Mostrar el registro sencillo del ítem
dc.contributor.author | Durán, Freddy | es_ES |
dc.contributor.author | Robles Martínez, Ángel | es_ES |
dc.contributor.author | Giménez, Juan Bautista | es_ES |
dc.contributor.author | FERRER, J. | es_ES |
dc.contributor.author | Ribes, Josep | es_ES |
dc.contributor.author | Serralta Sevilla, Joaquín | es_ES |
dc.date.accessioned | 2021-03-03T04:31:31Z | |
dc.date.available | 2021-03-03T04:31:31Z | |
dc.date.issued | 2020-10-01 | es_ES |
dc.identifier.issn | 0043-1354 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/162855 | |
dc.description | ©IWA Publishing 2020. The definitive peer-reviewed and edited version of this article is published in Water Research, Volume 184, 1 October 2020, 116133, https://doi.org/10.1016/j.watres.2020.116133 and is available at www.iwapublishing.com. | es_ES |
dc.description.abstract | [EN] Although anaerobic membrane bioreactors (AnMBR) are a core technology in the transition of urban wastewater (UWW) treatment towards a circular economy, the transition is being held back by a number of bottlenecks. The dissolved methane released from the effluent, the need to remove nutrients (ideally by recovery), or the energy lost by the competition between methanogenic and sulfate-reducing bacteria (SRB) for the biodegradable COD have been identified as the main issues to be addressed before AnMBR becomes widespread. Mathematical modeling of this technology can be used to obtain further insights into these bottlenecks plus other valuable information for design, simulation and control purposes. This paper therefore proposes an AnMBR anaerobic digestion model to simulate the crucial SRB-related process since these bacteria degrade more than 40% of the organic matter. The proposed model, which is included in the BNRM2 collection model, has a reduced but all-inclusive structure, including hydrolysis, acidogenesis, acetogenesis, methanogenesis and other SRB-related processes. It was calibrated and validated using data from an AnMBR pilot plant treating sulfate-rich UWW, including parameter values obtained in off-line experiments and optimization methods. Despite the complex operating dynamics and influent composition, it was able to reproduce the process performance. In fact, it was able to simulate the AD of sulfate-rich UWW considering only two groups of SRB: heterotrophic SRB growing on both VFA (propionate) and acetate, and autotrophic SRB growing on hydrogen. Besides the above-mentioned constraints, the model reproduced the dynamics of the mixed liquor solids concentration, which helped to integrate biochemical and filtration models. It also reproduced the alkalinity and pH dynamics in the mixed liquor required for assessing the effect of chemical precipitation on membrane scaling. | es_ES |
dc.description.sponsorship | This research work was supported by the Spanish Ministry of Economy and Competitiveness [Grants CTM2011-28595-C02-01/02, CTM2017-86751-C2-1-R and CTM2017-86751-C2-2-R]; Co-funded by the European Regional Development Fund [Grant CTM2011-28595-C02-01/02]. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Water Research | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Anaerobic membrane bioreactor | es_ES |
dc.subject | BNRM2 | es_ES |
dc.subject | Modeling | es_ES |
dc.subject | Sulfate-rich urban wastewater | es_ES |
dc.subject.classification | TECNOLOGIA DEL MEDIO AMBIENTE | es_ES |
dc.title | Modeling the anaerobic treatment of sulfate rich urban wastewater. Application to AnMBR technology | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.watres.2020.116133 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CTM2011-28595-C02-02/ES/ESTUDIO EXPERIMENTAL DE LA RECUPERACION COMO BIOGAS DE LA ENERGIA DE LA MATERIA ORGANICA Y NUTRIENTES DEL AGUA RESIDUAL, ACOPLANDO UN ANBRM Y UN CULTIVO DE MICROALGAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTM2017-86751-C2-1-R/ES/ESTUDIO EXPERIMENTAL DE LA APLICACION DE LA TECNOLOGIA DE MEMBRANAS PARA POTENCIAR LA RECUPERACION DE RECURSOS EN LAS EDAR ACTUALES./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CTM2011-28595-C02-01/ES/MODELACION Y CONTROL DE LA RECUPERACION COMO BIOGAS DE LA ENERGIA DE LA MATERIA ORGANICA Y NUTRIENTES DEL AGUA RESIDUAL, ACOPLANDO UN ANBRM Y UN CULTIVO DE MICROALGAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTM2017-86751-C2-2-R/ES/MODELACION Y CONTROL PARA LA IMPLEMENTACION DE LA LA TECNOLOGIA DE MEMBRANAS EN LAS EDAR ACTUALES PARA SU TRANSFORMACION EN ESTACIONES DE RECUPERACION DE RECURSOS./ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Durán, F.; Robles Martínez, Á.; Giménez, JB.; Ferrer, J.; Ribes, J.; Serralta Sevilla, J. (2020). Modeling the anaerobic treatment of sulfate rich urban wastewater. Application to AnMBR technology. Water Research. 184:1-15. https://doi.org/10.1016/j.watres.2020.116133 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.watres.2020.116133 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 15 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 184 | es_ES |
dc.identifier.pmid | 32721762 | es_ES |
dc.relation.pasarela | S\425075 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Ahammad, S. Z., Gomes, J., & Sreekrishnan, T. R. (2011). A Mathematical Model for the Interactive Behavior of Sulfate-Reducing Bacteria and Methanogens During Anaerobic Digestion. Water Environment Research, 83(9), 791-801. doi:10.2175/106143011x12989211840819 | es_ES |
dc.description.references | Ahmed, W., & Rodríguez, J. (2017). Generalized parameter estimation and calibration for biokinetic models using correlation and single variable optimisations: Application to sulfate reduction modelling in anaerobic digestion. Water Research, 122, 407-418. doi:10.1016/j.watres.2017.05.067 | es_ES |
dc.description.references | Ahmed, W., & Rodríguez, J. (2018). Modelling sulfate reduction in anaerobic digestion: Complexity evaluation and parameter calibration. Water Research, 130, 255-262. doi:10.1016/j.watres.2017.11.064 | es_ES |
dc.description.references | Aquino, S. F., & Stuckey, D. C. (2008). Integrated model of the production of soluble microbial products (SMP) and extracellular polymeric substances (EPS) in anaerobic chemostats during transient conditions. Biochemical Engineering Journal, 38(2), 138-146. doi:10.1016/j.bej.2007.06.010 | es_ES |
dc.description.references | Barat, R., Serralta, J., Ruano, M. V., Jiménez, E., Ribes, J., Seco, A., & Ferrer, J. (2013). Biological Nutrient Removal Model No. 2 (BNRM2): a general model for wastewater treatment plants. Water Science and Technology, 67(7), 1481-1489. doi:10.2166/wst.2013.004 | es_ES |
dc.description.references | Barrera, E. L., Spanjers, H., Solon, K., Amerlinck, Y., Nopens, I., & Dewulf, J. (2015). Modeling the anaerobic digestion of cane-molasses vinasse: Extension of the Anaerobic Digestion Model No. 1 (ADM1) with sulfate reduction for a very high strength and sulfate rich wastewater. Water Research, 71, 42-54. doi:10.1016/j.watres.2014.12.026 | es_ES |
dc.description.references | Batstone, D. J. (2006). Mathematical Modelling of Anaerobic Reactors Treating Domestic Wastewater: Rational Criteria for Model Use. Reviews in Environmental Science and Bio/Technology, 5(1), 57-71. doi:10.1007/s11157-005-7191-z | es_ES |
dc.description.references | Batstone, D. J., Keller, J., Angelidaki, I., Kalyuzhnyi, S. V., Pavlostathis, S. G., Rozzi, A., … Vavilin, V. A. (2002). The IWA Anaerobic Digestion Model No 1 (ADM1). Water Science and Technology, 45(10), 65-73. doi:10.2166/wst.2002.0292 | es_ES |
dc.description.references | Batstone, D. J., Keller, J., & Steyer, J. P. (2006). A review of ADM1 extensions, applications, and analysis: 2002–2005. Water Science and Technology, 54(4), 1-10. doi:10.2166/wst.2006.520 | es_ES |
dc.description.references | Batstone, D. J., Puyol, D., Flores-Alsina, X., & Rodríguez, J. (2015). Mathematical modelling of anaerobic digestion processes: applications and future needs. Reviews in Environmental Science and Bio/Technology, 14(4), 595-613. doi:10.1007/s11157-015-9376-4 | es_ES |
dc.description.references | Becker, A. M., Yu, K., Stadler, L. B., & Smith, A. L. (2017). Co-management of domestic wastewater and food waste: A life cycle comparison of alternative food waste diversion strategies. Bioresource Technology, 223, 131-140. doi:10.1016/j.biortech.2016.10.031 | es_ES |
dc.description.references | Benyahia, B., Sari, T., Cherki, B., & Harmand, J. (2013). Anaerobic membrane bioreactor modeling in the presence of Soluble Microbial Products (SMP) – the Anaerobic Model AM2b. Chemical Engineering Journal, 228, 1011-1022. doi:10.1016/j.cej.2013.05.073 | es_ES |
dc.description.references | Bernard, O., Hadj-Sadok, Z., Dochain, D., Genovesi, A., & Steyer, J.-P. (2001). Dynamical model development and parameter identification for an anaerobic wastewater treatment process. Biotechnology and Bioengineering, 75(4), 424-438. doi:10.1002/bit.10036 | es_ES |
dc.description.references | Cassidy, J., Lubberding, H. J., Esposito, G., Keesman, K. J., & Lens, P. N. L. (2015). Automated biological sulphate reduction: a review on mathematical models, monitoring and bioprocess control. FEMS Microbiology Reviews, 39(6), 823-853. doi:10.1093/femsre/fuv033 | es_ES |
dc.description.references | Charfi, A., Thongmak, N., Benyahia, B., Aslam, M., Harmand, J., Amar, N. B., … Heran, M. (2017). A modelling approach to study the fouling of an anaerobic membrane bioreactor for industrial wastewater treatment. Bioresource Technology, 245, 207-215. doi:10.1016/j.biortech.2017.08.003 | es_ES |
dc.description.references | Cookney, J., Mcleod, A., Mathioudakis, V., Ncube, P., Soares, A., Jefferson, B., & McAdam, E. J. (2016). Dissolved methane recovery from anaerobic effluents using hollow fibre membrane contactors. Journal of Membrane Science, 502, 141-150. doi:10.1016/j.memsci.2015.12.037 | es_ES |
dc.description.references | Copp, J. B., Belia, E., Snowling, S., & Schraa, O. (2005). Anaerobic digestion: a new model for plant-wide wastewater treatment process modelling. Water Science and Technology, 52(10-11), 1-11. doi:10.2166/wst.2005.0673 | es_ES |
dc.description.references | Corominas, L., Rieger, L., Takács, I., Ekama, G., Hauduc, H., Vanrolleghem, P. A., … Comeau, Y. (2010). New framework for standardized notation in wastewater treatment modelling. Water Science and Technology, 61(4), 841-857. doi:10.2166/wst.2010.912 | es_ES |
dc.description.references | Crone, B. C., Garland, J. L., Sorial, G. A., & Vane, L. M. (2016). Significance of dissolved methane in effluents of anaerobically treated low strength wastewater and potential for recovery as an energy product: A review. Water Research, 104, 520-531. doi:10.1016/j.watres.2016.08.019 | es_ES |
dc.description.references | Fedorovich, V., Lens, P., & Kalyuzhnyi, S. (2003). Extension of Anaerobic Digestion Model No. 1 with Processes of Sulfate Reduction. Applied Biochemistry and Biotechnology, 109(1-3), 33-46. doi:10.1385/abab:109:1-3:33 | es_ES |
dc.description.references | Fernández-Arévalo, T., Lizarralde, I., Fdz-Polanco, F., Pérez-Elvira, S. I., Garrido, J. M., Puig, S., … Ayesa, E. (2017). Quantitative assessment of energy and resource recovery in wastewater treatment plants based on plant-wide simulations. Water Research, 118, 272-288. doi:10.1016/j.watres.2017.04.001 | es_ES |
dc.description.references | Ferrer, J., Seco, A., Serralta, J., Ribes, J., Manga, J., Asensi, E., … Llavador, F. (2008). DESASS: A software tool for designing, simulating and optimising WWTPs. Environmental Modelling & Software, 23(1), 19-26. doi:10.1016/j.envsoft.2007.04.005 | es_ES |
dc.description.references | Fomichev, A. O., & Vavilin, V. A. (1997). The reduced model of self-oscillating dynamics in an anaerobic system with sulfate-reduction. Ecological Modelling, 95(2-3), 133-144. doi:10.1016/s0304-3800(96)00041-5 | es_ES |
dc.description.references | Frunzo, L., Esposito, G., Pirozzi, F., & Lens, P. (2012). Dynamic mathematical modeling of sulfate reducing gas-lift reactors. Process Biochemistry, 47(12), 2172-2181. doi:10.1016/j.procbio.2012.08.010 | es_ES |
dc.description.references | Giménez, J. B., Robles, A., Carretero, L., Durán, F., Ruano, M. V., Gatti, M. N., … Seco, A. (2011). Experimental study of the anaerobic urban wastewater treatment in a submerged hollow-fibre membrane bioreactor at pilot scale. Bioresource Technology, 102(19), 8799-8806. doi:10.1016/j.biortech.2011.07.014 | es_ES |
dc.description.references | Giménez, J. B., Carretero, L., Gatti, M. N., Martí, N., Borrás, L., Ribes, J., & Seco, A. (2012). Reliable method for assessing the COD mass balance of a submerged anaerobic membrane bioreactor (SAMBR) treating sulphate-rich municipal wastewater. Water Science and Technology, 66(3), 494-502. doi:10.2166/wst.2012.184 | es_ES |
dc.description.references | Giménez, J. B., Martí, N., Ferrer, J., & Seco, A. (2012). Methane recovery efficiency in a submerged anaerobic membrane bioreactor (SAnMBR) treating sulphate-rich urban wastewater: Evaluation of methane losses with the effluent. Bioresource Technology, 118, 67-72. doi:10.1016/j.biortech.2012.05.019 | es_ES |
dc.description.references | Giménez, J. B., Martí, N., Robles, A., Ferrer, J., & Seco, A. (2014). Anaerobic treatment of urban wastewater in membrane bioreactors: evaluation of seasonal temperature variations. Water Science and Technology, 69(7), 1581-1588. doi:10.2166/wst.2014.069 | es_ES |
dc.description.references | Harerimana, C., Keffala, C., Jupsin, H., & Vasel, J.-L. (2013). Development of a simple model for anaerobic digestion based on preliminary measurements of the bacterial sulphur activity in wastewater stabilization ponds. Environmental Technology, 34(15), 2213-2220. doi:10.1080/09593330.2012.725773 | es_ES |
dc.description.references | Henares, M., Izquierdo, M., Marzal, P., & Martínez-Soria, V. (2017). Demethanization of aqueous anaerobic effluents using a polydimethylsiloxane membrane module: Mass transfer, fouling and energy analysis. Separation and Purification Technology, 186, 10-19. doi:10.1016/j.seppur.2017.05.035 | es_ES |
dc.description.references | Henze, M., Gujer, W., Mino, T., Matsuo, T., Wentzel, M. C., Marais, G. v. R., & Van Loosdrecht, M. C. M. (1999). Activated Sludge Model No.2d, ASM2D. Water Science and Technology, 39(1), 165-182. doi:10.2166/wst.1999.0036 | es_ES |
dc.description.references | Kalyuzhnyi, S. V., & Fedorovich, V. V. (1998). Mathematical modelling of competition between sulphate reduction and methanogenesis in anaerobic reactors. Bioresource Technology, 65(3), 227-242. doi:10.1016/s0960-8524(98)00019-4 | es_ES |
dc.description.references | Knobel, A. N., & Lewis, A. E. (2002). A mathematical model of a high sulphate wastewater anaerobic treatment system. Water Research, 36(1), 257-265. doi:10.1016/s0043-1354(01)00209-3 | es_ES |
dc.description.references | Kythreotou, N., Florides, G., & Tassou, S. A. (2014). A review of simple to scientific models for anaerobic digestion. Renewable Energy, 71, 701-714. doi:10.1016/j.renene.2014.05.055 | es_ES |
dc.description.references | Laanbroek, H. J., Geerligs, H. J., Sijtsma, L., & Veldkamp, H. (1984). Competition for Sulfate and Ethanol Among Desulfobacter, Desulfobulbus , and Desulfovibrio Species Isolated from Intertidal Sediments. Applied and Environmental Microbiology, 47(2), 329-334. doi:10.1128/aem.47.2.329-334.1984 | es_ES |
dc.description.references | Lei, Z., Yang, S., Li, Y., Wen, W., Wang, X. C., & Chen, R. (2018). Application of anaerobic membrane bioreactors to municipal wastewater treatment at ambient temperature: A review of achievements, challenges, and perspectives. Bioresource Technology, 267, 756-768. doi:10.1016/j.biortech.2018.07.050 | es_ES |
dc.description.references | Lens, P. N. L., Visser, A., Janssen, A. J. H., Pol, L. W. H., & Lettinga, G. (1998). Biotechnological Treatment of Sulfate-Rich Wastewaters. Critical Reviews in Environmental Science and Technology, 28(1), 41-88. doi:10.1080/10643389891254160 | es_ES |
dc.description.references | Lizarralde, I., Fernández-Arévalo, T., Manas, A., Ayesa, E., & Grau, P. (2019). Model-based opti mization of phosphorus management strategies in Sur WWTP, Madrid. Water Research, 153, 39-52. doi:10.1016/j.watres.2018.12.056 | es_ES |
dc.description.references | Maaz, M., Yasin, M., Aslam, M., Kumar, G., Atabani, A. E., Idrees, M., … Kim, J. (2019). Anaerobic membrane bioreactors for wastewater treatment: Novel configurations, fouling control and energy considerations. Bioresource Technology, 283, 358-372. doi:10.1016/j.biortech.2019.03.061 | es_ES |
dc.description.references | Maree, J. P., & Strydom, W. F. (1985). Biological sulphate removal in an upflow packed bed reactor. Water Research, 19(9), 1101-1106. doi:10.1016/0043-1354(85)90346-x | es_ES |
dc.description.references | Mei, X., Wang, Z., Miao, Y., & Wu, Z. (2016). Recover energy from domestic wastewater using anaerobic membrane bioreactor: Operating parameters optimization and energy balance analysis. Energy, 98, 146-154. doi:10.1016/j.energy.2016.01.011 | es_ES |
dc.description.references | Merkel, W., & Krauth, K. (1999). Mass transfer of carbon dioxide in anaerobic reactors under dynamic substrate loading conditions. Water Research, 33(9), 2011-2020. doi:10.1016/s0043-1354(98)00434-5 | es_ES |
dc.description.references | Pelaz, L., Gómez, A., Garralón, G., Letona, A., & Fdz-Polanco, M. (2018). Recirculation of gas emissions to achieve advanced denitrification of the effluent from the anaerobic treatment of domestic wastewater. Bioresource Technology, 250, 758-763. doi:10.1016/j.biortech.2017.11.104 | es_ES |
dc.description.references | Pretel, R., Robles, A., Ruano, M. V., Seco, A., & Ferrer, J. (2014). The operating cost of an anaerobic membrane bioreactor (AnMBR) treating sulphate-rich urban wastewater. Separation and Purification Technology, 126, 30-38. doi:10.1016/j.seppur.2014.02.013 | es_ES |
dc.description.references | Robles, A., Ruano, M. V., Ribes, J., Seco, A., & Ferrer, J. (2013). Mathematical modelling of filtration in submerged anaerobic MBRs (SAnMBRs): Long-term validation. Journal of Membrane Science, 446, 303-309. doi:10.1016/j.memsci.2013.07.001 | es_ES |
dc.description.references | Robles, A., Ruano, M. V., Ribes, J., Seco, A., & Ferrer, J. (2013). A filtration model applied to submerged anaerobic MBRs (SAnMBRs). Journal of Membrane Science, 444, 139-147. doi:10.1016/j.memsci.2013.05.021 | es_ES |
dc.description.references | Robles, A., Ruano, M. V., Ribes, J., Seco, A., & Ferrer, J. (2014). Global sensitivity analysis of a filtration model for submerged anaerobic membrane bioreactors (AnMBR). Bioresource Technology, 158, 365-373. doi:10.1016/j.biortech.2014.02.087 | es_ES |
dc.description.references | Robles, Á., Ruano, M. V., Charfi, A., Lesage, G., Heran, M., Harmand, J., … Ferrer, J. (2018). A review on anaerobic membrane bioreactors (AnMBRs) focused on modelling and control aspects. Bioresource Technology, 270, 612-626. doi:10.1016/j.biortech.2018.09.049 | es_ES |
dc.description.references | Sanchis-Perucho, P., Robles, Á., Durán, F., Ferrer, J., & Seco, A. (2020). PDMS membranes for feasible recovery of dissolved methane from AnMBR effluents. Journal of Membrane Science, 604, 118070. doi:10.1016/j.memsci.2020.118070 | es_ES |
dc.description.references | Seco, A., Ribes, J., Serralta, J., & Ferrer, J. (2004). Biological nutrient removal model No.1 (BNRM1). Water Science and Technology, 50(6), 69-70. doi:10.2166/wst.2004.0361 | es_ES |
dc.description.references | Seco, A., Ruano, M. V., Ruiz-Martinez, A., Robles, A., Barat, R., Serralta, J., & Ferrer, J. (2020). Plant-wide modelling in wastewater treatment: showcasing experiences using the Biological Nutrient Removal Model. Water Science and Technology, 81(8), 1700-1714. doi:10.2166/wst.2020.056 | es_ES |
dc.description.references | Serralta, J., Ferrer, J., Borrás, L., & Seco, A. (2004). An extension of ASM2d including pH calculation. Water Research, 38(19), 4029-4038. doi:10.1016/j.watres.2004.07.009 | es_ES |
dc.description.references | Shin, C., & Bae, J. (2018). Current status of the pilot-scale anaerobic membrane bioreactor treatments of domestic wastewaters: A critical review. Bioresource Technology, 247, 1038-1046. doi:10.1016/j.biortech.2017.09.002 | es_ES |
dc.description.references | Siegrist, H., Renggli, D., & Gujer, W. (1993). Mathematical Modelling of Anaerobic Mesophilic Sewage Sludge Treatment. Water Science and Technology, 27(2), 25-36. doi:10.2166/wst.1993.0070 | es_ES |
dc.description.references | Siegrist, H., Vogt, D., Garcia-Heras, J. L., & Gujer, W. (2002). Mathematical Model for Meso- and Thermophilic Anaerobic Sewage Sludge Digestion. Environmental Science & Technology, 36(5), 1113-1123. doi:10.1021/es010139p | es_ES |
dc.description.references | Solon, K., Volcke, E. I. P., Spérandio, M., & van Loosdrecht, M. C. M. (2019). Resource recovery and wastewater treatment modelling. Environmental Science: Water Research & Technology, 5(4), 631-642. doi:10.1039/c8ew00765a | es_ES |
dc.description.references | ZAHER, U., GRAU, P., BENEDETTI, L., AYESA, E., & VANROLLEGHEM, P. (2007). Transformers for interfacing anaerobic digestion models to pre- and post-treatment processes in a plant-wide modelling context. Environmental Modelling & Software, 22(1), 40-58. doi:10.1016/j.envsoft.2005.11.002 | es_ES |