- -

Cylindrical 3D printed confgurable ultrasonic lens for subwavelength focusing enhancement

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Cylindrical 3D printed confgurable ultrasonic lens for subwavelength focusing enhancement

Mostrar el registro completo del ítem

Castiñeira Ibáñez, S.; Tarrazó-Serrano, D.; Uris Martínez, A.; Rubio Michavila, C.; Minin, OV.; Minin, IV. (2020). Cylindrical 3D printed confgurable ultrasonic lens for subwavelength focusing enhancement. Scientific Reports. 10(1):1-8. https://doi.org/10.1038/s41598-020-77165-0

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162634

Ficheros en el ítem

Metadatos del ítem

Título: Cylindrical 3D printed confgurable ultrasonic lens for subwavelength focusing enhancement
Autor: Castiñeira Ibáñez, Sergio Tarrazó-Serrano, Daniel Uris Martínez, Antonio Rubio Michavila, Constanza Minin, Oleg V. Minin, Igor V.
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
[EN] In this study, we report the characteristics of acoustic jets obtained through a mesoscale (radius less than 5 wavelengths) ABS cylinder made with a 3D printer. We have analyzed the influence of cylinder size on the ...[+]
Palabras clave: Ultrasonic lens , Acoustic jets , Mesoscale , Phononic crystal , Focusing enhancement , Subwavelength
Derechos de uso: Reconocimiento (by)
Fuente:
Scientific Reports. (issn: 2045-2322 )
DOI: 10.1038/s41598-020-77165-0
Editorial:
Nature Publishing Group
Versión del editor: https://doi.org/10.1038/s41598-020-77165-0
Código del Proyecto:
info:eu-repo/grantAgreement/AEI//BES-2016-077133/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-100792-B-I00/ES/FOCALIZACION Y CONFORMACION DE HACES DE ULTRASONIDOS MEDIANTE LENTES PLANAS/
Agradecimientos:
This work has been supported by Spanish Ministry of Science, Innovation and Universities (Grant No. RTI2018100792-B-I00). The research was partially supported by Tomsk Polytechnic University Competitiveness Enhancement ...[+]
Tipo: Artículo

References

Chen, Z., Taflove, A. & Backman, V. Photonic nanojet enhancement of backscattering of light by nanoparticles: A potential novel visible-light ultramicroscopy technique. Opt. Express 12, 1214. https://doi.org/10.1364/OPEX.12.001214 (2004).

Lecler, S., Takakura, Y. & Meyrueis, P. Properties of a three-dimensional photonic jet. Opt. Lett. 30, 2641. https://doi.org/10.1364/OL.30.002641 (2005).

Luk’yanchuk, B. S., Paniagua-Domínguez, R., Minin, I., Minin, O. & Wang, Z. Refractive index less than two: Photonic nanojets yesterday, today and tomorrow [Invited]. Opt. Mater. Express 7, 1820. https://doi.org/10.1364/OME.7.001820 (2017). [+]
Chen, Z., Taflove, A. & Backman, V. Photonic nanojet enhancement of backscattering of light by nanoparticles: A potential novel visible-light ultramicroscopy technique. Opt. Express 12, 1214. https://doi.org/10.1364/OPEX.12.001214 (2004).

Lecler, S., Takakura, Y. & Meyrueis, P. Properties of a three-dimensional photonic jet. Opt. Lett. 30, 2641. https://doi.org/10.1364/OL.30.002641 (2005).

Luk’yanchuk, B. S., Paniagua-Domínguez, R., Minin, I., Minin, O. & Wang, Z. Refractive index less than two: Photonic nanojets yesterday, today and tomorrow [Invited]. Opt. Mater. Express 7, 1820. https://doi.org/10.1364/OME.7.001820 (2017).

Wang, H., Wu, X. & Shen, D. Trapping and manipulating nanoparticles in photonic nanojets. Opt. Lett. 41, 1652. https://doi.org/10.1364/OL.41.001652 (2016).

Wang, Z. et al. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope. Nat. Commun. 2, 218. https://doi.org/10.1038/ncomms1211 (2011).

Lecler, S., Perrin, S., Leong-Hoi, A. & Montgomery, P. Photonic jet lens. Sci. Rep. 9, 4725. https://doi.org/10.1038/s41598-019-41193-2 (2019).

Hutchens, T. C. et al. Characterization of novel microsphere chain fiber optic tips for potential use in ophthalmic laser surgery. J. Biomed. Opt. 17, 068004. https://doi.org/10.1117/1.JBO.17.6.068004 (2012).

Chen, Z., Taflove, A. & Backman, V. Highly efficient optical coupling and transport phenomena in chains of dielectric microspheres. Opt. Lett. 31, 389. https://doi.org/10.1364/OL.31.000389 (2006).

Mendes, M. J., Tobías, I., Martí, A. & Luque, A. Light concentration in the near-field of dielectric spheroidal particles with mesoscopic sizes. Opt. Express 19, 16207. https://doi.org/10.1364/OE.19.016207 (2011).

Bonakdar, A. et al. Deep-UV microsphere projection lithography. Opt. Lett. 40, 2537. https://doi.org/10.1364/OPEX.12.0012140 (2015).

Lee, S. & Li, L. Rapid super-resolution imaging of sub-surface nanostructures beyond diffraction limit by high refractive index microsphere optical nanoscopy. Opt. Commun. 334, 253–257. https://doi.org/10.1016/j.optcom.2014.08.048 (2015).

Minin, I. V. & Minin, O. V. Terahertz artificial dielectric cuboid lens on substrate for super-resolution images. Opt. Quant. Electron. 49, 326. https://doi.org/10.1364/OPEX.12.0012142 (2017).

Pacheco-Peña, V., Minin, I. V., Minin, O. V. & Beruete, M. Comprehensive analysis of photonic nanojets in 3D dielectric cuboids excited by surface plasmons. Ann. Phys. 528, 684–692. https://doi.org/10.1364/OPEX.12.0012143 (2016).

Minin, O. V. & Minin, I. V. Acoustojet: Acoustic analogue of photonic jet phenomenon based on penetrable 3D particle. Opt. Quant. Electron. 49, 54. https://doi.org/10.1007/s11082-017-0893-y (2017).

Lopes, J. H. et al. Focusing acoustic beams with a ball-shaped lens beyond the diffraction limit. Phys. Rev. Appl. 8, 024013. https://doi.org/10.1103/PhysRevApplied.8.024013 (2017).

Minin, I. & Minin, O. Mesoscale Acoustical Cylindrical Superlens. In MATEC Web of Conferences, Vol. 155, 01029 (eds. Siemens, E., Mehtiyev, A., Syryamkin, V. & Yurchenko, A.)https://doi.org/10.1051/matecconf/201815501029 (2018).

Rubio, C., Tarrazó-Serrano, D., Minin, O. V., Uris, A. & Minin, I. V. Acoustical hooks: A new subwavelength self-bending beam. Results Phys. 16, 102921. https://doi.org/10.1016/j.rinp.2019.102921 (2020).

Veira Canle, D. et al. Practical realization of a sub-$$\lambda $$/2 acoustic jet. Sci. Rep. 9, 5189. https://doi.org/10.1038/s41598-019-41335-6 (2019).

Pérez-López, S., Fuster, J. M., Minin, I. V., Minin, O. V. & Candelas, P. Tunable subwavelength ultrasound focusing in mesoscale spherical lenses using liquid mixtures. Sci. Rep. 9, 13363. https://doi.org/10.1038/s41598-019-50019-0 (2019).

Leão-Neto, J. P. et al. Subwavelength focusing beam and superresolution ultrasonic imaging using a core-shell lens. Phys. Rev. Appl. 13, 014062. https://doi.org/10.1103/PhysRevApplied.13.014062 (2020).

Sánchez-Pérez, J. V. et al. Sound attenuation by a two-dimensional array of rigid cylinders. Phys. Rev. Lett. 80, 5325–5328. https://doi.org/10.1103/PhysRevLett.80.5325 (1998).

Cervera, F. et al. Refractive acoustic devices for airborne sound. Phys. Rev. Lett. 88, 023902. https://doi.org/10.1103/PhysRevLett.88.0239021 (2001).

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem