- -

Cylindrical 3D printed confgurable ultrasonic lens for subwavelength focusing enhancement

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Cylindrical 3D printed confgurable ultrasonic lens for subwavelength focusing enhancement

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Castiñeira Ibáñez, Sergio es_ES
dc.contributor.author Tarrazó-Serrano, Daniel es_ES
dc.contributor.author Uris Martínez, Antonio es_ES
dc.contributor.author Rubio Michavila, Constanza es_ES
dc.contributor.author Minin, Oleg V. es_ES
dc.contributor.author Minin, Igor V. es_ES
dc.date.accessioned 2021-03-02T04:31:09Z
dc.date.available 2021-03-02T04:31:09Z
dc.date.issued 2020-12-15 es_ES
dc.identifier.issn 2045-2322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162634
dc.description.abstract [EN] In this study, we report the characteristics of acoustic jets obtained through a mesoscale (radius less than 5 wavelengths) ABS cylinder made with a 3D printer. We have analyzed the influence of cylinder size on the characteristic parameters of an acoustic jet, such as maximum acoustic intensity at focus, Full Width at Half Maximum and length of Acoustic Jet. FWHM below 0.5 wavelength in AJ was experimentally obtained. It has been observed that there are two operating regimes depending on the cylinder radius: the resonant and the non-resonant. In the resonant regime, the excitation of Whispering Gallery Modes results in optimal parameter values of the acoustic jet. However, as it is a resonant regime, any minimal variation in cylinder size, working frequency or refractive index would make resonance disappear. In non-resonant mode, a phononic crystal has been embedded inside the cylinder and the characteristic parameters of the acoustic jet have been studied. These have been observed to improve. Finally, we have shown that curved acoustic jets can be obtained with the ABS cylinder with a phononic crystal embedded inside. es_ES
dc.description.sponsorship This work has been supported by Spanish Ministry of Science, Innovation and Universities (Grant No. RTI2018100792-B-I00). The research was partially supported by Tomsk Polytechnic University Competitiveness Enhancement Program. D. T.-S. acknowledges financial support from Ministerio de Ciencia, Innovacion y Universidades de Espana through Grant BES-2016-077133. es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Ultrasonic lens es_ES
dc.subject Acoustic jets es_ES
dc.subject Mesoscale es_ES
dc.subject Phononic crystal es_ES
dc.subject Focusing enhancement es_ES
dc.subject Subwavelength es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Cylindrical 3D printed confgurable ultrasonic lens for subwavelength focusing enhancement es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41598-020-77165-0 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//BES-2016-077133/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-100792-B-I00/ES/FOCALIZACION Y CONFORMACION DE HACES DE ULTRASONIDOS MEDIANTE LENTES PLANAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Castiñeira Ibáñez, S.; Tarrazó-Serrano, D.; Uris Martínez, A.; Rubio Michavila, C.; Minin, OV.; Minin, IV. (2020). Cylindrical 3D printed confgurable ultrasonic lens for subwavelength focusing enhancement. Scientific Reports. 10(1):1-8. https://doi.org/10.1038/s41598-020-77165-0 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41598-020-77165-0 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 8 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 33319808 es_ES
dc.identifier.pmcid PMC7738512 es_ES
dc.relation.pasarela S\423771 es_ES
dc.contributor.funder Tomsk Polytechnic University es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Chen, Z., Taflove, A. & Backman, V. Photonic nanojet enhancement of backscattering of light by nanoparticles: A potential novel visible-light ultramicroscopy technique. Opt. Express 12, 1214. https://doi.org/10.1364/OPEX.12.001214 (2004). es_ES
dc.description.references Lecler, S., Takakura, Y. & Meyrueis, P. Properties of a three-dimensional photonic jet. Opt. Lett. 30, 2641. https://doi.org/10.1364/OL.30.002641 (2005). es_ES
dc.description.references Luk’yanchuk, B. S., Paniagua-Domínguez, R., Minin, I., Minin, O. & Wang, Z. Refractive index less than two: Photonic nanojets yesterday, today and tomorrow [Invited]. Opt. Mater. Express 7, 1820. https://doi.org/10.1364/OME.7.001820 (2017). es_ES
dc.description.references Wang, H., Wu, X. & Shen, D. Trapping and manipulating nanoparticles in photonic nanojets. Opt. Lett. 41, 1652. https://doi.org/10.1364/OL.41.001652 (2016). es_ES
dc.description.references Wang, Z. et al. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope. Nat. Commun. 2, 218. https://doi.org/10.1038/ncomms1211 (2011). es_ES
dc.description.references Lecler, S., Perrin, S., Leong-Hoi, A. & Montgomery, P. Photonic jet lens. Sci. Rep. 9, 4725. https://doi.org/10.1038/s41598-019-41193-2 (2019). es_ES
dc.description.references Hutchens, T. C. et al. Characterization of novel microsphere chain fiber optic tips for potential use in ophthalmic laser surgery. J. Biomed. Opt. 17, 068004. https://doi.org/10.1117/1.JBO.17.6.068004 (2012). es_ES
dc.description.references Chen, Z., Taflove, A. & Backman, V. Highly efficient optical coupling and transport phenomena in chains of dielectric microspheres. Opt. Lett. 31, 389. https://doi.org/10.1364/OL.31.000389 (2006). es_ES
dc.description.references Mendes, M. J., Tobías, I., Martí, A. & Luque, A. Light concentration in the near-field of dielectric spheroidal particles with mesoscopic sizes. Opt. Express 19, 16207. https://doi.org/10.1364/OE.19.016207 (2011). es_ES
dc.description.references Bonakdar, A. et al. Deep-UV microsphere projection lithography. Opt. Lett. 40, 2537. https://doi.org/10.1364/OPEX.12.0012140 (2015). es_ES
dc.description.references Lee, S. & Li, L. Rapid super-resolution imaging of sub-surface nanostructures beyond diffraction limit by high refractive index microsphere optical nanoscopy. Opt. Commun. 334, 253–257. https://doi.org/10.1016/j.optcom.2014.08.048 (2015). es_ES
dc.description.references Minin, I. V. & Minin, O. V. Terahertz artificial dielectric cuboid lens on substrate for super-resolution images. Opt. Quant. Electron. 49, 326. https://doi.org/10.1364/OPEX.12.0012142 (2017). es_ES
dc.description.references Pacheco-Peña, V., Minin, I. V., Minin, O. V. & Beruete, M. Comprehensive analysis of photonic nanojets in 3D dielectric cuboids excited by surface plasmons. Ann. Phys. 528, 684–692. https://doi.org/10.1364/OPEX.12.0012143 (2016). es_ES
dc.description.references Minin, O. V. & Minin, I. V. Acoustojet: Acoustic analogue of photonic jet phenomenon based on penetrable 3D particle. Opt. Quant. Electron. 49, 54. https://doi.org/10.1007/s11082-017-0893-y (2017). es_ES
dc.description.references Lopes, J. H. et al. Focusing acoustic beams with a ball-shaped lens beyond the diffraction limit. Phys. Rev. Appl. 8, 024013. https://doi.org/10.1103/PhysRevApplied.8.024013 (2017). es_ES
dc.description.references Minin, I. & Minin, O. Mesoscale Acoustical Cylindrical Superlens. In MATEC Web of Conferences, Vol. 155, 01029 (eds. Siemens, E., Mehtiyev, A., Syryamkin, V. & Yurchenko, A.)https://doi.org/10.1051/matecconf/201815501029 (2018). es_ES
dc.description.references Rubio, C., Tarrazó-Serrano, D., Minin, O. V., Uris, A. & Minin, I. V. Acoustical hooks: A new subwavelength self-bending beam. Results Phys. 16, 102921. https://doi.org/10.1016/j.rinp.2019.102921 (2020). es_ES
dc.description.references Veira Canle, D. et al. Practical realization of a sub-$$\lambda $$/2 acoustic jet. Sci. Rep. 9, 5189. https://doi.org/10.1038/s41598-019-41335-6 (2019). es_ES
dc.description.references Pérez-López, S., Fuster, J. M., Minin, I. V., Minin, O. V. & Candelas, P. Tunable subwavelength ultrasound focusing in mesoscale spherical lenses using liquid mixtures. Sci. Rep. 9, 13363. https://doi.org/10.1038/s41598-019-50019-0 (2019). es_ES
dc.description.references Leão-Neto, J. P. et al. Subwavelength focusing beam and superresolution ultrasonic imaging using a core-shell lens. Phys. Rev. Appl. 13, 014062. https://doi.org/10.1103/PhysRevApplied.13.014062 (2020). es_ES
dc.description.references Sánchez-Pérez, J. V. et al. Sound attenuation by a two-dimensional array of rigid cylinders. Phys. Rev. Lett. 80, 5325–5328. https://doi.org/10.1103/PhysRevLett.80.5325 (1998). es_ES
dc.description.references Cervera, F. et al. Refractive acoustic devices for airborne sound. Phys. Rev. Lett. 88, 023902. https://doi.org/10.1103/PhysRevLett.88.0239021 (2001). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem