Scholes, G. D., Fleming, G. R., Olaya-Castro, A., & van Grondelle, R. (2011). Lessons from nature about solar light harvesting. Nature Chemistry, 3(10), 763-774. doi:10.1038/nchem.1145
Scholes, G. D., Mirkovic, T., Turner, D. B., Fassioli, F., & Buchleitner, A. (2012). Solar light harvesting by energy transfer: from ecology to coherence. Energy & Environmental Science, 5(11), 9374. doi:10.1039/c2ee23013e
Demmig-Adams, B., Stewart, J. J., Burch, T. A., & Adams, W. W. (2014). Insights from Placing Photosynthetic Light Harvesting into Context. The Journal of Physical Chemistry Letters, 5(16), 2880-2889. doi:10.1021/jz5010768
[+]
Scholes, G. D., Fleming, G. R., Olaya-Castro, A., & van Grondelle, R. (2011). Lessons from nature about solar light harvesting. Nature Chemistry, 3(10), 763-774. doi:10.1038/nchem.1145
Scholes, G. D., Mirkovic, T., Turner, D. B., Fassioli, F., & Buchleitner, A. (2012). Solar light harvesting by energy transfer: from ecology to coherence. Energy & Environmental Science, 5(11), 9374. doi:10.1039/c2ee23013e
Demmig-Adams, B., Stewart, J. J., Burch, T. A., & Adams, W. W. (2014). Insights from Placing Photosynthetic Light Harvesting into Context. The Journal of Physical Chemistry Letters, 5(16), 2880-2889. doi:10.1021/jz5010768
Balzani, V., Bergamini, G., & Ceroni, P. (2015). Light: A Very Peculiar Reactant and Product. Angewandte Chemie International Edition, 54(39), 11320-11337. doi:10.1002/anie.201502325
Hoffmann, N. (2008). Photochemical Reactions as Key Steps in Organic Synthesis. Chemical Reviews, 108(3), 1052-1103. doi:10.1021/cr0680336
N. J. Turro , V.Ramamurthy and J. C.Scaiano , Modern Molecular Photochemistry of Organic Molecules , University Science Books , Sausalito, CA , 2010 , p. 1084
A. G. Griesbeck , M.Oelgemöller and F.Ghetti , CRC Handbook of Organic Photochemistry and Photobiology , CRC Press , Boca Raton, FL , 3rd edn, 2012 , p. 1694
A. Albini and M.Fagnoni , Handbook of Synthetic Photochemistry , Wiley-VCH , Weinheim , 2009 , p. 463
M. Montaldi , A.Credi , L.Prodi and T. M.Gandolfi , CRC Handbook of Photochemistry , CRC Press , Boca Raton, FL , 3rd edn, 2006 , p. 664
A. G. Griesbeck and J.Mattay , Synthetic Organic Photochemistry , Marcel Dekker , New York , 2005 , p. 648
Hossain, A., Bhattacharyya, A., & Reiser, O. (2019). Copper’s rapid ascent in visible-light photoredox catalysis. Science, 364(6439). doi:10.1126/science.aav9713
Zhou, Q., Zou, Y., Lu, L., & Xiao, W. (2018). Visible‐Light‐Induced Organic Photochemical Reactions through Energy‐Transfer Pathways. Angewandte Chemie International Edition, 58(6), 1586-1604. doi:10.1002/anie.201803102
Strieth-Kalthoff, F., James, M. J., Teders, M., Pitzer, L., & Glorius, F. (2018). Energy transfer catalysis mediated by visible light: principles, applications, directions. Chemical Society Reviews, 47(19), 7190-7202. doi:10.1039/c8cs00054a
Twilton, J., Le, C., Zhang, P., Shaw, M. H., Evans, R. W., & MacMillan, D. W. C. (2017). The merger of transition metal and photocatalysis. Nature Reviews Chemistry, 1(7). doi:10.1038/s41570-017-0052
Romero, N. A., & Nicewicz, D. A. (2016). Organic Photoredox Catalysis. Chemical Reviews, 116(17), 10075-10166. doi:10.1021/acs.chemrev.6b00057
Skubi, K. L., Blum, T. R., & Yoon, T. P. (2016). Dual Catalysis Strategies in Photochemical Synthesis. Chemical Reviews, 116(17), 10035-10074. doi:10.1021/acs.chemrev.6b00018
Prier, C. K., Rankic, D. A., & MacMillan, D. W. C. (2013). Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis. Chemical Reviews, 113(7), 5322-5363. doi:10.1021/cr300503r
Schultz, D. M., & Yoon, T. P. (2014). Solar Synthesis: Prospects in Visible Light Photocatalysis. Science, 343(6174). doi:10.1126/science.1239176
Zhang, M., Lin, Y., Mullen, T. J., Lin, W., Sun, L.-D., Yan, C.-H., … Liu, G. (2012). Improving Hematite’s Solar Water Splitting Efficiency by Incorporating Rare-Earth Upconversion Nanomaterials. The Journal of Physical Chemistry Letters, 3(21), 3188-3192. doi:10.1021/jz301444a
Gonell, F., Haro, M., Sánchez, R. S., Negro, P., Mora-Seró, I., Bisquert, J., … Gimenez, S. (2014). Photon Up-Conversion with Lanthanide-Doped Oxide Particles for Solar H2 Generation. The Journal of Physical Chemistry C, 118(21), 11279-11284. doi:10.1021/jp503743e
Ye, C., Zhou, L., Wang, X., & Liang, Z. (2016). Photon upconversion: from two-photon absorption (TPA) to triplet–triplet annihilation (TTA). Physical Chemistry Chemical Physics, 18(16), 10818-10835. doi:10.1039/c5cp07296d
Sun, Q.-C., Ding, Y. C., Sagar, D. M., & Nagpal, P. (2017). Photon upconversion towards applications in energy conversion and bioimaging. Progress in Surface Science, 92(4), 281-316. doi:10.1016/j.progsurf.2017.09.003
Frazer, L., Gallaher, J. K., & Schmidt, T. W. (2017). Optimizing the Efficiency of Solar Photon Upconversion. ACS Energy Letters, 2(6), 1346-1354. doi:10.1021/acsenergylett.7b00237
Gulzar, A., Xu, J., Yang, P., He, F., & Xu, L. (2017). Upconversion processes: versatile biological applications and biosafety. Nanoscale, 9(34), 12248-12282. doi:10.1039/c7nr01836c
Nanda, K. D., & Krylov, A. I. (2017). Visualizing the Contributions of Virtual States to Two-Photon Absorption Cross Sections by Natural Transition Orbitals of Response Transition Density Matrices. The Journal of Physical Chemistry Letters, 8(14), 3256-3265. doi:10.1021/acs.jpclett.7b01422
Vendrell-Criado, V., Rodríguez-Muñiz, G. M., Yamaji, M., Lhiaubet-Vallet, V., Cuquerella, M. C., & Miranda, M. A. (2013). Two-Photon Chemistry from Upper Triplet States of Thymine. Journal of the American Chemical Society, 135(44), 16714-16719. doi:10.1021/ja408997j
Alzueta, O. R., Cadet, J., Cuquerella, M. C., & Miranda, M. A. (2020). Photosensitised biphotonic chemistry of pyrimidine derivatives. Organic & Biomolecular Chemistry, 18(12), 2227-2232. doi:10.1039/d0ob00132e
Zheng, Y.-C., Zheng, M.-L., Li, K., Chen, S., Zhao, Z.-S., Wang, X.-S., & Duan, X.-M. (2015). Novel carbazole-based two-photon photosensitizer for efficient DNA photocleavage in anaerobic condition using near-infrared light. RSC Advances, 5(1), 770-774. doi:10.1039/c4ra11133h
Gattuso, H., Dumont, E., Marazzi, M., & Monari, A. (2016). Two-photon-absorption DNA sensitization via solvated electron production: unraveling photochemical pathways by molecular modeling and simulation. Physical Chemistry Chemical Physics, 18(27), 18598-18606. doi:10.1039/c6cp02592g
Kerzig, C., & Wenger, O. S. (2019). Reactivity control of a photocatalytic system by changing the light intensity. Chemical Science, 10(48), 11023-11029. doi:10.1039/c9sc04584h
Yamaji, M., Suwa, Y., Shimokawa, R., Paris, C., & Miranda, M. Á. (2015). Photochemical reactions of halogenated aromatic 1,3-diketones in solution studied by steady state, one- and two-color laser flash photolyses. Photochemical & Photobiological Sciences, 14(9), 1673-1684. doi:10.1039/c5pp00211g
Hennig, A.-L. K., Deodato, D., Asad, N., Herbivo, C., & Dore, T. M. (2019). Two-Photon Excitable Photoremovable Protecting Groups Based on the Quinoline Scaffold for Use in Biology. The Journal of Organic Chemistry, 85(2), 726-744. doi:10.1021/acs.joc.9b02780
Gertsen, A. S., Koerstz, M., & Mikkelsen, K. V. (2018). Benchmarking triplet–triplet annihilation photon upconversion schemes. Physical Chemistry Chemical Physics, 20(17), 12182-12192. doi:10.1039/c8cp00588e
Barawi, M., Fresno, F., Pérez-Ruiz, R., & de la Peña O’Shea, V. A. (2018). Photoelectrochemical Hydrogen Evolution Driven by Visible-to-Ultraviolet Photon Upconversion. ACS Applied Energy Materials, 2(1), 207-211. doi:10.1021/acsaem.8b01916
Yanai, N., & Kimizuka, N. (2017). New Triplet Sensitization Routes for Photon Upconversion: Thermally Activated Delayed Fluorescence Molecules, Inorganic Nanocrystals, and Singlet-to-Triplet Absorption. Accounts of Chemical Research, 50(10), 2487-2495. doi:10.1021/acs.accounts.7b00235
Schulze, T. F., & Schmidt, T. W. (2015). Photochemical upconversion: present status and prospects for its application to solar energy conversion. Energy & Environmental Science, 8(1), 103-125. doi:10.1039/c4ee02481h
Zhou, J., Liu, Q., Feng, W., Sun, Y., & Li, F. (2014). Upconversion Luminescent Materials: Advances and Applications. Chemical Reviews, 115(1), 395-465. doi:10.1021/cr400478f
Chen, G., Qiu, H., Prasad, P. N., & Chen, X. (2014). Upconversion Nanoparticles: Design, Nanochemistry, and Applications in Theranostics. Chemical Reviews, 114(10), 5161-5214. doi:10.1021/cr400425h
Schmidt, T. W., & Castellano, F. N. (2014). Photochemical Upconversion: The Primacy of Kinetics. The Journal of Physical Chemistry Letters, 5(22), 4062-4072. doi:10.1021/jz501799m
McCusker, C. E., & Castellano, F. N. (2013). Orange-to-blue and red-to-green photon upconversion with a broadband absorbing copper(i) MLCT sensitizer. Chemical Communications, 49(34), 3537. doi:10.1039/c3cc40778k
Börjesson, K., Dzebo, D., Albinsson, B., & Moth-Poulsen, K. (2013). Photon upconversion facilitated molecular solar energy storage. Journal of Materials Chemistry A, 1(30), 8521. doi:10.1039/c3ta12002c
Guo, S., Wu, W., Guo, H., & Zhao, J. (2012). Room-Temperature Long-Lived Triplet Excited States of Naphthalenediimides and Their Applications as Organic Triplet Photosensitizers for Photooxidation and Triplet–Triplet Annihilation Upconversions. The Journal of Organic Chemistry, 77(8), 3933-3943. doi:10.1021/jo3003002
Gallavardin, T., Armagnat, C., Maury, O., Baldeck, P. L., Lindgren, M., Monnereau, C., & Andraud, C. (2012). An improved singlet oxygen sensitizer with two-photon absorption and emission in the biological transparency window as a result of ground state symmetry-breaking. Chem. Commun., 48(11), 1689-1691. doi:10.1039/c2cc15904j
Khnayzer, R. S., Blumhoff, J., Harrington, J. A., Haefele, A., Deng, F., & Castellano, F. N. (2012). Upconversion-powered photoelectrochemistry. Chem. Commun., 48(2), 209-211. doi:10.1039/c1cc16015j
Zhao, J., Ji, S., & Guo, H. (2011). Triplet–triplet annihilation based upconversion: from triplet sensitizers and triplet acceptors to upconversion quantum yields. RSC Advances, 1(6), 937. doi:10.1039/c1ra00469g
Majek, M., Faltermeier, U., Dick, B., Pérez-Ruiz, R., & Jacobi von Wangelin, A. (2015). Application of Visible-to-UV Photon Upconversion to Photoredox Catalysis: The Activation of Aryl Bromides. Chemistry - A European Journal, 21(44), 15496-15501. doi:10.1002/chem.201502698
Häring, M., Pérez-Ruiz, R., Jacobi von Wangelin, A., & Díaz, D. D. (2015). Intragel photoreduction of aryl halides by green-to-blue upconversion under aerobic conditions. Chemical Communications, 51(94), 16848-16851. doi:10.1039/c5cc06917c
López-Calixto, C. G., Liras, M., de la Peña O’Shea, V. A., & Pérez-Ruiz, R. (2018). Synchronized biphotonic process triggering C C coupling catalytic reactions. Applied Catalysis B: Environmental, 237, 18-23. doi:10.1016/j.apcatb.2018.05.062
Ravetz, B. D., Pun, A. B., Churchill, E. M., Congreve, D. N., Rovis, T., & Campos, L. M. (2019). Photoredox catalysis using infrared light via triplet fusion upconversion. Nature, 565(7739), 343-346. doi:10.1038/s41586-018-0835-2
Tokunaga, A., Uriarte, L. M., Mutoh, K., Fron, E., Hofkens, J., Sliwa, M., & Abe, J. (2019). Photochromic Reaction by Red Light via Triplet Fusion Upconversion. Journal of the American Chemical Society, 141(44), 17744-17753. doi:10.1021/jacs.9b08219
El Roz, K. A., & Castellano, F. N. (2017). Photochemical upconversion in water. Chem. Commun., 53(85), 11705-11708. doi:10.1039/c7cc07188d
Xu, W., Liang, W., Wu, W., Fan, C., Rao, M., Su, D., … Yang, C. (2018). Supramolecular Assembly-Improved Triplet-Triplet Annihilation Upconversion in Aqueous Solution. Chemistry - A European Journal, 24(62), 16677-16685. doi:10.1002/chem.201804001
Kouno, H., Sasaki, Y., Yanai, N., & Kimizuka, N. (2019). Supramolecular Crowding Can Avoid Oxygen Quenching of Photon Upconversion in Water. Chemistry – A European Journal, 25(24), 6124-6130. doi:10.1002/chem.201806076
Kerzig, C., & Wenger, O. S. (2018). Sensitized triplet–triplet annihilation upconversion in water and its application to photochemical transformations. Chemical Science, 9(32), 6670-6678. doi:10.1039/c8sc01829d
Ghosh, I., Ghosh, T., Bardagi, J. I., & König, B. (2014). Reduction of aryl halides by consecutive visible light-induced electron transfer processes. Science, 346(6210), 725-728. doi:10.1126/science.1258232
Zeng, L., Liu, T., He, C., Shi, D., Zhang, F., & Duan, C. (2016). Organized Aggregation Makes Insoluble Perylene Diimide Efficient for the Reduction of Aryl Halides via Consecutive Visible Light-Induced Electron-Transfer Processes. Journal of the American Chemical Society, 138(12), 3958-3961. doi:10.1021/jacs.5b12931
He, J., Li, J., Han, Q., Si, C., Niu, G., Li, M., … Niu, J. (2019). Photoactive Metal–Organic Framework for the Reduction of Aryl Halides by the Synergistic Effect of Consecutive Photoinduced Electron-Transfer and Hydrogen-Atom-Transfer Processes. ACS Applied Materials & Interfaces, 12(2), 2199-2206. doi:10.1021/acsami.9b13538
Marchini, M., Gualandi, A., Mengozzi, L., Franchi, P., Lucarini, M., Cozzi, P. G., … Ceroni, P. (2018). Mechanistic insights into two-photon-driven photocatalysis in organic synthesis. Physical Chemistry Chemical Physics, 20(12), 8071-8076. doi:10.1039/c7cp08011e
Bardagi, J. I., Ghosh, I., Schmalzbauer, M., Ghosh, T., & König, B. (2017). Anthraquinones as Photoredox Catalysts for the Reductive Activation of Aryl Halides. European Journal of Organic Chemistry, 2018(1), 34-40. doi:10.1002/ejoc.201701461
Ghosh, I., & König, B. (2016). Chromoselective Photocatalysis: Controlled Bond Activation through Light-Color Regulation of Redox Potentials. Angewandte Chemie International Edition, 55(27), 7676-7679. doi:10.1002/anie.201602349
Das, A., Ghosh, I., & König, B. (2016). Synthesis of pyrrolo[1,2-a]quinolines and ullazines by visible light mediated one- and twofold annulation of N-arylpyrroles with arylalkynes. Chemical Communications, 52(56), 8695-8698. doi:10.1039/c6cc04366f
Marzo, L., Ghosh, I., Esteban, F., & König, B. (2016). Metal-Free Photocatalyzed Cross Coupling of Bromoheteroarenes with Pyrroles. ACS Catalysis, 6(10), 6780-6784. doi:10.1021/acscatal.6b01452
Shaikh, R. S., Düsel, S. J. S., & König, B. (2016). Visible-Light Photo-Arbuzov Reaction of Aryl Bromides and Trialkyl Phosphites Yielding Aryl Phosphonates. ACS Catalysis, 6(12), 8410-8414. doi:10.1021/acscatal.6b02591
Graml, A., Ghosh, I., & König, B. (2017). Synthesis of Arylated Nucleobases by Visible Light Photoredox Catalysis. The Journal of Organic Chemistry, 82(7), 3552-3560. doi:10.1021/acs.joc.7b00088
Meyer, A. U., Slanina, T., Heckel, A., & König, B. (2017). Lanthanide Ions Coupled with Photoinduced Electron Transfer Generate Strong Reduction Potentials from Visible Light. Chemistry - A European Journal, 23(33), 7900-7904. doi:10.1002/chem.201701665
Häring, M., Abramov, A., Okumura, K., Ghosh, I., König, B., Yanai, N., … Díaz Díaz, D. (2018). Air-Sensitive Photoredox Catalysis Performed under Aerobic Conditions in Gel Networks. The Journal of Organic Chemistry, 83(15), 7928-7938. doi:10.1021/acs.joc.8b00797
Haimerl, J. M., Ghosh, I., König, B., Lupton, J. M., & Vogelsang, J. (2018). Chemical Photocatalysis with Rhodamine 6G: Investigation of Photoreduction by Simultaneous Fluorescence Correlation Spectroscopy and Fluorescence Lifetime Measurements. The Journal of Physical Chemistry B, 122(47), 10728-10735. doi:10.1021/acs.jpcb.8b08615
Brandl, F., Bergwinkl, S., Allacher, C., & Dick, B. (2020). Consecutive Photoinduced Electron Transfer (conPET): The Mechanism of the Photocatalyst Rhodamine 6G. Chemistry – A European Journal, 26(35), 7946-7954. doi:10.1002/chem.201905167
Eriksen, J., Lund, H., Nyvad, A. I., Yamato, T., Mitchell, R. H., Dingle, T. W., … Mahedevan, R. (1983). Electron-transfer Fluorescence Quenching of Radical Ions. Acta Chemica Scandinavica, 37b, 459-466. doi:10.3891/acta.chem.scand.37b-0459
Fujita, M., Ishida, A., Majima, T., & Takamuku, S. (1996). Lifetimes of Radical Anions of Dicyanoanthracene, Phenazine, and Anthraquinone in the Excited State from the Selective Electron-Transfer Quenching. The Journal of Physical Chemistry, 100(13), 5382-5387. doi:10.1021/jp953203w
T. Shida , Electronic Absorption Spectra of Radical Ions , Elsevier , Amsterdam , 1988 , pp. 246
Neumeier, M., Sampedro, D., Májek, M., de la Peña O’Shea, V. A., Jacobi von Wangelin, A., & Pérez-Ruiz, R. (2017). Dichromatic Photocatalytic Substitutions of Aryl Halides with a Small Organic Dye. Chemistry - A European Journal, 24(1), 105-108. doi:10.1002/chem.201705326
Ciamician, G. (1912). The Photochemistry of the Future. Science, 36(926), 385-394. doi:10.1126/science.36.926.385
Gust, D., Moore, T. A., & Moore, A. L. (1998). Mimicking bacterial photosynthesis. Pure and Applied Chemistry, 70(11), 2189-2200. doi:10.1351/pac199870112189
Braslavsky, S. E. (2007). Glossary of terms used in photochemistry, 3rd edition (IUPAC Recommendations 2006). Pure and Applied Chemistry, 79(3), 293-465. doi:10.1351/pac200779030293
[-]