Mostrar el registro sencillo del ítem
dc.contributor.author | Castiñeira Ibáñez, Sergio | es_ES |
dc.contributor.author | Tarrazó-Serrano, Daniel | es_ES |
dc.contributor.author | Uris Martínez, Antonio | es_ES |
dc.contributor.author | Rubio Michavila, Constanza | es_ES |
dc.contributor.author | Minin, Oleg V. | es_ES |
dc.contributor.author | Minin, Igor V. | es_ES |
dc.date.accessioned | 2021-03-02T04:31:09Z | |
dc.date.available | 2021-03-02T04:31:09Z | |
dc.date.issued | 2020-12-15 | es_ES |
dc.identifier.issn | 2045-2322 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/162634 | |
dc.description.abstract | [EN] In this study, we report the characteristics of acoustic jets obtained through a mesoscale (radius less than 5 wavelengths) ABS cylinder made with a 3D printer. We have analyzed the influence of cylinder size on the characteristic parameters of an acoustic jet, such as maximum acoustic intensity at focus, Full Width at Half Maximum and length of Acoustic Jet. FWHM below 0.5 wavelength in AJ was experimentally obtained. It has been observed that there are two operating regimes depending on the cylinder radius: the resonant and the non-resonant. In the resonant regime, the excitation of Whispering Gallery Modes results in optimal parameter values of the acoustic jet. However, as it is a resonant regime, any minimal variation in cylinder size, working frequency or refractive index would make resonance disappear. In non-resonant mode, a phononic crystal has been embedded inside the cylinder and the characteristic parameters of the acoustic jet have been studied. These have been observed to improve. Finally, we have shown that curved acoustic jets can be obtained with the ABS cylinder with a phononic crystal embedded inside. | es_ES |
dc.description.sponsorship | This work has been supported by Spanish Ministry of Science, Innovation and Universities (Grant No. RTI2018100792-B-I00). The research was partially supported by Tomsk Polytechnic University Competitiveness Enhancement Program. D. T.-S. acknowledges financial support from Ministerio de Ciencia, Innovacion y Universidades de Espana through Grant BES-2016-077133. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Nature Publishing Group | es_ES |
dc.relation.ispartof | Scientific Reports | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Ultrasonic lens | es_ES |
dc.subject | Acoustic jets | es_ES |
dc.subject | Mesoscale | es_ES |
dc.subject | Phononic crystal | es_ES |
dc.subject | Focusing enhancement | es_ES |
dc.subject | Subwavelength | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Cylindrical 3D printed confgurable ultrasonic lens for subwavelength focusing enhancement | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1038/s41598-020-77165-0 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//BES-2016-077133/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-100792-B-I00/ES/FOCALIZACION Y CONFORMACION DE HACES DE ULTRASONIDOS MEDIANTE LENTES PLANAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Castiñeira Ibáñez, S.; Tarrazó-Serrano, D.; Uris Martínez, A.; Rubio Michavila, C.; Minin, OV.; Minin, IV. (2020). Cylindrical 3D printed confgurable ultrasonic lens for subwavelength focusing enhancement. Scientific Reports. 10(1):1-8. https://doi.org/10.1038/s41598-020-77165-0 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1038/s41598-020-77165-0 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 8 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.pmid | 33319808 | es_ES |
dc.identifier.pmcid | PMC7738512 | es_ES |
dc.relation.pasarela | S\423771 | es_ES |
dc.contributor.funder | Tomsk Polytechnic University | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Chen, Z., Taflove, A. & Backman, V. Photonic nanojet enhancement of backscattering of light by nanoparticles: A potential novel visible-light ultramicroscopy technique. Opt. Express 12, 1214. https://doi.org/10.1364/OPEX.12.001214 (2004). | es_ES |
dc.description.references | Lecler, S., Takakura, Y. & Meyrueis, P. Properties of a three-dimensional photonic jet. Opt. Lett. 30, 2641. https://doi.org/10.1364/OL.30.002641 (2005). | es_ES |
dc.description.references | Luk’yanchuk, B. S., Paniagua-Domínguez, R., Minin, I., Minin, O. & Wang, Z. Refractive index less than two: Photonic nanojets yesterday, today and tomorrow [Invited]. Opt. Mater. Express 7, 1820. https://doi.org/10.1364/OME.7.001820 (2017). | es_ES |
dc.description.references | Wang, H., Wu, X. & Shen, D. Trapping and manipulating nanoparticles in photonic nanojets. Opt. Lett. 41, 1652. https://doi.org/10.1364/OL.41.001652 (2016). | es_ES |
dc.description.references | Wang, Z. et al. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope. Nat. Commun. 2, 218. https://doi.org/10.1038/ncomms1211 (2011). | es_ES |
dc.description.references | Lecler, S., Perrin, S., Leong-Hoi, A. & Montgomery, P. Photonic jet lens. Sci. Rep. 9, 4725. https://doi.org/10.1038/s41598-019-41193-2 (2019). | es_ES |
dc.description.references | Hutchens, T. C. et al. Characterization of novel microsphere chain fiber optic tips for potential use in ophthalmic laser surgery. J. Biomed. Opt. 17, 068004. https://doi.org/10.1117/1.JBO.17.6.068004 (2012). | es_ES |
dc.description.references | Chen, Z., Taflove, A. & Backman, V. Highly efficient optical coupling and transport phenomena in chains of dielectric microspheres. Opt. Lett. 31, 389. https://doi.org/10.1364/OL.31.000389 (2006). | es_ES |
dc.description.references | Mendes, M. J., Tobías, I., Martí, A. & Luque, A. Light concentration in the near-field of dielectric spheroidal particles with mesoscopic sizes. Opt. Express 19, 16207. https://doi.org/10.1364/OE.19.016207 (2011). | es_ES |
dc.description.references | Bonakdar, A. et al. Deep-UV microsphere projection lithography. Opt. Lett. 40, 2537. https://doi.org/10.1364/OPEX.12.0012140 (2015). | es_ES |
dc.description.references | Lee, S. & Li, L. Rapid super-resolution imaging of sub-surface nanostructures beyond diffraction limit by high refractive index microsphere optical nanoscopy. Opt. Commun. 334, 253–257. https://doi.org/10.1016/j.optcom.2014.08.048 (2015). | es_ES |
dc.description.references | Minin, I. V. & Minin, O. V. Terahertz artificial dielectric cuboid lens on substrate for super-resolution images. Opt. Quant. Electron. 49, 326. https://doi.org/10.1364/OPEX.12.0012142 (2017). | es_ES |
dc.description.references | Pacheco-Peña, V., Minin, I. V., Minin, O. V. & Beruete, M. Comprehensive analysis of photonic nanojets in 3D dielectric cuboids excited by surface plasmons. Ann. Phys. 528, 684–692. https://doi.org/10.1364/OPEX.12.0012143 (2016). | es_ES |
dc.description.references | Minin, O. V. & Minin, I. V. Acoustojet: Acoustic analogue of photonic jet phenomenon based on penetrable 3D particle. Opt. Quant. Electron. 49, 54. https://doi.org/10.1007/s11082-017-0893-y (2017). | es_ES |
dc.description.references | Lopes, J. H. et al. Focusing acoustic beams with a ball-shaped lens beyond the diffraction limit. Phys. Rev. Appl. 8, 024013. https://doi.org/10.1103/PhysRevApplied.8.024013 (2017). | es_ES |
dc.description.references | Minin, I. & Minin, O. Mesoscale Acoustical Cylindrical Superlens. In MATEC Web of Conferences, Vol. 155, 01029 (eds. Siemens, E., Mehtiyev, A., Syryamkin, V. & Yurchenko, A.)https://doi.org/10.1051/matecconf/201815501029 (2018). | es_ES |
dc.description.references | Rubio, C., Tarrazó-Serrano, D., Minin, O. V., Uris, A. & Minin, I. V. Acoustical hooks: A new subwavelength self-bending beam. Results Phys. 16, 102921. https://doi.org/10.1016/j.rinp.2019.102921 (2020). | es_ES |
dc.description.references | Veira Canle, D. et al. Practical realization of a sub-$$\lambda $$/2 acoustic jet. Sci. Rep. 9, 5189. https://doi.org/10.1038/s41598-019-41335-6 (2019). | es_ES |
dc.description.references | Pérez-López, S., Fuster, J. M., Minin, I. V., Minin, O. V. & Candelas, P. Tunable subwavelength ultrasound focusing in mesoscale spherical lenses using liquid mixtures. Sci. Rep. 9, 13363. https://doi.org/10.1038/s41598-019-50019-0 (2019). | es_ES |
dc.description.references | Leão-Neto, J. P. et al. Subwavelength focusing beam and superresolution ultrasonic imaging using a core-shell lens. Phys. Rev. Appl. 13, 014062. https://doi.org/10.1103/PhysRevApplied.13.014062 (2020). | es_ES |
dc.description.references | Sánchez-Pérez, J. V. et al. Sound attenuation by a two-dimensional array of rigid cylinders. Phys. Rev. Lett. 80, 5325–5328. https://doi.org/10.1103/PhysRevLett.80.5325 (1998). | es_ES |
dc.description.references | Cervera, F. et al. Refractive acoustic devices for airborne sound. Phys. Rev. Lett. 88, 023902. https://doi.org/10.1103/PhysRevLett.88.0239021 (2001). | es_ES |