- -

Effect of metallacarborane salt H[COSANE] doping on the performance properties of polybenzimidazole membranes for high temperature PEMFCs

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Effect of metallacarborane salt H[COSANE] doping on the performance properties of polybenzimidazole membranes for high temperature PEMFCs

Show full item record

Olvera-Mancilla, J.; Escorihuela, J.; Alexandrova, L.; Andrio, A.; Garcia-Bernabe, A.; Del Castillo, LF.; Compañ Moreno, V. (2020). Effect of metallacarborane salt H[COSANE] doping on the performance properties of polybenzimidazole membranes for high temperature PEMFCs. Soft Matter. 16(32):7624-7635. https://doi.org/10.1039/d0sm00743a

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162646

Files in this item

Item Metadata

Title: Effect of metallacarborane salt H[COSANE] doping on the performance properties of polybenzimidazole membranes for high temperature PEMFCs
Author: Olvera-Mancilla, Jessica Escorihuela, Jorge Alexandrova, Larissa Andrio, Andreu Garcia-Bernabe, Abel Del Castillo, Luis Felipe Compañ Moreno, Vicente
UPV Unit: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Issued date:
Abstract:
[EN] In this paper, a series of composite proton exchange membranes comprising a cobaltacarborane protonated H[Co(C2B9H11)(2)] named (H[COSANE]) and polybenzimidazole (PBI) for a high temperature proton exchange membrane ...[+]
Copyrigths: Reserva de todos los derechos
Source:
Soft Matter. (issn: 1744-683X )
DOI: 10.1039/d0sm00743a
Publisher:
The Royal Society of Chemistry
Publisher version: https://doi.org/10.1039/d0sm00743a
Project ID:
MINISTERIO DE ECONOMIA Y EMPRESA/ENE2015-69203-R
Thanks:
This work was financially supported by the Ministerio de Economia y Competitividad (MINECO) under project ENE/2015-69203-R and by Consejo Nacional de Ciencia y Tecnologia (CONACyT) for the postdoctoral grant to J. O. The ...[+]
Type: Artículo

References

https://earthsky.org/earth/atmospheric-co2-record-high-may-2019

Steele, B. C. H., & Heinzel, A. (2001). Materials for fuel-cell technologies. Nature, 414(6861), 345-352. doi:10.1038/35104620

CLEGHORN, S. (1997). Pem fuel cells for transportation and stationary power generation applications. International Journal of Hydrogen Energy, 22(12), 1137-1144. doi:10.1016/s0360-3199(97)00016-5 [+]
https://earthsky.org/earth/atmospheric-co2-record-high-may-2019

Steele, B. C. H., & Heinzel, A. (2001). Materials for fuel-cell technologies. Nature, 414(6861), 345-352. doi:10.1038/35104620

CLEGHORN, S. (1997). Pem fuel cells for transportation and stationary power generation applications. International Journal of Hydrogen Energy, 22(12), 1137-1144. doi:10.1016/s0360-3199(97)00016-5

Wang, Y., Chen, K. S., Mishler, J., Cho, S. C., & Adroher, X. C. (2011). A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Applied Energy, 88(4), 981-1007. doi:10.1016/j.apenergy.2010.09.030

Savage, J., Tse, Y.-L. S., & Voth, G. A. (2014). Proton Transport Mechanism of Perfluorosulfonic Acid Membranes. The Journal of Physical Chemistry C, 118(31), 17436-17445. doi:10.1021/jp504714d

Mauritz, K. A., & Moore, R. B. (2004). State of Understanding of Nafion. Chemical Reviews, 104(10), 4535-4586. doi:10.1021/cr0207123

Kraytsberg, A., & Ein-Eli, Y. (2014). Review of Advanced Materials for Proton Exchange Membrane Fuel Cells. Energy & Fuels, 28(12), 7303-7330. doi:10.1021/ef501977k

Hickner, M. A., Ghassemi, H., Kim, Y. S., Einsla, B. R., & McGrath, J. E. (2004). Alternative Polymer Systems for Proton Exchange Membranes (PEMs). Chemical Reviews, 104(10), 4587-4612. doi:10.1021/cr020711a

Kongstein, O. E., Berning, T., Børresen, B., Seland, F., & Tunold, R. (2007). Polymer electrolyte fuel cells based on phosphoric acid doped polybenzimidazole (PBI) membranes. Energy, 32(4), 418-422. doi:10.1016/j.energy.2006.07.009

Pant, B., Park, M., & Park, S.-J. (2019). One-Step Synthesis of Silver Nanoparticles Embedded Polyurethane Nano-Fiber/Net Structured Membrane as an Effective Antibacterial Medium. Polymers, 11(7), 1185. doi:10.3390/polym11071185

Suryani, Chang, Y.-N., Lai, J.-Y., & Liu, Y.-L. (2012). Polybenzimidazole (PBI)-functionalized silica nanoparticles modified PBI nanocomposite membranes for proton exchange membranes fuel cells. Journal of Membrane Science, 403-404, 1-7. doi:10.1016/j.memsci.2012.01.043

Escorihuela, J., Sahuquillo, Ó., García-Bernabé, A., Giménez, E., & Compañ, V. (2018). Phosphoric Acid Doped Polybenzimidazole (PBI)/Zeolitic Imidazolate Framework Composite Membranes with Significantly Enhanced Proton Conductivity under Low Humidity Conditions. Nanomaterials, 8(10), 775. doi:10.3390/nano8100775

Escorihuela, J., García-Bernabé, A., Montero, Á., Sahuquillo, Ó., Giménez, E., & Compañ, V. (2019). Ionic Liquid Composite Polybenzimidazol Membranes for High Temperature PEMFC Applications. Polymers, 11(4), 732. doi:10.3390/polym11040732

Compañ, V., Escorihuela, J., Olvera, J., García-Bernabé, A., & Andrio, A. (2020). Influence of the anion on diffusivity and mobility of ionic liquids composite polybenzimidazol membranes. Electrochimica Acta, 354, 136666. doi:10.1016/j.electacta.2020.136666

Fuentes, I., Andrio, A., García-Bernabé, A., Escorihuela, J., Viñas, C., Teixidor, F., & Compañ, V. (2018). Structural and dielectric properties of cobaltacarborane composite polybenzimidazole membranes as solid polymer electrolytes at high temperature. Physical Chemistry Chemical Physics, 20(15), 10173-10184. doi:10.1039/c8cp00372f

Dechnik, J., Gascon, J., Doonan, C. J., Janiak, C., & Sumby, C. J. (2017). Mixed‐Matrix Membranes. Angewandte Chemie International Edition, 56(32), 9292-9310. doi:10.1002/anie.201701109

Chung, T.-S., Jiang, L. Y., Li, Y., & Kulprathipanja, S. (2007). Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Progress in Polymer Science, 32(4), 483-507. doi:10.1016/j.progpolymsci.2007.01.008

Zhang, J., Xie, Z., Zhang, J., Tang, Y., Song, C., Navessin, T., … Holdcroft, S. (2006). High temperature PEM fuel cells. Journal of Power Sources, 160(2), 872-891. doi:10.1016/j.jpowsour.2006.05.034

Araya, S. S., Zhou, F., Liso, V., Sahlin, S. L., Vang, J. R., Thomas, S., … Kær, S. K. (2016). A comprehensive review of PBI-based high temperature PEM fuel cells. International Journal of Hydrogen Energy, 41(46), 21310-21344. doi:10.1016/j.ijhydene.2016.09.024

Asensio, J. A., Sánchez, E. M., & Gómez-Romero, P. (2010). Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest. Chemical Society Reviews, 39(8), 3210. doi:10.1039/b922650h

Wang, Y., Shi, Z., Fang, J., Xu, H., & Yin, J. (2011). Graphene oxide/polybenzimidazole composites fabricated by a solvent-exchange method. Carbon, 49(4), 1199-1207. doi:10.1016/j.carbon.2010.11.036

Li, J., Li, X., Zhao, Y., Lu, W., Shao, Z., & Yi, B. (2012). High-Temperature Proton-Exchange-Membrane Fuel Cells Using an Ether-Containing Polybenzimidazole Membrane as Electrolyte. ChemSusChem, 5(5), 896-900. doi:10.1002/cssc.201100725

Qian, G., & Benicewicz, B. C. (2009). Synthesis and characterization of high molecular weight hexafluoroisopropylidene-containing polybenzimidazole for high-temperature polymer electrolyte membrane fuel cells. Journal of Polymer Science Part A: Polymer Chemistry, 47(16), 4064-4073. doi:10.1002/pola.23467

Núñez, R., Tarrés, M., Ferrer-Ugalde, A., de Biani, F. F., & Teixidor, F. (2016). Electrochemistry and Photoluminescence of Icosahedral Carboranes, Boranes, Metallacarboranes, and Their Derivatives. Chemical Reviews, 116(23), 14307-14378. doi:10.1021/acs.chemrev.6b00198

Pepiol, A., Teixidor, F., Sillanpää, R., Lupu, M., & Viñas, C. (2011). Stepwise Sequential Redox Potential Modulation Possible on a Single Platform. Angewandte Chemie International Edition, 50(52), 12491-12495. doi:10.1002/anie.201105668

González-Cardoso, P., Stoica, A.-I., Farràs, P., Pepiol, A., Viñas, C., & Teixidor, F. (2010). Additive Tuning of Redox Potential in Metallacarboranes by Sequential Halogen Substitution. Chemistry - A European Journal, 16(22), 6660-6665. doi:10.1002/chem.200902558

Tarrés, M., Viñas, C., Cioran, A. M., Hänninen, M. M., Sillanpää, R., & Teixidor, F. (2014). Towards Multifunctional Materials Incorporating Elastomers and Reversible Redox-Active Fragments. Chemistry - A European Journal, 20(48), 15808-15815. doi:10.1002/chem.201403424

Tarrés, M., Arderiu, V. S., Zaulet, A., Viñas, C., Fabrizi de Biani, F., & Teixidor, F. (2015). How to get the desired reduction voltage in a single framework! Metallacarborane as an optimal probe for sequential voltage tuning. Dalton Transactions, 44(26), 11690-11695. doi:10.1039/c5dt01464f

Fuentes, I., Andrio, A., Teixidor, F., Viñas, C., & Compañ, V. (2017). Enhanced conductivity of sodium versus lithium salts measured by impedance spectroscopy. Sodium cobaltacarboranes as electrolytes of choice. Physical Chemistry Chemical Physics, 19(23), 15177-15186. doi:10.1039/c7cp02526b

Eaton, P. E., Carlson, G. R., & Lee, J. T. (1973). Phosphorus pentoxide-methanesulfonic acid. Convenient alternative to polyphosphoric acid. The Journal of Organic Chemistry, 38(23), 4071-4073. doi:10.1021/jo00987a028

Musto, P., Karasz, F. E., & MacKnight, W. J. (1989). Hydrogen bonding in polybenzimidazole/polyimide systems: a Fourier-transform infra-red investigation using low-molecular-weight monofunctional probes. Polymer, 30(6), 1012-1021. doi:10.1016/0032-3861(89)90072-4

Xu, H., Chen, K., Guo, X., Fang, J., & Yin, J. (2007). Synthesis of novel sulfonated polybenzimidazole and preparation of cross-linked membranes for fuel cell application. Polymer, 48(19), 5556-5564. doi:10.1016/j.polymer.2007.07.029

Kumar B., S., Sana, B., Unnikrishnan, G., Jana, T., & Kumar K. S., S. (2020). Polybenzimidazole co-polymers: their synthesis, morphology and high temperature fuel cell membrane properties. Polymer Chemistry, 11(5), 1043-1054. doi:10.1039/c9py01403a

Chuang, S.-W., & Hsu, S. L.-C. (2006). Synthesis and properties of a new fluorine-containing polybenzimidazole for high-temperature fuel-cell applications. Journal of Polymer Science Part A: Polymer Chemistry, 44(15), 4508-4513. doi:10.1002/pola.21555

Chuang, S.-W., Hsu, S. L.-C., & Hsu, C.-L. (2007). Synthesis and properties of fluorine-containing polybenzimidazole/montmorillonite nanocomposite membranes for direct methanol fuel cell applications. Journal of Power Sources, 168(1), 172-177. doi:10.1016/j.jpowsour.2007.03.021

Kang, Y., Zou, J., Sun, Z., Wang, F., Zhu, H., Han, K., … Meng, Q. (2013). Polybenzimidazole containing ether units as electrolyte for high temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 38(15), 6494-6502. doi:10.1016/j.ijhydene.2013.03.051

Mack, F., Aniol, K., Ellwein, C., Kerres, J., & Zeis, R. (2015). Novel phosphoric acid-doped PBI-blends as membranes for high-temperature PEM fuel cells. Journal of Materials Chemistry A, 3(20), 10864-10874. doi:10.1039/c5ta01337b

Ergun, D., Devrim, Y., Bac, N., & Eroglu, I. (2012). Phosphoric acid doped polybenzimidazole membrane for high temperature PEM fuel cell. Journal of Applied Polymer Science, 124(S1), E267-E277. doi:10.1002/app.36507

Yuan, S., Yan, G., Xia, Z., Guo, X., Fang, J., & Yang, X. (2013). Preparation and properties of covalently cross-linked sulfonated poly(sulfide sulfone)/polybenzimidazole blend membranes for fuel cell applications. High Performance Polymers, 26(2), 212-222. doi:10.1177/0954008313507589

Sacco, A. (2017). Electrochemical impedance spectroscopy: Fundamentals and application in dye-sensitized solar cells. Renewable and Sustainable Energy Reviews, 79, 814-829. doi:10.1016/j.rser.2017.05.159

Gomadam, P. M., & Weidner, J. W. (2005). Analysis of electrochemical impedance spectroscopy in proton exchange membrane fuel cells. International Journal of Energy Research, 29(12), 1133-1151. doi:10.1002/er.1144

Klein, R. J., Zhang, S., Dou, S., Jones, B. H., Colby, R. H., & Runt, J. (2006). Modeling electrode polarization in dielectric spectroscopy: Ion mobility and mobile ion concentration of single-ion polymer electrolytes. The Journal of Chemical Physics, 124(14), 144903. doi:10.1063/1.2186638

Serghei, A., Tress, M., Sangoro, J. R., & Kremer, F. (2009). Electrode polarization and charge transport at solid interfaces. Physical Review B, 80(18). doi:10.1103/physrevb.80.184301

Leys, J., Wübbenhorst, M., Preethy Menon, C., Rajesh, R., Thoen, J., Glorieux, C., … Longuemart, S. (2008). Temperature dependence of the electrical conductivity of imidazolium ionic liquids. The Journal of Chemical Physics, 128(6), 064509. doi:10.1063/1.2827462

Coelho, R. (1983). Sur la relaxation d’une charge d’espace. Revue de Physique Appliquée, 18(3), 137-146. doi:10.1051/rphysap:01983001803013700

Coelho, R. (1991). On the static permittivity of dipolar and conductive media — an educational approach. Journal of Non-Crystalline Solids, 131-133, 1136-1139. doi:10.1016/0022-3093(91)90740-w

Escorihuela, J., García-Bernabé, A., & Compañ, V. (2020). A Deep Insight into Different Acidic Additives as Doping Agents for Enhancing Proton Conductivity on Polybenzimidazole Membranes. Polymers, 12(6), 1374. doi:10.3390/polym12061374

Villa, D. C., Angioni, S., Barco, S. D., Mustarelli, P., & Quartarone, E. (2014). Polysulfonated Fluoro-oxyPBI Membranes for PEMFCs: An Efficient Strategy to Achieve Good Fuel Cell Performances with Low H3PO4Doping Levels. Advanced Energy Materials, 4(11), 1301949. doi:10.1002/aenm.201301949

Ma, Y.-L., Wainright, J. S., Litt, M. H., & Savinell, R. F. (2004). Conductivity of PBI Membranes for High-Temperature Polymer Electrolyte Fuel Cells. Journal of The Electrochemical Society, 151(1), A8. doi:10.1149/1.1630037

Li, Q., Jensen, J. O., Savinell, R. F., & Bjerrum, N. J. (2009). High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Progress in Polymer Science, 34(5), 449-477. doi:10.1016/j.progpolymsci.2008.12.003

Kumar, S. R., Wang, J.-J., Wu, Y.-S., Yang, C.-C., & Lue, S. J. (2020). Synergistic role of graphene oxide-magnetite nanofillers contribution on ionic conductivity and permeability for polybenzimidazole membrane electrolytes. Journal of Power Sources, 445, 227293. doi:10.1016/j.jpowsour.2019.227293

Guerrero Moreno, N., Gervasio, D., Godínez García, A., & Pérez Robles, J. F. (2015). Polybenzimidazole-multiwall carbon nanotubes composite membranes for polymer electrolyte membrane fuel cells. Journal of Power Sources, 300, 229-237. doi:10.1016/j.jpowsour.2015.09.070

Üregen, N., Pehlivanoğlu, K., Özdemir, Y., & Devrim, Y. (2017). Development of polybenzimidazole/graphene oxide composite membranes for high temperature PEM fuel cells. International Journal of Hydrogen Energy, 42(4), 2636-2647. doi:10.1016/j.ijhydene.2016.07.009

Yang, J., Gao, L., Wang, J., Xu, Y., Liu, C., & He, R. (2017). Strengthening Phosphoric Acid Doped Polybenzimidazole Membranes with Siloxane Networks for Using as High Temperature Proton Exchange Membranes. Macromolecular Chemistry and Physics, 218(10), 1700009. doi:10.1002/macp.201700009

Satheesh Kumar, B., Sana, B., Mathew, D., Unnikrishnan, G., Jana, T., & Santhosh Kumar, K. S. (2018). Polybenzimidazole-nanocomposite membranes: Enhanced proton conductivity with low content of amine-functionalized nanoparticles. Polymer, 145, 434-446. doi:10.1016/j.polymer.2018.04.081

Singha, S., & Jana, T. (2014). Structure and Properties of Polybenzimidazole/Silica Nanocomposite Electrolyte Membrane: Influence of Organic/Inorganic Interface. ACS Applied Materials & Interfaces, 6(23), 21286-21296. doi:10.1021/am506260j

Kannan, R., Kagalwala, H. N., Chaudhari, H. D., Kharul, U. K., Kurungot, S., & Pillai, V. K. (2011). Improved performance of phosphonated carbon nanotube–polybenzimidazole composite membranes in proton exchange membrane fuel cells. Journal of Materials Chemistry, 21(20), 7223. doi:10.1039/c0jm04265j

Xu, C., Cao, Y., Kumar, R., Wu, X., Wang, X., & Scott, K. (2011). A polybenzimidazole/sulfonated graphite oxide composite membrane for high temperature polymer electrolyte membrane fuel cells. Journal of Materials Chemistry, 21(30), 11359. doi:10.1039/c1jm11159k

Mamlouk, M., Ocon, P., & Scott, K. (2014). Preparation and characterization of polybenzimidzaole/diethylamine hydrogen sulphate for medium temperature proton exchange membrane fuel cells. Journal of Power Sources, 245, 915-926. doi:10.1016/j.jpowsour.2013.07.050

Fuentes, I., Mostazo‐López, M. J., Kelemen, Z., Compañ, V., Andrio, A., Morallón, E., … Teixidor, F. (2019). Are the Accompanying Cations of Doping Anions Influential in Conducting Organic Polymers? The Case of the Popular PEDOT. Chemistry – A European Journal, 25(63), 14308-14319. doi:10.1002/chem.201902708

Springer, T. E., Zawodzinski, T. A., & Gottesfeld, S. (1991). Polymer Electrolyte Fuel Cell Model. Journal of The Electrochemical Society, 138(8), 2334-2342. doi:10.1149/1.2085971

Otomo, J. (2003). Protonic conduction of CsH2PO4 and its composite with silica in dry and humid atmospheres. Solid State Ionics, 156(3-4), 357-369. doi:10.1016/s0167-2738(02)00746-4

Gebbie, M. A., Smith, A. M., Dobbs, H. A., Lee, A. A., Warr, G. G., Banquy, X., … Atkin, R. (2017). Long range electrostatic forces in ionic liquids. Chemical Communications, 53(7), 1214-1224. doi:10.1039/c6cc08820a

Weingärtner, H. (2008). Understanding Ionic Liquids at the Molecular Level: Facts, Problems, and Controversies. Angewandte Chemie International Edition, 47(4), 654-670. doi:10.1002/anie.200604951

Rivera, A., & Rössler, E. A. (2006). Evidence of secondary relaxations in the dielectric spectra of ionic liquids. Physical Review B, 73(21). doi:10.1103/physrevb.73.212201

Pu, H., Lou, L., Guan, Y., Chang, Z., & Wan, D. (2012). Proton exchange membranes based on semi-interpenetrating polymer networks of polybenzimidazole and perfluorosulfonic acid polymer with hollow silica spheres as micro-reservoir. Journal of Membrane Science, 415-416, 496-503. doi:10.1016/j.memsci.2012.05.036

Sørensen, T. S., & Compañ, V. (1995). Complex permittivity of a conducting, dielectric layer containing arbitrary binary Nernst–Planck electrolytes with applications to polymer films and cellulose acetate membranes. J. Chem. Soc., Faraday Trans., 91(23), 4235-4250. doi:10.1039/ft9959104235

Sørensen, T. S., Compañ, V., & Diaz-Calleja, R. (1996). Complex permittivity of a film of poly[4-(acryloxy)phenyl-(4-chlorophenyl)methanone] containing free ion impurities and the separation of the contributions from interfacial polarization, Maxwell–Wagner–Sillars effects and dielectric relaxations of the polymer chains. J. Chem. Soc., Faraday Trans., 92(11), 1947-1957. doi:10.1039/ft9969201947

Wang, Y., Fan, F., Agapov, A. L., Saito, T., Yang, J., Yu, X., … Sokolov, A. P. (2014). Examination of the fundamental relation between ionic transport and segmental relaxation in polymer electrolytes. Polymer, 55(16), 4067-4076. doi:10.1016/j.polymer.2014.06.085

Valverde, D., Garcia-Bernabé, A., Andrio, A., García-Verdugo, E., Luis, S. V., & Compañ, V. (2019). Free ion diffusivity and charge concentration on cross-linked polymeric ionic liquid iongel films based on sulfonated zwitterionic salts and lithium ions. Physical Chemistry Chemical Physics, 21(32), 17923-17932. doi:10.1039/c9cp01903k

Lee, S. H., & Rasaiah, J. C. (2011). Proton transfer and the mobilities of the H+ and OH− ions from studies of a dissociating model for water. The Journal of Chemical Physics, 135(12), 124505. doi:10.1063/1.3632990

Liang, T., Shin, Y. K., Cheng, Y.-T., Yilmaz, D. E., Vishnu, K. G., Verners, O., … van Duin, A. C. T. (2013). Reactive Potentials for Advanced Atomistic Simulations. Annual Review of Materials Research, 43(1), 109-129. doi:10.1146/annurev-matsci-071312-121610

Wang, Y., Sun, C.-N., Fan, F., Sangoro, J. R., Berman, M. B., Greenbaum, S. G., … Sokolov, A. P. (2013). Examination of methods to determine free-ion diffusivity and number density from analysis of electrode polarization. Physical Review E, 87(4). doi:10.1103/physreve.87.042308

Bennour, I., Cioran, A. M., Teixidor, F., & Viñas, C. (2019). 3,2,1 and stop! An innovative, straightforward and clean route for the flash synthesis of metallacarboranes. Green Chemistry, 21(8), 1925-1928. doi:10.1039/c8gc03943g

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record