- -

Enhancing the context-aware FOREX market simulation using a parallel elastic network model

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Enhancing the context-aware FOREX market simulation using a parallel elastic network model

Mostrar el registro completo del ítem

Contreras, AV.; Llanes, A.; Herrera, FJ.; Navarro, S.; López-Espin, JJ.; Cecilia-Canales, JM. (2020). Enhancing the context-aware FOREX market simulation using a parallel elastic network model. The Journal of Supercomputing. 76(3):2022-2038. https://doi.org/10.1007/s11227-019-02838-1

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162854

Ficheros en el ítem

Metadatos del ítem

Título: Enhancing the context-aware FOREX market simulation using a parallel elastic network model
Autor: Contreras, Antonio V. Llanes, Antonio Herrera, Francisco J. Navarro, Sergio López-Espin, Jose J. Cecilia-Canales, José María
Entidad UPV: Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Fecha difusión:
Resumen:
[EN] Foreign exchange (FOREX) market is a decentralized global marketplace in which different participants, such as international banks, companies or investors, can buy, sell, exchange and speculate on currencies. This ...[+]
Palabras clave: FOREX simulation , Trading , Context-aware , Big data , Bioinspired computing , Parallel computing
Derechos de uso: Reserva de todos los derechos
Fuente:
The Journal of Supercomputing. (issn: 0920-8542 )
DOI: 10.1007/s11227-019-02838-1
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s11227-019-02838-1
Código del Proyecto:
info:eu-repo/grantAgreement/f SéNeCa//20813%2FPI%2F18/
info:eu-repo/grantAgreement/MINECO//TIN2016-78799-P/ES/DESARROLLO HOLISTICO DE APLICACIONES EMERGENTES EN SISTEMAS HETEROGENEOS/
info:eu-repo/grantAgreement/MINECO//TIN2016-80565-R/ES/DESARROLLO Y ESTUDIO DE ALGORITMOS PARA BUSQUEDA DEL MEJOR MODELO ECONOMETRICO EN PROBLEMAS DE CIENCIAS DE LA SALUD/
info:eu-repo/grantAgreement/AEI//RYC-2018-025580-I/
Agradecimientos:
This work was jointly supported by the Fundación Séneca (Agencia Regional de Ciencia y Tecnología, Región de Murcia) under Grant 20813/PI/18 and by the Spanish MEC and European Commission FEDER under Grants TIN2016-78799-P ...[+]
Tipo: Artículo

References

Bahrepour M, Akbarzadeh-T MR, Yaghoobi M, Naghibi-S MB (2011) An adaptive ordered fuzzy time series with application to FOREX. Expert Syst Appl 38(1):475–485

Bank for International Settlements. https://www.bis.org/ . Accessed 13 Feb 2013

Bhattacharyya S, Pictet OV, Zumbach G (2002) Knowledge-intensive genetic discovery in foreign exchange markets. IEEE Trans Evolut Comput 6(2):169–181 [+]
Bahrepour M, Akbarzadeh-T MR, Yaghoobi M, Naghibi-S MB (2011) An adaptive ordered fuzzy time series with application to FOREX. Expert Syst Appl 38(1):475–485

Bank for International Settlements. https://www.bis.org/ . Accessed 13 Feb 2013

Bhattacharyya S, Pictet OV, Zumbach G (2002) Knowledge-intensive genetic discovery in foreign exchange markets. IEEE Trans Evolut Comput 6(2):169–181

Bank of International Settlements (2016) Triennial central bank survey: foreign exchange turnover in April 2016, Basel

Caporale GM, Gil-Alana L, Plastun A (2017) Searching for inefficiencies in exchange rate dynamics. Comput Econ 49(3):405–432

De Grauwe P, Markiewicz A (2013) Learning to forecast the exchange rate: two competing approaches. J Int Money Finance 32:42–76

Fama E (1970) Efficient capital markets: a review of theory and empirical work. J Finance 25(2):383–417

Fama EF (1965) The behavior of stock-market prices. J Bus 38(1):34–105

Fama EF (1970) Efficient capital markets: a review of theory and empirical work. J Finance 25(2):383–417

Fuglebakk E, Reuter N, Hinsen K (2013) Evaluation of protein elastic network models based on an analysis of collective motions. J Chem Theory Comput 9(12):5618–5628

Hanssens DM, Parsons LJ, Schultz RL (2003) Market response models: econometric and time series analysis, vol 12. Springer, New York

Kamruzzaman J, Sarker RA (2003) Forecasting of currency exchange rates using ANN: a case study. In: Proceedings of the 2003 International Conference on Neural Networks and Signal Processing, 2003, vol 1. IEEE, pp 793–797

Kamruzzaman J, Sarker RA, Ahmad I (2003) SVM based models for predicting foreign currency exchange rates. In: Third IEEE International Conference on Data Mining, 2003. ICDM 2003, IEEE, pp. 557–560

Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Mol Biol 9(9):646–652

Kleen A (2015) Intel PMU profiling tools. https://github.com/andikleen/pmu-tools/tree/d70840ba . Accessed 15 Mar 2019

Kuo RJ, Chen C, Hwang Y (2001) An intelligent stock trading decision support system through integration of genetic algorithm based fuzzy neural network and artificial neural network. Fuzzy Sets Syst 118(1):21–45

LeBaron B, Arthur WB, Palmer R (1999) Time series properties of an artificial stock market. J Econ Dyn Control 23(9):1487–1516

Li Q, Chen Y, Wang J, Chen Y, Chen H (2017) Web media and stock markets: a survey and future directions from a big data perspective. IEEE Trans Knowl Data Eng 30:381–399

Luetkepohl H (2009) Econometric analysis with vector autoregressive models. In: Belsley DA, Kontoghiorghes EJ (eds) Handbook of computational econometrics. Wiley, New York, pp 281–319

Makovskỳ P (2014) Modern approaches to efficient market hypothesis of FOREX—the central European case. Proc Econ Finance 14:397–406

Meade N (2002) A comparison of the accuracy of short term foreign exchange forecasting methods. Int J Forecast 18(1):67–83

Meese RA, Rogoff K (1983) Empirical exchange rate models of the seventies: do they fit out of sample? J Int Econ 14(1–2):3–24

Mockus J, Raudys A (2010) On the efficient-market hypothesis and stock exchange game model. Expert Syst Appl 37(8):5673–5681

Nassirtoussi AK, Aghabozorgi S, Wah TY, Ngo DCL (2014) Text mining for market prediction: a systematic review. Expert Syst Appl 41(16):7653–7670

Neely C, Weller P, Dittmar R (1997) Is technical analysis in the foreign exchange market profitable? A genetic programming approach. J Financial Quant Anal 32(4):405–426

Pincak R (2013) The string prediction models as invariants of time series in the FOREX market. Phys A: Stat Mech Appl 392(24):6414–6426

Samuelson PA (2016) Proof that properly anticipated prices fluctuate randomly. In: The World Scientific Handbook of Futures Markets, pp 25–38

Sarantis N, Stewart C (1995) Structural, VAR and BVAR models of exchange rate determination: a comparison of their forecasting performance. J Forecast 14(3):201–215

Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117

Sims CA (1980) Macroeconomics and reality. Econ: J Econ Soc. 48:1–48

Ţiţan AG (2015) The efficient market hypothesis: review of specialized literature and empirical research. Proc Econ Finance 32:442–449

Yao J, Tan CL (2000) A case study on using neural networks to perform technical forecasting of FOREX. Neurocomputing 34(1):79–98

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem