lanthanide-Doped Oxide Particles for Solar H2 Generation. The Journal of Physical Chemistry C, 118(21), 11279-11284. doi:10.1021/jp503743e | es_ES |
dc.description.references | Ye, C., Zhou, L., Wang, X., & Liang, Z. (2016). Photon upconversion: from two-photon absorption (TPA) to triplet–triplet annihilation (TTA). Physical Chemistry Chemical Physics, 18(16), 10818-10835. doi:10.1039/c5cp07296d | es_ES |
dc.description.references | Sun, Q.-C., Ding, Y. C., Sagar, D. M., & Nagpal, P. (2017). Photon upconversion towards applications in energy conversion and bioimaging. Progress in Surface Science, 92(4), 281-316. doi:10.1016/j.progsurf.2017.09.003 | es_ES |
dc.description.references | Frazer, L., Gallaher, J. K., & Schmidt, T. W. (2017). Optimizing the Efficiency of Solar Photon Upconversion. ACS Energy Letters, 2(6), 1346-1354. doi:10.1021/acsenergylett.7b00237 | es_ES |
dc.description.references | Gulzar, A., Xu, J., Yang, P., He, F., & Xu, L. (2017). Upconversion processes: versatile biological applications and biosafety. Nanoscale, 9(34), 12248-12282. doi:10.1039/c7nr01836c | es_ES |
dc.description.references | Nanda, K. D., & Krylov, A. I. (2017). Visualizing the Contributions of Virtual States to Two-Photon Absorption Cross Sections by Natural Transition Orbitals of Response Transition Density Matrices. The Journal of Physical Chemistry Letters, 8(14), 3256-3265. doi:10.1021/acs.jpclett.7b01422 | es_ES |
dc.description.references | Vendrell-Criado, V., Rodríguez-Muñiz, G. M., Yamaji, M., Lhiaubet-Vallet, V., Cuquerella, M. C., & Miranda, M. A. (2013). Two-Photon Chemistry from Upper Triplet States of Thymine. Journal of the American Chemical Society, 135(44), 16714-16719. doi:10.1021/ja408997j | es_ES |
dc.description.references | Alzueta, O. R., Cadet, J., Cuquerella, M. C., & Miranda, M. A. (2020). Photosensitised biphotonic chemistry of pyrimidine derivatives. Organic & Biomolecular Chemistry, 18(12), 2227-2232. doi:10.1039/d0ob00132e | es_ES |
dc.description.references | Zheng, Y.-C., Zheng, M.-L., Li, K., Chen, S., Zhao, Z.-S., Wang, X.-S., & Duan, X.-M. (2015). Novel carbazole-based two-photon photosensitizer for efficient DNA photocleavage in anaerobic condition using near-infrared light. RSC Advances, 5(1), 770-774. doi:10.1039/c4ra11133h | es_ES |
dc.description.references | Gattuso, H., Dumont, E., Marazzi, M., & Monari, A. (2016). Two-photon-absorption DNA sensitization via solvated electron production: unraveling photochemical pathways by molecular modeling and simulation. Physical Chemistry Chemical Physics, 18(27), 18598-18606. doi:10.1039/c6cp02592g | es_ES |
dc.description.references | Kerzig, C., & Wenger, O. S. (2019). Reactivity control of a photocatalytic system by changing the light intensity. Chemical Science, 10(48), 11023-11029. doi:10.1039/c9sc04584h | es_ES |
dc.description.references | Yamaji, M., Suwa, Y., Shimokawa, R., Paris, C., & Miranda, M. Á. (2015). Photochemical reactions of halogenated aromatic 1,3-diketones in solution studied by steady state, one- and two-color laser flash photolyses. Photochemical & Photobiological Sciences, 14(9), 1673-1684. doi:10.1039/c5pp00211g | es_ES |
dc.description.references | Hennig, A.-L. K., Deodato, D., Asad, N., Herbivo, C., & Dore, T. M. (2019). Two-Photon Excitable Photoremovable Protecting Groups Based on the Quinoline Scaffold for Use in Biology. The Journal of Organic Chemistry, 85(2), 726-744. doi:10.1021/acs.joc.9b02780 | es_ES |
dc.description.references | Gertsen, A. S., Koerstz, M., & Mikkelsen, K. V. (2018). Benchmarking triplet–triplet annihilation photon upconversion schemes. Physical Chemistry Chemical Physics, 20(17), 12182-12192. doi:10.1039/c8cp00588e | es_ES |
dc.description.references | Barawi, M., Fresno, F., Pérez-Ruiz, R., & de la Peña O’Shea, V. A. (2018). Photoelectrochemical Hydrogen Evolution Driven by Visible-to-Ultraviolet Photon Upconversion. ACS Applied Energy Materials, 2(1), 207-211. doi:10.1021/acsaem.8b01916 | es_ES |
dc.description.references | Yanai, N., & Kimizuka, N. (2017). New Triplet Sensitization Routes for Photon Upconversion: Thermally Activated Delayed Fluorescence Molecules, Inorganic Nanocrystals, and Singlet-to-Triplet Absorption. Accounts of Chemical Research, 50(10), 2487-2495. doi:10.1021/acs.accounts.7b00235 | es_ES |
dc.description.references | Schulze, T. F., & Schmidt, T. W. (2015). Photochemical upconversion: present status and prospects for its application to solar energy conversion. Energy & Environmental Science, 8(1), 103-125. doi:10.1039/c4ee02481h | es_ES |
dc.description.references | Zhou, J., Liu, Q., Feng, W., Sun, Y., & Li, F. (2014). Upconversion Luminescent Materials: Advances and Applications. Chemical Reviews, 115(1), 395-465. doi:10.1021/cr400478f | es_ES |
dc.description.references | Chen, G., Qiu, H., Prasad, P. N., & Chen, X. (2014). Upconversion Nanoparticles: Design, Nanochemistry, and Applications in Theranostics. Chemical Reviews, 114(10), 5161-5214. doi:10.1021/cr400425h | es_ES |
dc.description.references | Schmidt, T. W., & Castellano, F. N. (2014). Photochemical Upconversion: The Primacy of Kinetics. The Journal of Physical Chemistry Letters, 5(22), 4062-4072. doi:10.1021/jz501799m | es_ES |
dc.description.references | McCusker, C. E., & Castellano, F. N. (2013). Orange-to-blue and red-to-green photon upconversion with a broadband absorbing copper(i) MLCT sensitizer. Chemical Communications, 49(34), 3537. doi:10.1039/c3cc40778k | es_ES |
dc.description.references | Börjesson, K., Dzebo, D., Albinsson, B., & Moth-Poulsen, K. (2013). Photon upconversion facilitated molecular solar energy storage. Journal of Materials Chemistry A, 1(30), 8521. doi:10.1039/c3ta12002c | es_ES |
dc.description.references | Guo, S., Wu, W., Guo, H., & Zhao, J. (2012). Room-Temperature Long-Lived Triplet Excited States of Naphthalenediimides and Their Applications as Organic Triplet Photosensitizers for Photooxidation and Triplet–Triplet Annihilation Upconversions. The Journal of Organic Chemistry, 77(8), 3933-3943. doi:10.1021/jo3003002 | es_ES |
dc.description.references | Gallavardin, T., Armagnat, C., Maury, O., Baldeck, P. L., Lindgren, M., Monnereau, C., & Andraud, C. (2012). An improved singlet oxygen sensitizer with two-photon absorption and emission in the biological transparency window as a result of ground state symmetry-breaking. Chem. Commun., 48(11), 1689-1691. doi:10.1039/c2cc15904j | es_ES |
dc.description.references | Khnayzer, R. S., Blumhoff, J., Harrington, J. A., Haefele, A., Deng, F., & Castellano, F. N. (2012). Upconversion-powered photoelectrochemistry. Chem. Commun., 48(2), 209-211. doi:10.1039/c1cc16015j | es_ES |
dc.description.references | Zhao, J., Ji, S., & Guo, H. (2011). Triplet–triplet annihilation based upconversion: from triplet sensitizers and triplet acceptors to upconversion quantum yields. RSC Advances, 1(6), 937. doi:10.1039/c1ra00469g | es_ES |
dc.description.references | Majek, M., Faltermeier, U., Dick, B., Pérez-Ruiz, R., & Jacobi von Wangelin, A. (2015). Application of Visible-to-UV Photon Upconversion to Photoredox Catalysis: The Activation of Aryl Bromides. Chemistry - A European Journal, 21(44), 15496-15501. doi:10.1002/chem.201502698 | es_ES |
dc.description.references | Häring, M., Pérez-Ruiz, R., Jacobi von Wangelin, A., & Díaz, D. D. (2015). Intragel photoreduction of aryl halides by green-to-blue upconversion under aerobic conditions. Chemical Communications, 51(94), 16848-16851. doi:10.1039/c5cc06917c | es_ES |
dc.description.references | López-Calixto, C. G., Liras, M., de la Peña O’Shea, V. A., & Pérez-Ruiz, R. (2018). Synchronized biphotonic process triggering C C coupling catalytic reactions. Applied Catalysis B: Environmental, 237, 18-23. doi:10.1016/j.apcatb.2018.05.062 | es_ES |
dc.description.references | Ravetz, B. D., Pun, A. B., Churchill, E. M., Congreve, D. N., Rovis, T., & Campos, L. M. (2019). Photoredox catalysis using infrared light via triplet fusion upconversion. Nature, 565(7739), 343-346. doi:10.1038/s41586-018-0835-2 | es_ES |
dc.description.references | Tokunaga, A., Uriarte, L. M., Mutoh, K., Fron, E., Hofkens, J., Sliwa, M., & Abe, J. (2019). Photochromic Reaction by Red Light via Triplet Fusion Upconversion. Journal of the American Chemical Society, 141(44), 17744-17753. doi:10.1021/jacs.9b08219 | es_ES |
dc.description.references | El Roz, K. A., & Castellano, F. N. (2017). Photochemical upconversion in water. Chem. Commun., 53(85), 11705-11708. doi:10.1039/c7cc07188d | es_ES |
dc.description.references | Xu, W., Liang, W., Wu, W., Fan, C., Rao, M., Su, D., … Yang, C. (2018). Supramolecular Assembly-Improved Triplet-Triplet Annihilation Upconversion in Aqueous Solution. Chemistry - A European Journal, 24(62), 16677-16685. doi:10.1002/chem.201804001 | es_ES |
dc.description.references | Kouno, H., Sasaki, Y., Yanai, N., & Kimizuka, N. (2019). Supramolecular Crowding Can Avoid Oxygen Quenching of Photon Upconversion in Water. Chemistry – A European Journal, 25(24), 6124-6130. doi:10.1002/chem.201806076 | es_ES |
dc.description.references | Kerzig, C., & Wenger, O. S. (2018). Sensitized triplet–triplet annihilation upconversion in water and its application to photochemical transformations. Chemical Science, 9(32), 6670-6678. doi:10.1039/c8sc01829d | es_ES |
dc.description.references | Ghosh, I., Ghosh, T., Bardagi, J. I., & König, B. (2014). Reduction of aryl halides by consecutive visible light-induced electron transfer processes. Science, 346(6210), 725-728. doi:10.1126/science.1258232 | es_ES |
dc.description.references | Zeng, L., Liu, T., He, C., Shi, D., Zhang, F., & Duan, C. (2016). Organized Aggregation Makes Insoluble Perylene Diimide Efficient for the Reduction of Aryl Halides via Consecutive Visible Light-Induced Electron-Transfer Processes. Journal of the American Chemical Society, 138(12), 3958-3961. doi:10.1021/jacs.5b12931 | es_ES |
dc.description.references | He, J., Li, J., Han, Q., Si, C., Niu, G., Li, M., … Niu, J. (2019). Photoactive Metal–Organic Framework for the Reduction of Aryl Halides by the Synergistic Effect of Consecutive Photoinduced Electron-Transfer and Hydrogen-Atom-Transfer Processes. ACS Applied Materials & Interfaces, 12(2), 2199-2206. doi:10.1021/acsami.9b13538 | es_ES |
dc.description.references | Marchini, M., Gualandi, A., Mengozzi, L., Franchi, P., Lucarini, M., Cozzi, P. G., … Ceroni, P. (2018). Mechanistic insights into two-photon-driven photocatalysis in organic synthesis. Physical Chemistry Chemical Physics, 20(12), 8071-8076. doi:10.1039/c7cp08011e | es_ES |
dc.description.references | Bardagi, J. I., Ghosh, I., Schmalzbauer, M., Ghosh, T., & König, B. (2017). Anthraquinones as Photoredox Catalysts for the Reductive Activation of Aryl Halides. European Journal of Organic Chemistry, 2018(1), 34-40. doi:10.1002/ejoc.201701461 | es_ES |
dc.description.references | Ghosh, I., & König, B. (2016). Chromoselective Photocatalysis: Controlled Bond Activation through Light-Color Regulation of Redox Potentials. Angewandte Chemie International Edition, 55(27), 7676-7679. doi:10.1002/anie.201602349 | es_ES |
dc.description.references | Das, A., Ghosh, I., & König, B. (2016). Synthesis of pyrrolo[1,2-a]quinolines and ullazines by visible light mediated one- and twofold annulation of N-arylpyrroles with arylalkynes. Chemical Communications, 52(56), 8695-8698. doi:10.1039/c6cc04366f | es_ES |
dc.description.references | Marzo, L., Ghosh, I., Esteban, F., & König, B. (2016). Metal-Free Photocatalyzed Cross Coupling of Bromoheteroarenes with Pyrroles. ACS Catalysis, 6(10), 6780-6784. doi:10.1021/acscatal.6b01452 | es_ES |
dc.description.references | Shaikh, R. S., Düsel, S. J. S., & König, B. (2016). Visible-Light Photo-Arbuzov Reaction of Aryl Bromides and Trialkyl Phosphites Yielding Aryl Phosphonates. ACS Catalysis, 6(12), 8410-8414. doi:10.1021/acscatal.6b02591 | es_ES |
dc.description.references | Graml, A., Ghosh, I., & König, B. (2017). Synthesis of Arylated Nucleobases by Visible Light Photoredox Catalysis. The Journal of Organic Chemistry, 82(7), 3552-3560. doi:10.1021/acs.joc.7b00088 | es_ES |
dc.description.references | Meyer, A. U., Slanina, T., Heckel, A., & König, B. (2017). Lanthanide Ions Coupled with Photoinduced Electron Transfer Generate Strong Reduction Potentials from Visible Light. Chemistry - A European Journal, 23(33), 7900-7904. doi:10.1002/chem.201701665 | es_ES |
dc.description.references | Häring, M., Abramov, A., Okumura, K., Ghosh, I., König, B., Yanai, N., … Díaz Díaz, D. (2018). Air-Sensitive Photoredox Catalysis Performed under Aerobic Conditions in Gel Networks. The Journal of Organic Chemistry, 83(15), 7928-7938. doi:10.1021/acs.joc.8b00797 | es_ES |
dc.description.references | Haimerl, J. M., Ghosh, I., König, B., Lupton, J. M., & Vogelsang, J. (2018). Chemical Photocatalysis with Rhodamine 6G: Investigation of Photoreduction by Simultaneous Fluorescence Correlation Spectroscopy and Fluorescence Lifetime Measurements. The Journal of Physical Chemistry B, 122(47), 10728-10735. doi:10.1021/acs.jpcb.8b08615 | es_ES |
dc.description.references | Brandl, F., Bergwinkl, S., Allacher, C., & Dick, B. (2020). Consecutive Photoinduced Electron Transfer (conPET): The Mechanism of the Photocatalyst Rhodamine 6G. Chemistry – A European Journal, 26(35), 7946-7954. doi:10.1002/chem.201905167 | es_ES |
dc.description.references | Eriksen, J., Lund, H., Nyvad, A. I., Yamato, T., Mitchell, R. H., Dingle, T. W., … Mahedevan, R. (1983). Electron-transfer Fluorescence Quenching of Radical Ions. Acta Chemica Scandinavica, 37b, 459-466. doi:10.3891/acta.chem.scand.37b-0459 | es_ES |
dc.description.references | Fujita, M., Ishida, A., Majima, T., & Takamuku, S. (1996). Lifetimes of Radical Anions of Dicyanoanthracene, Phenazine, and Anthraquinone in the Excited State from the Selective Electron-Transfer Quenching. The Journal of Physical Chemistry, 100(13), 5382-5387. doi:10.1021/jp953203w | es_ES |
dc.description.references | T. Shida , Electronic Absorption Spectra of Radical Ions , Elsevier , Amsterdam , 1988 , pp. 246 | es_ES |
dc.description.references | Neumeier, M., Sampedro, D., Májek, M., de la Peña O’Shea, V. A., Jacobi von Wangelin, A., & Pérez-Ruiz, R. (2017). Dichromatic Photocatalytic Substitutions of Aryl Halides with a Small Organic Dye. Chemistry - A European Journal, 24(1), 105-108. doi:10.1002/chem.201705326 | es_ES |
dc.description.references | Ciamician, G. (1912). The Photochemistry of the Future. Science, 36(926), 385-394. doi:10.1126/science.36.926.385 | es_ES |
dc.description.references | Gust, D., Moore, T. A., & Moore, A. L. (1998). Mimicking bacterial photosynthesis. Pure and Applied Chemistry, 70(11), 2189-2200. doi:10.1351/pac199870112189 | es_ES |
dc.description.references | Braslavsky, S. E. (2007). Glossary of terms used in photochemistry, 3rd edition (IUPAC Recommendations 2006). Pure and Applied Chemistry, 79(3), 293-465. doi:10.1351/pac200779030293 | es_ES |