- -

Enhancing the context-aware FOREX market simulation using a parallel elastic network model

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Enhancing the context-aware FOREX market simulation using a parallel elastic network model

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Contreras, Antonio V. es_ES
dc.contributor.author Llanes, Antonio es_ES
dc.contributor.author Herrera, Francisco J. es_ES
dc.contributor.author Navarro, Sergio es_ES
dc.contributor.author López-Espin, Jose J. es_ES
dc.contributor.author Cecilia-Canales, José María es_ES
dc.date.accessioned 2021-03-03T04:31:19Z
dc.date.available 2021-03-03T04:31:19Z
dc.date.issued 2020-03 es_ES
dc.identifier.issn 0920-8542 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162854
dc.description.abstract [EN] Foreign exchange (FOREX) market is a decentralized global marketplace in which different participants, such as international banks, companies or investors, can buy, sell, exchange and speculate on currencies. This market is considered to be the largest financial market in the world in terms of trading volume. Indeed, the just-in-time price prediction for a currency pair exchange rate (e.g., EUR/USD) provides valuable information for companies and investors as they can take different actions to improve their business. The trading volume in the FOREX market is huge, disperses, in continuous operations (24 h except weekends), and the context significantly affects the exchange rates. This paper introduces a context-aware algorithm to model the behavior of the FOREX Market, called parallel elastic network model (PENM). This algorithm is inspired by natural procedures like the behavior of macromolecules in dissolution. The main results of this work include the possibility to represent the market evolution of up to 21 currency pair, being all connected, thus emulating the real-world FOREX market behavior. Moreover, because the computational needs required are highly costly as the number of currency pairs increases, a hybrid parallelization using several shared memory and message passing algorithms studied on distributed cluster is evaluated to achieve a high-throughput algorithm that answers the real-time constraints of the FOREX market. The PENM is also compared with a vector autoregressive (VAR) model using both a classical statistical measure and a profitability measure. Specifically, the results indicate that PENM outperforms VAR models in terms of quality, achieving up to 930xspeed-up factor compared to traditional R codes using in this field. es_ES
dc.description.sponsorship This work was jointly supported by the Fundación Séneca (Agencia Regional de Ciencia y Tecnología, Región de Murcia) under Grant 20813/PI/18 and by the Spanish MEC and European Commission FEDER under Grants TIN2016-78799-P and TIN2016-80565-R (AEI/FEDER, UE). es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof The Journal of Supercomputing es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject FOREX simulation es_ES
dc.subject Trading es_ES
dc.subject Context-aware es_ES
dc.subject Big data es_ES
dc.subject Bioinspired computing es_ES
dc.subject Parallel computing es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Enhancing the context-aware FOREX market simulation using a parallel elastic network model es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11227-019-02838-1 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/f SéNeCa//20813%2FPI%2F18/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2016-78799-P/ES/DESARROLLO HOLISTICO DE APLICACIONES EMERGENTES EN SISTEMAS HETEROGENEOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2016-80565-R/ES/DESARROLLO Y ESTUDIO DE ALGORITMOS PARA BUSQUEDA DEL MEJOR MODELO ECONOMETRICO EN PROBLEMAS DE CIENCIAS DE LA SALUD/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//RYC-2018-025580-I/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Contreras, AV.; Llanes, A.; Herrera, FJ.; Navarro, S.; López-Espin, JJ.; Cecilia-Canales, JM. (2020). Enhancing the context-aware FOREX market simulation using a parallel elastic network model. The Journal of Supercomputing. 76(3):2022-2038. https://doi.org/10.1007/s11227-019-02838-1 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11227-019-02838-1 es_ES
dc.description.upvformatpinicio 2022 es_ES
dc.description.upvformatpfin 2038 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 76 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\404484 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Bahrepour M, Akbarzadeh-T MR, Yaghoobi M, Naghibi-S MB (2011) An adaptive ordered fuzzy time series with application to FOREX. Expert Syst Appl 38(1):475–485 es_ES
dc.description.references Bank for International Settlements. https://www.bis.org/ . Accessed 13 Feb 2013 es_ES
dc.description.references Bhattacharyya S, Pictet OV, Zumbach G (2002) Knowledge-intensive genetic discovery in foreign exchange markets. IEEE Trans Evolut Comput 6(2):169–181 es_ES
dc.description.references Bank of International Settlements (2016) Triennial central bank survey: foreign exchange turnover in April 2016, Basel es_ES
dc.description.references Caporale GM, Gil-Alana L, Plastun A (2017) Searching for inefficiencies in exchange rate dynamics. Comput Econ 49(3):405–432 es_ES
dc.description.references De Grauwe P, Markiewicz A (2013) Learning to forecast the exchange rate: two competing approaches. J Int Money Finance 32:42–76 es_ES
dc.description.references Fama E (1970) Efficient capital markets: a review of theory and empirical work. J Finance 25(2):383–417 es_ES
dc.description.references Fama EF (1965) The behavior of stock-market prices. J Bus 38(1):34–105 es_ES
dc.description.references Fama EF (1970) Efficient capital markets: a review of theory and empirical work. J Finance 25(2):383–417 es_ES
dc.description.references Fuglebakk E, Reuter N, Hinsen K (2013) Evaluation of protein elastic network models based on an analysis of collective motions. J Chem Theory Comput 9(12):5618–5628 es_ES
dc.description.references Hanssens DM, Parsons LJ, Schultz RL (2003) Market response models: econometric and time series analysis, vol 12. Springer, New York es_ES
dc.description.references Kamruzzaman J, Sarker RA (2003) Forecasting of currency exchange rates using ANN: a case study. In: Proceedings of the 2003 International Conference on Neural Networks and Signal Processing, 2003, vol 1. IEEE, pp 793–797 es_ES
dc.description.references Kamruzzaman J, Sarker RA, Ahmad I (2003) SVM based models for predicting foreign currency exchange rates. In: Third IEEE International Conference on Data Mining, 2003. ICDM 2003, IEEE, pp. 557–560 es_ES
dc.description.references Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Mol Biol 9(9):646–652 es_ES
dc.description.references Kleen A (2015) Intel PMU profiling tools. https://github.com/andikleen/pmu-tools/tree/d70840ba . Accessed 15 Mar 2019 es_ES
dc.description.references Kuo RJ, Chen C, Hwang Y (2001) An intelligent stock trading decision support system through integration of genetic algorithm based fuzzy neural network and artificial neural network. Fuzzy Sets Syst 118(1):21–45 es_ES
dc.description.references LeBaron B, Arthur WB, Palmer R (1999) Time series properties of an artificial stock market. J Econ Dyn Control 23(9):1487–1516 es_ES
dc.description.references Li Q, Chen Y, Wang J, Chen Y, Chen H (2017) Web media and stock markets: a survey and future directions from a big data perspective. IEEE Trans Knowl Data Eng 30:381–399 es_ES
dc.description.references Luetkepohl H (2009) Econometric analysis with vector autoregressive models. In: Belsley DA, Kontoghiorghes EJ (eds) Handbook of computational econometrics. Wiley, New York, pp 281–319 es_ES
dc.description.references Makovskỳ P (2014) Modern approaches to efficient market hypothesis of FOREX—the central European case. Proc Econ Finance 14:397–406 es_ES
dc.description.references Meade N (2002) A comparison of the accuracy of short term foreign exchange forecasting methods. Int J Forecast 18(1):67–83 es_ES
dc.description.references Meese RA, Rogoff K (1983) Empirical exchange rate models of the seventies: do they fit out of sample? J Int Econ 14(1–2):3–24 es_ES
dc.description.references Mockus J, Raudys A (2010) On the efficient-market hypothesis and stock exchange game model. Expert Syst Appl 37(8):5673–5681 es_ES
dc.description.references Nassirtoussi AK, Aghabozorgi S, Wah TY, Ngo DCL (2014) Text mining for market prediction: a systematic review. Expert Syst Appl 41(16):7653–7670 es_ES
dc.description.references Neely C, Weller P, Dittmar R (1997) Is technical analysis in the foreign exchange market profitable? A genetic programming approach. J Financial Quant Anal 32(4):405–426 es_ES
dc.description.references Pincak R (2013) The string prediction models as invariants of time series in the FOREX market. Phys A: Stat Mech Appl 392(24):6414–6426 es_ES
dc.description.references Samuelson PA (2016) Proof that properly anticipated prices fluctuate randomly. In: The World Scientific Handbook of Futures Markets, pp 25–38 es_ES
dc.description.references Sarantis N, Stewart C (1995) Structural, VAR and BVAR models of exchange rate determination: a comparison of their forecasting performance. J Forecast 14(3):201–215 es_ES
dc.description.references Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117 es_ES
dc.description.references Sims CA (1980) Macroeconomics and reality. Econ: J Econ Soc. 48:1–48 es_ES
dc.description.references Ţiţan AG (2015) The efficient market hypothesis: review of specialized literature and empirical research. Proc Econ Finance 32:442–449 es_ES
dc.description.references Yao J, Tan CL (2000) A case study on using neural networks to perform technical forecasting of FOREX. Neurocomputing 34(1):79–98 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem