- -

Modeling the anaerobic treatment of sulfate rich urban wastewater. Application to AnMBR technology

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

El jueves 27 desde las 00 hasta 10:00 horas el sistema se apagará debido a tareas habituales de mantenimiento

Modeling the anaerobic treatment of sulfate rich urban wastewater. Application to AnMBR technology

Show full item record

Durán, F.; Robles Martínez, Á.; Giménez, JB.; Ferrer, J.; Ribes, J.; Serralta Sevilla, J. (2020). Modeling the anaerobic treatment of sulfate rich urban wastewater. Application to AnMBR technology. Water Research. 184:1-15. https://doi.org/10.1016/j.watres.2020.116133

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162855

Files in this item

Item Metadata

Title: Modeling the anaerobic treatment of sulfate rich urban wastewater. Application to AnMBR technology
Author: Durán, Freddy Robles Martínez, Ángel Giménez, Juan Bautista FERRER, J. Ribes, Josep Serralta Sevilla, Joaquín
UPV Unit: Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient
Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Issued date:
Embargo end date: 2022-07-11
Abstract:
[EN] Although anaerobic membrane bioreactors (AnMBR) are a core technology in the transition of urban wastewater (UWW) treatment towards a circular economy, the transition is being held back by a number of bottlenecks. The ...[+]
Subjects: Anaerobic membrane bioreactor , BNRM2 , Modeling , Sulfate-rich urban wastewater
Copyrigths: Embargado
Source:
Water Research. (issn: 0043-1354 )
DOI: 10.1016/j.watres.2020.116133
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.watres.2020.116133
Project ID:
MINECO/CTM2011-28595-C02-02
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTM2017-86751-C2-1-R/ES/ESTUDIO EXPERIMENTAL DE LA APLICACION DE LA TECNOLOGIA DE MEMBRANAS PARA POTENCIAR LA RECUPERACION DE RECURSOS EN LAS EDAR ACTUALES./
MINISTERIO DE ECONOMIA Y EMPRESA/CTM2011-28595-C02-01
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTM2017-86751-C2-2-R/ES/MODELACION Y CONTROL PARA LA IMPLEMENTACION DE LA LA TECNOLOGIA DE MEMBRANAS EN LAS EDAR ACTUALES PARA SU TRANSFORMACION EN ESTACIONES DE RECUPERACION DE RECURSOS./
Description: ©IWA Publishing 2020. The definitive peer-reviewed and edited version of this article is published in Water Research, Volume 184, 1 October 2020, 116133, https://doi.org/10.1016/j.watres.2020.116133 and is available at www.iwapublishing.com.
Thanks:
This research work was supported by the Spanish Ministry of Economy and Competitiveness [Grants CTM2011-28595-C02-01/02, CTM2017-86751-C2-1-R and CTM2017-86751-C2-2-R]; Co-funded by the European Regional Development Fund ...[+]
Type: Artículo

References

Ahammad, S. Z., Gomes, J., & Sreekrishnan, T. R. (2011). A Mathematical Model for the Interactive Behavior of Sulfate-Reducing Bacteria and Methanogens During Anaerobic Digestion. Water Environment Research, 83(9), 791-801. doi:10.2175/106143011x12989211840819

Ahmed, W., & Rodríguez, J. (2017). Generalized parameter estimation and calibration for biokinetic models using correlation and single variable optimisations: Application to sulfate reduction modelling in anaerobic digestion. Water Research, 122, 407-418. doi:10.1016/j.watres.2017.05.067

Ahmed, W., & Rodríguez, J. (2018). Modelling sulfate reduction in anaerobic digestion: Complexity evaluation and parameter calibration. Water Research, 130, 255-262. doi:10.1016/j.watres.2017.11.064 [+]
Ahammad, S. Z., Gomes, J., & Sreekrishnan, T. R. (2011). A Mathematical Model for the Interactive Behavior of Sulfate-Reducing Bacteria and Methanogens During Anaerobic Digestion. Water Environment Research, 83(9), 791-801. doi:10.2175/106143011x12989211840819

Ahmed, W., & Rodríguez, J. (2017). Generalized parameter estimation and calibration for biokinetic models using correlation and single variable optimisations: Application to sulfate reduction modelling in anaerobic digestion. Water Research, 122, 407-418. doi:10.1016/j.watres.2017.05.067

Ahmed, W., & Rodríguez, J. (2018). Modelling sulfate reduction in anaerobic digestion: Complexity evaluation and parameter calibration. Water Research, 130, 255-262. doi:10.1016/j.watres.2017.11.064

Aquino, S. F., & Stuckey, D. C. (2008). Integrated model of the production of soluble microbial products (SMP) and extracellular polymeric substances (EPS) in anaerobic chemostats during transient conditions. Biochemical Engineering Journal, 38(2), 138-146. doi:10.1016/j.bej.2007.06.010

Barat, R., Serralta, J., Ruano, M. V., Jiménez, E., Ribes, J., Seco, A., & Ferrer, J. (2013). Biological Nutrient Removal Model No. 2 (BNRM2): a general model for wastewater treatment plants. Water Science and Technology, 67(7), 1481-1489. doi:10.2166/wst.2013.004

Barrera, E. L., Spanjers, H., Solon, K., Amerlinck, Y., Nopens, I., & Dewulf, J. (2015). Modeling the anaerobic digestion of cane-molasses vinasse: Extension of the Anaerobic Digestion Model No. 1 (ADM1) with sulfate reduction for a very high strength and sulfate rich wastewater. Water Research, 71, 42-54. doi:10.1016/j.watres.2014.12.026

Batstone, D. J. (2006). Mathematical Modelling of Anaerobic Reactors Treating Domestic Wastewater: Rational Criteria for Model Use. Reviews in Environmental Science and Bio/Technology, 5(1), 57-71. doi:10.1007/s11157-005-7191-z

Batstone, D. J., Keller, J., Angelidaki, I., Kalyuzhnyi, S. V., Pavlostathis, S. G., Rozzi, A., … Vavilin, V. A. (2002). The IWA Anaerobic Digestion Model No 1 (ADM1). Water Science and Technology, 45(10), 65-73. doi:10.2166/wst.2002.0292

Batstone, D. J., Keller, J., & Steyer, J. P. (2006). A review of ADM1 extensions, applications, and analysis: 2002–2005. Water Science and Technology, 54(4), 1-10. doi:10.2166/wst.2006.520

Batstone, D. J., Puyol, D., Flores-Alsina, X., & Rodríguez, J. (2015). Mathematical modelling of anaerobic digestion processes: applications and future needs. Reviews in Environmental Science and Bio/Technology, 14(4), 595-613. doi:10.1007/s11157-015-9376-4

Becker, A. M., Yu, K., Stadler, L. B., & Smith, A. L. (2017). Co-management of domestic wastewater and food waste: A life cycle comparison of alternative food waste diversion strategies. Bioresource Technology, 223, 131-140. doi:10.1016/j.biortech.2016.10.031

Benyahia, B., Sari, T., Cherki, B., & Harmand, J. (2013). Anaerobic membrane bioreactor modeling in the presence of Soluble Microbial Products (SMP) – the Anaerobic Model AM2b. Chemical Engineering Journal, 228, 1011-1022. doi:10.1016/j.cej.2013.05.073

Bernard, O., Hadj-Sadok, Z., Dochain, D., Genovesi, A., & Steyer, J.-P. (2001). Dynamical model development and parameter identification for an anaerobic wastewater treatment process. Biotechnology and Bioengineering, 75(4), 424-438. doi:10.1002/bit.10036

Cassidy, J., Lubberding, H. J., Esposito, G., Keesman, K. J., & Lens, P. N. L. (2015). Automated biological sulphate reduction: a review on mathematical models, monitoring and bioprocess control. FEMS Microbiology Reviews, 39(6), 823-853. doi:10.1093/femsre/fuv033

Charfi, A., Thongmak, N., Benyahia, B., Aslam, M., Harmand, J., Amar, N. B., … Heran, M. (2017). A modelling approach to study the fouling of an anaerobic membrane bioreactor for industrial wastewater treatment. Bioresource Technology, 245, 207-215. doi:10.1016/j.biortech.2017.08.003

Cookney, J., Mcleod, A., Mathioudakis, V., Ncube, P., Soares, A., Jefferson, B., & McAdam, E. J. (2016). Dissolved methane recovery from anaerobic effluents using hollow fibre membrane contactors. Journal of Membrane Science, 502, 141-150. doi:10.1016/j.memsci.2015.12.037

Copp, J. B., Belia, E., Snowling, S., & Schraa, O. (2005). Anaerobic digestion: a new model for plant-wide wastewater treatment process modelling. Water Science and Technology, 52(10-11), 1-11. doi:10.2166/wst.2005.0673

Corominas, L., Rieger, L., Takács, I., Ekama, G., Hauduc, H., Vanrolleghem, P. A., … Comeau, Y. (2010). New framework for standardized notation in wastewater treatment modelling. Water Science and Technology, 61(4), 841-857. doi:10.2166/wst.2010.912

Crone, B. C., Garland, J. L., Sorial, G. A., & Vane, L. M. (2016). Significance of dissolved methane in effluents of anaerobically treated low strength wastewater and potential for recovery as an energy product: A review. Water Research, 104, 520-531. doi:10.1016/j.watres.2016.08.019

Fedorovich, V., Lens, P., & Kalyuzhnyi, S. (2003). Extension of Anaerobic Digestion Model No. 1 with Processes of Sulfate Reduction. Applied Biochemistry and Biotechnology, 109(1-3), 33-46. doi:10.1385/abab:109:1-3:33

Fernández-Arévalo, T., Lizarralde, I., Fdz-Polanco, F., Pérez-Elvira, S. I., Garrido, J. M., Puig, S., … Ayesa, E. (2017). Quantitative assessment of energy and resource recovery in wastewater treatment plants based on plant-wide simulations. Water Research, 118, 272-288. doi:10.1016/j.watres.2017.04.001

Ferrer, J., Seco, A., Serralta, J., Ribes, J., Manga, J., Asensi, E., … Llavador, F. (2008). DESASS: A software tool for designing, simulating and optimising WWTPs. Environmental Modelling & Software, 23(1), 19-26. doi:10.1016/j.envsoft.2007.04.005

Fomichev, A. O., & Vavilin, V. A. (1997). The reduced model of self-oscillating dynamics in an anaerobic system with sulfate-reduction. Ecological Modelling, 95(2-3), 133-144. doi:10.1016/s0304-3800(96)00041-5

Frunzo, L., Esposito, G., Pirozzi, F., & Lens, P. (2012). Dynamic mathematical modeling of sulfate reducing gas-lift reactors. Process Biochemistry, 47(12), 2172-2181. doi:10.1016/j.procbio.2012.08.010

Giménez, J. B., Robles, A., Carretero, L., Durán, F., Ruano, M. V., Gatti, M. N., … Seco, A. (2011). Experimental study of the anaerobic urban wastewater treatment in a submerged hollow-fibre membrane bioreactor at pilot scale. Bioresource Technology, 102(19), 8799-8806. doi:10.1016/j.biortech.2011.07.014

Giménez, J. B., Carretero, L., Gatti, M. N., Martí, N., Borrás, L., Ribes, J., & Seco, A. (2012). Reliable method for assessing the COD mass balance of a submerged anaerobic membrane bioreactor (SAMBR) treating sulphate-rich municipal wastewater. Water Science and Technology, 66(3), 494-502. doi:10.2166/wst.2012.184

Giménez, J. B., Martí, N., Ferrer, J., & Seco, A. (2012). Methane recovery efficiency in a submerged anaerobic membrane bioreactor (SAnMBR) treating sulphate-rich urban wastewater: Evaluation of methane losses with the effluent. Bioresource Technology, 118, 67-72. doi:10.1016/j.biortech.2012.05.019

Giménez, J. B., Martí, N., Robles, A., Ferrer, J., & Seco, A. (2014). Anaerobic treatment of urban wastewater in membrane bioreactors: evaluation of seasonal temperature variations. Water Science and Technology, 69(7), 1581-1588. doi:10.2166/wst.2014.069

Harerimana, C., Keffala, C., Jupsin, H., & Vasel, J.-L. (2013). Development of a simple model for anaerobic digestion based on preliminary measurements of the bacterial sulphur activity in wastewater stabilization ponds. Environmental Technology, 34(15), 2213-2220. doi:10.1080/09593330.2012.725773

Henares, M., Izquierdo, M., Marzal, P., & Martínez-Soria, V. (2017). Demethanization of aqueous anaerobic effluents using a polydimethylsiloxane membrane module: Mass transfer, fouling and energy analysis. Separation and Purification Technology, 186, 10-19. doi:10.1016/j.seppur.2017.05.035

Henze, M., Gujer, W., Mino, T., Matsuo, T., Wentzel, M. C., Marais, G. v. R., & Van Loosdrecht, M. C. M. (1999). Activated Sludge Model No.2d, ASM2D. Water Science and Technology, 39(1), 165-182. doi:10.2166/wst.1999.0036

Kalyuzhnyi, S. V., & Fedorovich, V. V. (1998). Mathematical modelling of competition between sulphate reduction and methanogenesis in anaerobic reactors. Bioresource Technology, 65(3), 227-242. doi:10.1016/s0960-8524(98)00019-4

Knobel, A. N., & Lewis, A. E. (2002). A mathematical model of a high sulphate wastewater anaerobic treatment system. Water Research, 36(1), 257-265. doi:10.1016/s0043-1354(01)00209-3

Kythreotou, N., Florides, G., & Tassou, S. A. (2014). A review of simple to scientific models for anaerobic digestion. Renewable Energy, 71, 701-714. doi:10.1016/j.renene.2014.05.055

Laanbroek, H. J., Geerligs, H. J., Sijtsma, L., & Veldkamp, H. (1984). Competition for Sulfate and Ethanol Among Desulfobacter, Desulfobulbus , and Desulfovibrio Species Isolated from Intertidal Sediments. Applied and Environmental Microbiology, 47(2), 329-334. doi:10.1128/aem.47.2.329-334.1984

Lei, Z., Yang, S., Li, Y., Wen, W., Wang, X. C., & Chen, R. (2018). Application of anaerobic membrane bioreactors to municipal wastewater treatment at ambient temperature: A review of achievements, challenges, and perspectives. Bioresource Technology, 267, 756-768. doi:10.1016/j.biortech.2018.07.050

Lens, P. N. L., Visser, A., Janssen, A. J. H., Pol, L. W. H., & Lettinga, G. (1998). Biotechnological Treatment of Sulfate-Rich Wastewaters. Critical Reviews in Environmental Science and Technology, 28(1), 41-88. doi:10.1080/10643389891254160

Lizarralde, I., Fernández-Arévalo, T., Manas, A., Ayesa, E., & Grau, P. (2019). Model-based opti mization of phosphorus management strategies in Sur WWTP, Madrid. Water Research, 153, 39-52. doi:10.1016/j.watres.2018.12.056

Maaz, M., Yasin, M., Aslam, M., Kumar, G., Atabani, A. E., Idrees, M., … Kim, J. (2019). Anaerobic membrane bioreactors for wastewater treatment: Novel configurations, fouling control and energy considerations. Bioresource Technology, 283, 358-372. doi:10.1016/j.biortech.2019.03.061

Maree, J. P., & Strydom, W. F. (1985). Biological sulphate removal in an upflow packed bed reactor. Water Research, 19(9), 1101-1106. doi:10.1016/0043-1354(85)90346-x

Mei, X., Wang, Z., Miao, Y., & Wu, Z. (2016). Recover energy from domestic wastewater using anaerobic membrane bioreactor: Operating parameters optimization and energy balance analysis. Energy, 98, 146-154. doi:10.1016/j.energy.2016.01.011

Merkel, W., & Krauth, K. (1999). Mass transfer of carbon dioxide in anaerobic reactors under dynamic substrate loading conditions. Water Research, 33(9), 2011-2020. doi:10.1016/s0043-1354(98)00434-5

Pelaz, L., Gómez, A., Garralón, G., Letona, A., & Fdz-Polanco, M. (2018). Recirculation of gas emissions to achieve advanced denitrification of the effluent from the anaerobic treatment of domestic wastewater. Bioresource Technology, 250, 758-763. doi:10.1016/j.biortech.2017.11.104

Pretel, R., Robles, A., Ruano, M. V., Seco, A., & Ferrer, J. (2014). The operating cost of an anaerobic membrane bioreactor (AnMBR) treating sulphate-rich urban wastewater. Separation and Purification Technology, 126, 30-38. doi:10.1016/j.seppur.2014.02.013

Robles, A., Ruano, M. V., Ribes, J., Seco, A., & Ferrer, J. (2013). Mathematical modelling of filtration in submerged anaerobic MBRs (SAnMBRs): Long-term validation. Journal of Membrane Science, 446, 303-309. doi:10.1016/j.memsci.2013.07.001

Robles, A., Ruano, M. V., Ribes, J., Seco, A., & Ferrer, J. (2013). A filtration model applied to submerged anaerobic MBRs (SAnMBRs). Journal of Membrane Science, 444, 139-147. doi:10.1016/j.memsci.2013.05.021

Robles, A., Ruano, M. V., Ribes, J., Seco, A., & Ferrer, J. (2014). Global sensitivity analysis of a filtration model for submerged anaerobic membrane bioreactors (AnMBR). Bioresource Technology, 158, 365-373. doi:10.1016/j.biortech.2014.02.087

Robles, Á., Ruano, M. V., Charfi, A., Lesage, G., Heran, M., Harmand, J., … Ferrer, J. (2018). A review on anaerobic membrane bioreactors (AnMBRs) focused on modelling and control aspects. Bioresource Technology, 270, 612-626. doi:10.1016/j.biortech.2018.09.049

Sanchis-Perucho, P., Robles, Á., Durán, F., Ferrer, J., & Seco, A. (2020). PDMS membranes for feasible recovery of dissolved methane from AnMBR effluents. Journal of Membrane Science, 604, 118070. doi:10.1016/j.memsci.2020.118070

Seco, A., Ribes, J., Serralta, J., & Ferrer, J. (2004). Biological nutrient removal model No.1 (BNRM1). Water Science and Technology, 50(6), 69-70. doi:10.2166/wst.2004.0361

Seco, A., Ruano, M. V., Ruiz-Martinez, A., Robles, A., Barat, R., Serralta, J., & Ferrer, J. (2020). Plant-wide modelling in wastewater treatment: showcasing experiences using the Biological Nutrient Removal Model. Water Science and Technology, 81(8), 1700-1714. doi:10.2166/wst.2020.056

Serralta, J., Ferrer, J., Borrás, L., & Seco, A. (2004). An extension of ASM2d including pH calculation. Water Research, 38(19), 4029-4038. doi:10.1016/j.watres.2004.07.009

Shin, C., & Bae, J. (2018). Current status of the pilot-scale anaerobic membrane bioreactor treatments of domestic wastewaters: A critical review. Bioresource Technology, 247, 1038-1046. doi:10.1016/j.biortech.2017.09.002

Siegrist, H., Renggli, D., & Gujer, W. (1993). Mathematical Modelling of Anaerobic Mesophilic Sewage Sludge Treatment. Water Science and Technology, 27(2), 25-36. doi:10.2166/wst.1993.0070

Siegrist, H., Vogt, D., Garcia-Heras, J. L., & Gujer, W. (2002). Mathematical Model for Meso- and Thermophilic Anaerobic Sewage Sludge Digestion. Environmental Science & Technology, 36(5), 1113-1123. doi:10.1021/es010139p

Solon, K., Volcke, E. I. P., Spérandio, M., & van Loosdrecht, M. C. M. (2019). Resource recovery and wastewater treatment modelling. Environmental Science: Water Research & Technology, 5(4), 631-642. doi:10.1039/c8ew00765a

ZAHER, U., GRAU, P., BENEDETTI, L., AYESA, E., & VANROLLEGHEM, P. (2007). Transformers for interfacing anaerobic digestion models to pre- and post-treatment processes in a plant-wide modelling context. Environmental Modelling & Software, 22(1), 40-58. doi:10.1016/j.envsoft.2005.11.002

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record