- -

Effect of metallacarborane salt H[COSANE] doping on the performance properties of polybenzimidazole membranes for high temperature PEMFCs

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of metallacarborane salt H[COSANE] doping on the performance properties of polybenzimidazole membranes for high temperature PEMFCs

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Olvera-Mancilla, Jessica es_ES
dc.contributor.author Escorihuela, Jorge es_ES
dc.contributor.author Alexandrova, Larissa es_ES
dc.contributor.author Andrio, Andreu es_ES
dc.contributor.author Garcia-Bernabe, Abel es_ES
dc.contributor.author Del Castillo, Luis Felipe es_ES
dc.contributor.author Compañ Moreno, Vicente es_ES
dc.date.accessioned 2021-03-02T04:31:45Z
dc.date.available 2021-03-02T04:31:45Z
dc.date.issued 2020-08-28 es_ES
dc.identifier.issn 1744-683X es_ES
dc.identifier.uri http://hdl.handle.net/10251/162646
dc.description.abstract [EN] In this paper, a series of composite proton exchange membranes comprising a cobaltacarborane protonated H[Co(C2B9H11)(2)] named (H[COSANE]) and polybenzimidazole (PBI) for a high temperature proton exchange membrane fuel cell (PEMFC) is reported, with the aim of enhancing the proton conductivity of PBI membranes doped with phosphoric acid. The effects of the anion [Co(C2B9H11)(2)] concentration in three different polymeric matrices based on the PBI structure, poly(2,2 '-(m-phenylene)-5,5 '-bibenzimidazole) (PBI-1), poly[2,2 '-(p-oxydiphenylene)-5,5 '-bibenzimidazole] (PBI-2) and poly(2,2 '-(p-hexafluoroisopropylidene)-5,5 '-bibenzimidazole) (PBI-3), have been investigated. The conductivity, diffusivity and mobility are greater in the composite membrane poly(2,2 '-(p-hexafluoroisopropylidene)-5,5 '-bibenzimidazole) containing fluorinated groups, reaching a maximum when the amount of H[COSANE] was 15%. In general, all the prepared membranes displayed excellent and tunable properties as conducting materials, with conductivities higher than 0.03 S cm(-1)above 140 degrees C. From an analysis of electrode polarization (EP) the proton diffusion coefficients and mobility have been calculated. es_ES
dc.description.sponsorship This work was financially supported by the Ministerio de Economia y Competitividad (MINECO) under project ENE/2015-69203-R and by Consejo Nacional de Ciencia y Tecnologia (CONACyT) for the postdoctoral grant to J. O. The technical support of Servei de Microscpia Electrnica at Universitat Politecnica de Valencia and Servei Central d'Instrumentacio Cientifica at Universitat Jaume I is gratefully acknowledged. The authors thanks Prof. Santiago V. Luis (from Universitat Jaume I) and Dr Isabel Fuentes, Prof. Francesc Teixidor and Prof. Clara Vinas (from Instituto de Materiales de Barcelona, CSIC), for supplying the H[COSANE] compound. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Soft Matter es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Effect of metallacarborane salt H[COSANE] doping on the performance properties of polybenzimidazole membranes for high temperature PEMFCs es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/d0sm00743a es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2015-69203-R/ES/DESARROLLO Y EVALUACION DE NUEVAS MEMBRANAS POLIMERICAS REFORZADAS CON NANOFIBRAS PARA SU APLICACION EN PILAS DE COMBUSTIBLE CON ELEVADA ESTABILIDAD TERMICA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Olvera-Mancilla, J.; Escorihuela, J.; Alexandrova, L.; Andrio, A.; Garcia-Bernabe, A.; Del Castillo, LF.; Compañ Moreno, V. (2020). Effect of metallacarborane salt H[COSANE] doping on the performance properties of polybenzimidazole membranes for high temperature PEMFCs. Soft Matter. 16(32):7624-7635. https://doi.org/10.1039/d0sm00743a es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/d0sm00743a es_ES
dc.description.upvformatpinicio 7624 es_ES
dc.description.upvformatpfin 7635 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 16 es_ES
dc.description.issue 32 es_ES
dc.identifier.pmid 32735001 es_ES
dc.relation.pasarela S\423667 es_ES
dc.contributor.funder Consejo Nacional de Ciencia y Tecnología, México es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references https://earthsky.org/earth/atmospheric-co2-record-high-may-2019 es_ES
dc.description.references Steele, B. C. H., & Heinzel, A. (2001). Materials for fuel-cell technologies. Nature, 414(6861), 345-352. doi:10.1038/35104620 es_ES
dc.description.references CLEGHORN, S. (1997). Pem fuel cells for transportation and stationary power generation applications. International Journal of Hydrogen Energy, 22(12), 1137-1144. doi:10.1016/s0360-3199(97)00016-5 es_ES
dc.description.references Wang, Y., Chen, K. S., Mishler, J., Cho, S. C., & Adroher, X. C. (2011). A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Applied Energy, 88(4), 981-1007. doi:10.1016/j.apenergy.2010.09.030 es_ES
dc.description.references Savage, J., Tse, Y.-L. S., & Voth, G. A. (2014). Proton Transport Mechanism of Perfluorosulfonic Acid Membranes. The Journal of Physical Chemistry C, 118(31), 17436-17445. doi:10.1021/jp504714d es_ES
dc.description.references Mauritz, K. A., & Moore, R. B. (2004). State of Understanding of Nafion. Chemical Reviews, 104(10), 4535-4586. doi:10.1021/cr0207123 es_ES
dc.description.references Kraytsberg, A., & Ein-Eli, Y. (2014). Review of Advanced Materials for Proton Exchange Membrane Fuel Cells. Energy & Fuels, 28(12), 7303-7330. doi:10.1021/ef501977k es_ES
dc.description.references Hickner, M. A., Ghassemi, H., Kim, Y. S., Einsla, B. R., & McGrath, J. E. (2004). Alternative Polymer Systems for Proton Exchange Membranes (PEMs). Chemical Reviews, 104(10), 4587-4612. doi:10.1021/cr020711a es_ES
dc.description.references Kongstein, O. E., Berning, T., Børresen, B., Seland, F., & Tunold, R. (2007). Polymer electrolyte fuel cells based on phosphoric acid doped polybenzimidazole (PBI) membranes. Energy, 32(4), 418-422. doi:10.1016/j.energy.2006.07.009 es_ES
dc.description.references Pant, B., Park, M., & Park, S.-J. (2019). One-Step Synthesis of Silver Nanoparticles Embedded Polyurethane Nano-Fiber/Net Structured Membrane as an Effective Antibacterial Medium. Polymers, 11(7), 1185. doi:10.3390/polym11071185 es_ES
dc.description.references Suryani, Chang, Y.-N., Lai, J.-Y., & Liu, Y.-L. (2012). Polybenzimidazole (PBI)-functionalized silica nanoparticles modified PBI nanocomposite membranes for proton exchange membranes fuel cells. Journal of Membrane Science, 403-404, 1-7. doi:10.1016/j.memsci.2012.01.043 es_ES
dc.description.references Escorihuela, J., Sahuquillo, Ó., García-Bernabé, A., Giménez, E., & Compañ, V. (2018). Phosphoric Acid Doped Polybenzimidazole (PBI)/Zeolitic Imidazolate Framework Composite Membranes with Significantly Enhanced Proton Conductivity under Low Humidity Conditions. Nanomaterials, 8(10), 775. doi:10.3390/nano8100775 es_ES
dc.description.references Escorihuela, J., García-Bernabé, A., Montero, Á., Sahuquillo, Ó., Giménez, E., & Compañ, V. (2019). Ionic Liquid Composite Polybenzimidazol Membranes for High Temperature PEMFC Applications. Polymers, 11(4), 732. doi:10.3390/polym11040732 es_ES
dc.description.references Compañ, V., Escorihuela, J., Olvera, J., García-Bernabé, A., & Andrio, A. (2020). Influence of the anion on diffusivity and mobility of ionic liquids composite polybenzimidazol membranes. Electrochimica Acta, 354, 136666. doi:10.1016/j.electacta.2020.136666 es_ES
dc.description.references Fuentes, I., Andrio, A., García-Bernabé, A., Escorihuela, J., Viñas, C., Teixidor, F., & Compañ, V. (2018). Structural and dielectric properties of cobaltacarborane composite polybenzimidazole membranes as solid polymer electrolytes at high temperature. Physical Chemistry Chemical Physics, 20(15), 10173-10184. doi:10.1039/c8cp00372f es_ES
dc.description.references Dechnik, J., Gascon, J., Doonan, C. J., Janiak, C., & Sumby, C. J. (2017). Mixed‐Matrix Membranes. Angewandte Chemie International Edition, 56(32), 9292-9310. doi:10.1002/anie.201701109 es_ES
dc.description.references Chung, T.-S., Jiang, L. Y., Li, Y., & Kulprathipanja, S. (2007). Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Progress in Polymer Science, 32(4), 483-507. doi:10.1016/j.progpolymsci.2007.01.008 es_ES
dc.description.references Zhang, J., Xie, Z., Zhang, J., Tang, Y., Song, C., Navessin, T., … Holdcroft, S. (2006). High temperature PEM fuel cells. Journal of Power Sources, 160(2), 872-891. doi:10.1016/j.jpowsour.2006.05.034 es_ES
dc.description.references Araya, S. S., Zhou, F., Liso, V., Sahlin, S. L., Vang, J. R., Thomas, S., … Kær, S. K. (2016). A comprehensive review of PBI-based high temperature PEM fuel cells. International Journal of Hydrogen Energy, 41(46), 21310-21344. doi:10.1016/j.ijhydene.2016.09.024 es_ES
dc.description.references Asensio, J. A., Sánchez, E. M., & Gómez-Romero, P. (2010). Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest. Chemical Society Reviews, 39(8), 3210. doi:10.1039/b922650h es_ES
dc.description.references Wang, Y., Shi, Z., Fang, J., Xu, H., & Yin, J. (2011). Graphene oxide/polybenzimidazole composites fabricated by a solvent-exchange method. Carbon, 49(4), 1199-1207. doi:10.1016/j.carbon.2010.11.036 es_ES
dc.description.references Li, J., Li, X., Zhao, Y., Lu, W., Shao, Z., & Yi, B. (2012). High-Temperature Proton-Exchange-Membrane Fuel Cells Using an Ether-Containing Polybenzimidazole Membrane as Electrolyte. ChemSusChem, 5(5), 896-900. doi:10.1002/cssc.201100725 es_ES
dc.description.references Qian, G., & Benicewicz, B. C. (2009). Synthesis and characterization of high molecular weight hexafluoroisopropylidene-containing polybenzimidazole for high-temperature polymer electrolyte membrane fuel cells. Journal of Polymer Science Part A: Polymer Chemistry, 47(16), 4064-4073. doi:10.1002/pola.23467 es_ES
dc.description.references Núñez, R., Tarrés, M., Ferrer-Ugalde, A., de Biani, F. F., & Teixidor, F. (2016). Electrochemistry and Photoluminescence of Icosahedral Carboranes, Boranes, Metallacarboranes, and Their Derivatives. Chemical Reviews, 116(23), 14307-14378. doi:10.1021/acs.chemrev.6b00198 es_ES
dc.description.references Pepiol, A., Teixidor, F., Sillanpää, R., Lupu, M., & Viñas, C. (2011). Stepwise Sequential Redox Potential Modulation Possible on a Single Platform. Angewandte Chemie International Edition, 50(52), 12491-12495. doi:10.1002/anie.201105668 es_ES
dc.description.references González-Cardoso, P., Stoica, A.-I., Farràs, P., Pepiol, A., Viñas, C., & Teixidor, F. (2010). Additive Tuning of Redox Potential in Metallacarboranes by Sequential Halogen Substitution. Chemistry - A European Journal, 16(22), 6660-6665. doi:10.1002/chem.200902558 es_ES
dc.description.references Tarrés, M., Viñas, C., Cioran, A. M., Hänninen, M. M., Sillanpää, R., & Teixidor, F. (2014). Towards Multifunctional Materials Incorporating Elastomers and Reversible Redox-Active Fragments. Chemistry - A European Journal, 20(48), 15808-15815. doi:10.1002/chem.201403424 es_ES
dc.description.references Tarrés, M., Arderiu, V. S., Zaulet, A., Viñas, C., Fabrizi de Biani, F., & Teixidor, F. (2015). How to get the desired reduction voltage in a single framework! Metallacarborane as an optimal probe for sequential voltage tuning. Dalton Transactions, 44(26), 11690-11695. doi:10.1039/c5dt01464f es_ES
dc.description.references Fuentes, I., Andrio, A., Teixidor, F., Viñas, C., & Compañ, V. (2017). Enhanced conductivity of sodium versus lithium salts measured by impedance spectroscopy. Sodium cobaltacarboranes as electrolytes of choice. Physical Chemistry Chemical Physics, 19(23), 15177-15186. doi:10.1039/c7cp02526b es_ES
dc.description.references Eaton, P. E., Carlson, G. R., & Lee, J. T. (1973). Phosphorus pentoxide-methanesulfonic acid. Convenient alternative to polyphosphoric acid. The Journal of Organic Chemistry, 38(23), 4071-4073. doi:10.1021/jo00987a028 es_ES
dc.description.references Musto, P., Karasz, F. E., & MacKnight, W. J. (1989). Hydrogen bonding in polybenzimidazole/polyimide systems: a Fourier-transform infra-red investigation using low-molecular-weight monofunctional probes. Polymer, 30(6), 1012-1021. doi:10.1016/0032-3861(89)90072-4 es_ES
dc.description.references Xu, H., Chen, K., Guo, X., Fang, J., & Yin, J. (2007). Synthesis of novel sulfonated polybenzimidazole and preparation of cross-linked membranes for fuel cell application. Polymer, 48(19), 5556-5564. doi:10.1016/j.polymer.2007.07.029 es_ES
dc.description.references Kumar B., S., Sana, B., Unnikrishnan, G., Jana, T., & Kumar K. S., S. (2020). Polybenzimidazole co-polymers: their synthesis, morphology and high temperature fuel cell membrane properties. Polymer Chemistry, 11(5), 1043-1054. doi:10.1039/c9py01403a es_ES
dc.description.references Chuang, S.-W., & Hsu, S. L.-C. (2006). Synthesis and properties of a new fluorine-containing polybenzimidazole for high-temperature fuel-cell applications. Journal of Polymer Science Part A: Polymer Chemistry, 44(15), 4508-4513. doi:10.1002/pola.21555 es_ES
dc.description.references Chuang, S.-W., Hsu, S. L.-C., & Hsu, C.-L. (2007). Synthesis and properties of fluorine-containing polybenzimidazole/montmorillonite nanocomposite membranes for direct methanol fuel cell applications. Journal of Power Sources, 168(1), 172-177. doi:10.1016/j.jpowsour.2007.03.021 es_ES
dc.description.references Kang, Y., Zou, J., Sun, Z., Wang, F., Zhu, H., Han, K., … Meng, Q. (2013). Polybenzimidazole containing ether units as electrolyte for high temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 38(15), 6494-6502. doi:10.1016/j.ijhydene.2013.03.051 es_ES
dc.description.references Mack, F., Aniol, K., Ellwein, C., Kerres, J., & Zeis, R. (2015). Novel phosphoric acid-doped PBI-blends as membranes for high-temperature PEM fuel cells. Journal of Materials Chemistry A, 3(20), 10864-10874. doi:10.1039/c5ta01337b es_ES
dc.description.references Ergun, D., Devrim, Y., Bac, N., & Eroglu, I. (2012). Phosphoric acid doped polybenzimidazole membrane for high temperature PEM fuel cell. Journal of Applied Polymer Science, 124(S1), E267-E277. doi:10.1002/app.36507 es_ES
dc.description.references Yuan, S., Yan, G., Xia, Z., Guo, X., Fang, J., & Yang, X. (2013). Preparation and properties of covalently cross-linked sulfonated poly(sulfide sulfone)/polybenzimidazole blend membranes for fuel cell applications. High Performance Polymers, 26(2), 212-222. doi:10.1177/0954008313507589 es_ES
dc.description.references Sacco, A. (2017). Electrochemical impedance spectroscopy: Fundamentals and application in dye-sensitized solar cells. Renewable and Sustainable Energy Reviews, 79, 814-829. doi:10.1016/j.rser.2017.05.159 es_ES
dc.description.references Gomadam, P. M., & Weidner, J. W. (2005). Analysis of electrochemical impedance spectroscopy in proton exchange membrane fuel cells. International Journal of Energy Research, 29(12), 1133-1151. doi:10.1002/er.1144 es_ES
dc.description.references Klein, R. J., Zhang, S., Dou, S., Jones, B. H., Colby, R. H., & Runt, J. (2006). Modeling electrode polarization in dielectric spectroscopy: Ion mobility and mobile ion concentration of single-ion polymer electrolytes. The Journal of Chemical Physics, 124(14), 144903. doi:10.1063/1.2186638 es_ES
dc.description.references Serghei, A., Tress, M., Sangoro, J. R., & Kremer, F. (2009). Electrode polarization and charge transport at solid interfaces. Physical Review B, 80(18). doi:10.1103/physrevb.80.184301 es_ES
dc.description.references Leys, J., Wübbenhorst, M., Preethy Menon, C., Rajesh, R., Thoen, J., Glorieux, C., … Longuemart, S. (2008). Temperature dependence of the electrical conductivity of imidazolium ionic liquids. The Journal of Chemical Physics, 128(6), 064509. doi:10.1063/1.2827462 es_ES
dc.description.references Coelho, R. (1983). Sur la relaxation d’une charge d’espace. Revue de Physique Appliquée, 18(3), 137-146. doi:10.1051/rphysap:01983001803013700 es_ES
dc.description.references Coelho, R. (1991). On the static permittivity of dipolar and conductive media — an educational approach. Journal of Non-Crystalline Solids, 131-133, 1136-1139. doi:10.1016/0022-3093(91)90740-w es_ES
dc.description.references Escorihuela, J., García-Bernabé, A., & Compañ, V. (2020). A Deep Insight into Different Acidic Additives as Doping Agents for Enhancing Proton Conductivity on Polybenzimidazole Membranes. Polymers, 12(6), 1374. doi:10.3390/polym12061374 es_ES
dc.description.references Villa, D. C., Angioni, S., Barco, S. D., Mustarelli, P., & Quartarone, E. (2014). Polysulfonated Fluoro-oxyPBI Membranes for PEMFCs: An Efficient Strategy to Achieve Good Fuel Cell Performances with Low H3PO4Doping Levels. Advanced Energy Materials, 4(11), 1301949. doi:10.1002/aenm.201301949 es_ES
dc.description.references Ma, Y.-L., Wainright, J. S., Litt, M. H., & Savinell, R. F. (2004). Conductivity of PBI Membranes for High-Temperature Polymer Electrolyte Fuel Cells. Journal of The Electrochemical Society, 151(1), A8. doi:10.1149/1.1630037 es_ES
dc.description.references Li, Q., Jensen, J. O., Savinell, R. F., & Bjerrum, N. J. (2009). High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Progress in Polymer Science, 34(5), 449-477. doi:10.1016/j.progpolymsci.2008.12.003 es_ES
dc.description.references Kumar, S. R., Wang, J.-J., Wu, Y.-S., Yang, C.-C., & Lue, S. J. (2020). Synergistic role of graphene oxide-magnetite nanofillers contribution on ionic conductivity and permeability for polybenzimidazole membrane electrolytes. Journal of Power Sources, 445, 227293. doi:10.1016/j.jpowsour.2019.227293 es_ES
dc.description.references Guerrero Moreno, N., Gervasio, D., Godínez García, A., & Pérez Robles, J. F. (2015). Polybenzimidazole-multiwall carbon nanotubes composite membranes for polymer electrolyte membrane fuel cells. Journal of Power Sources, 300, 229-237. doi:10.1016/j.jpowsour.2015.09.070 es_ES
dc.description.references Üregen, N., Pehlivanoğlu, K., Özdemir, Y., & Devrim, Y. (2017). Development of polybenzimidazole/graphene oxide composite membranes for high temperature PEM fuel cells. International Journal of Hydrogen Energy, 42(4), 2636-2647. doi:10.1016/j.ijhydene.2016.07.009 es_ES
dc.description.references Yang, J., Gao, L., Wang, J., Xu, Y., Liu, C., & He, R. (2017). Strengthening Phosphoric Acid Doped Polybenzimidazole Membranes with Siloxane Networks for Using as High Temperature Proton Exchange Membranes. Macromolecular Chemistry and Physics, 218(10), 1700009. doi:10.1002/macp.201700009 es_ES
dc.description.references Satheesh Kumar, B., Sana, B., Mathew, D., Unnikrishnan, G., Jana, T., & Santhosh Kumar, K. S. (2018). Polybenzimidazole-nanocomposite membranes: Enhanced proton conductivity with low content of amine-functionalized nanoparticles. Polymer, 145, 434-446. doi:10.1016/j.polymer.2018.04.081 es_ES
dc.description.references Singha, S., & Jana, T. (2014). Structure and Properties of Polybenzimidazole/Silica Nanocomposite Electrolyte Membrane: Influence of Organic/Inorganic Interface. ACS Applied Materials & Interfaces, 6(23), 21286-21296. doi:10.1021/am506260j es_ES
dc.description.references Kannan, R., Kagalwala, H. N., Chaudhari, H. D., Kharul, U. K., Kurungot, S., & Pillai, V. K. (2011). Improved performance of phosphonated carbon nanotube–polybenzimidazole composite membranes in proton exchange membrane fuel cells. Journal of Materials Chemistry, 21(20), 7223. doi:10.1039/c0jm04265j es_ES
dc.description.references Xu, C., Cao, Y., Kumar, R., Wu, X., Wang, X., & Scott, K. (2011). A polybenzimidazole/sulfonated graphite oxide composite membrane for high temperature polymer electrolyte membrane fuel cells. Journal of Materials Chemistry, 21(30), 11359. doi:10.1039/c1jm11159k es_ES
dc.description.references Mamlouk, M., Ocon, P., & Scott, K. (2014). Preparation and characterization of polybenzimidzaole/diethylamine hydrogen sulphate for medium temperature proton exchange membrane fuel cells. Journal of Power Sources, 245, 915-926. doi:10.1016/j.jpowsour.2013.07.050 es_ES
dc.description.references Fuentes, I., Mostazo‐López, M. J., Kelemen, Z., Compañ, V., Andrio, A., Morallón, E., … Teixidor, F. (2019). Are the Accompanying Cations of Doping Anions Influential in Conducting Organic Polymers? The Case of the Popular PEDOT. Chemistry – A European Journal, 25(63), 14308-14319. doi:10.1002/chem.201902708 es_ES
dc.description.references Springer, T. E., Zawodzinski, T. A., & Gottesfeld, S. (1991). Polymer Electrolyte Fuel Cell Model. Journal of The Electrochemical Society, 138(8), 2334-2342. doi:10.1149/1.2085971 es_ES
dc.description.references Otomo, J. (2003). Protonic conduction of CsH2PO4 and its composite with silica in dry and humid atmospheres. Solid State Ionics, 156(3-4), 357-369. doi:10.1016/s0167-2738(02)00746-4 es_ES
dc.description.references Gebbie, M. A., Smith, A. M., Dobbs, H. A., Lee, A. A., Warr, G. G., Banquy, X., … Atkin, R. (2017). Long range electrostatic forces in ionic liquids. Chemical Communications, 53(7), 1214-1224. doi:10.1039/c6cc08820a es_ES
dc.description.references Weingärtner, H. (2008). Understanding Ionic Liquids at the Molecular Level: Facts, Problems, and Controversies. Angewandte Chemie International Edition, 47(4), 654-670. doi:10.1002/anie.200604951 es_ES
dc.description.references Rivera, A., & Rössler, E. A. (2006). Evidence of secondary relaxations in the dielectric spectra of ionic liquids. Physical Review B, 73(21). doi:10.1103/physrevb.73.212201 es_ES
dc.description.references Pu, H., Lou, L., Guan, Y., Chang, Z., & Wan, D. (2012). Proton exchange membranes based on semi-interpenetrating polymer networks of polybenzimidazole and perfluorosulfonic acid polymer with hollow silica spheres as micro-reservoir. Journal of Membrane Science, 415-416, 496-503. doi:10.1016/j.memsci.2012.05.036 es_ES
dc.description.references Sørensen, T. S., & Compañ, V. (1995). Complex permittivity of a conducting, dielectric layer containing arbitrary binary Nernst–Planck electrolytes with applications to polymer films and cellulose acetate membranes. J. Chem. Soc., Faraday Trans., 91(23), 4235-4250. doi:10.1039/ft9959104235 es_ES
dc.description.references Sørensen, T. S., Compañ, V., & Diaz-Calleja, R. (1996). Complex permittivity of a film of poly[4-(acryloxy)phenyl-(4-chlorophenyl)methanone] containing free ion impurities and the separation of the contributions from interfacial polarization, Maxwell–Wagner–Sillars effects and dielectric relaxations of the polymer chains. J. Chem. Soc., Faraday Trans., 92(11), 1947-1957. doi:10.1039/ft9969201947 es_ES
dc.description.references Wang, Y., Fan, F., Agapov, A. L., Saito, T., Yang, J., Yu, X., … Sokolov, A. P. (2014). Examination of the fundamental relation between ionic transport and segmental relaxation in polymer electrolytes. Polymer, 55(16), 4067-4076. doi:10.1016/j.polymer.2014.06.085 es_ES
dc.description.references Valverde, D., Garcia-Bernabé, A., Andrio, A., García-Verdugo, E., Luis, S. V., & Compañ, V. (2019). Free ion diffusivity and charge concentration on cross-linked polymeric ionic liquid iongel films based on sulfonated zwitterionic salts and lithium ions. Physical Chemistry Chemical Physics, 21(32), 17923-17932. doi:10.1039/c9cp01903k es_ES
dc.description.references Lee, S. H., & Rasaiah, J. C. (2011). Proton transfer and the mobilities of the H+ and OH− ions from studies of a dissociating model for water. The Journal of Chemical Physics, 135(12), 124505. doi:10.1063/1.3632990 es_ES
dc.description.references Liang, T., Shin, Y. K., Cheng, Y.-T., Yilmaz, D. E., Vishnu, K. G., Verners, O., … van Duin, A. C. T. (2013). Reactive Potentials for Advanced Atomistic Simulations. Annual Review of Materials Research, 43(1), 109-129. doi:10.1146/annurev-matsci-071312-121610 es_ES
dc.description.references Wang, Y., Sun, C.-N., Fan, F., Sangoro, J. R., Berman, M. B., Greenbaum, S. G., … Sokolov, A. P. (2013). Examination of methods to determine free-ion diffusivity and number density from analysis of electrode polarization. Physical Review E, 87(4). doi:10.1103/physreve.87.042308 es_ES
dc.description.references Bennour, I., Cioran, A. M., Teixidor, F., & Viñas, C. (2019). 3,2,1 and stop! An innovative, straightforward and clean route for the flash synthesis of metallacarboranes. Green Chemistry, 21(8), 1925-1928. doi:10.1039/c8gc03943g es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem