- -

Modeling the anaerobic treatment of sulfate rich urban wastewater. Application to AnMBR technology

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Modeling the anaerobic treatment of sulfate rich urban wastewater. Application to AnMBR technology

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Durán, Freddy es_ES
dc.contributor.author Robles Martínez, Ángel es_ES
dc.contributor.author Giménez, Juan Bautista es_ES
dc.contributor.author FERRER, J. es_ES
dc.contributor.author Ribes, Josep es_ES
dc.contributor.author Serralta Sevilla, Joaquín es_ES
dc.date.accessioned 2021-03-03T04:31:31Z
dc.date.available 2021-03-03T04:31:31Z
dc.date.issued 2020-10-01 es_ES
dc.identifier.issn 0043-1354 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162855
dc.description ©IWA Publishing 2020. The definitive peer-reviewed and edited version of this article is published in Water Research, Volume 184, 1 October 2020, 116133, https://doi.org/10.1016/j.watres.2020.116133 and is available at www.iwapublishing.com. es_ES
dc.description.abstract [EN] Although anaerobic membrane bioreactors (AnMBR) are a core technology in the transition of urban wastewater (UWW) treatment towards a circular economy, the transition is being held back by a number of bottlenecks. The dissolved methane released from the effluent, the need to remove nutrients (ideally by recovery), or the energy lost by the competition between methanogenic and sulfate-reducing bacteria (SRB) for the biodegradable COD have been identified as the main issues to be addressed before AnMBR becomes widespread. Mathematical modeling of this technology can be used to obtain further insights into these bottlenecks plus other valuable information for design, simulation and control purposes. This paper therefore proposes an AnMBR anaerobic digestion model to simulate the crucial SRB-related process since these bacteria degrade more than 40% of the organic matter. The proposed model, which is included in the BNRM2 collection model, has a reduced but all-inclusive structure, including hydrolysis, acidogenesis, acetogenesis, methanogenesis and other SRB-related processes. It was calibrated and validated using data from an AnMBR pilot plant treating sulfate-rich UWW, including parameter values obtained in off-line experiments and optimization methods. Despite the complex operating dynamics and influent composition, it was able to reproduce the process performance. In fact, it was able to simulate the AD of sulfate-rich UWW considering only two groups of SRB: heterotrophic SRB growing on both VFA (propionate) and acetate, and autotrophic SRB growing on hydrogen. Besides the above-mentioned constraints, the model reproduced the dynamics of the mixed liquor solids concentration, which helped to integrate biochemical and filtration models. It also reproduced the alkalinity and pH dynamics in the mixed liquor required for assessing the effect of chemical precipitation on membrane scaling. es_ES
dc.description.sponsorship This research work was supported by the Spanish Ministry of Economy and Competitiveness [Grants CTM2011-28595-C02-01/02, CTM2017-86751-C2-1-R and CTM2017-86751-C2-2-R]; Co-funded by the European Regional Development Fund [Grant CTM2011-28595-C02-01/02]. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Water Research es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Anaerobic membrane bioreactor es_ES
dc.subject BNRM2 es_ES
dc.subject Modeling es_ES
dc.subject Sulfate-rich urban wastewater es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.title Modeling the anaerobic treatment of sulfate rich urban wastewater. Application to AnMBR technology es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.watres.2020.116133 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTM2011-28595-C02-02/ES/ESTUDIO EXPERIMENTAL DE LA RECUPERACION COMO BIOGAS DE LA ENERGIA DE LA MATERIA ORGANICA Y NUTRIENTES DEL AGUA RESIDUAL, ACOPLANDO UN ANBRM Y UN CULTIVO DE MICROALGAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTM2017-86751-C2-1-R/ES/ESTUDIO EXPERIMENTAL DE LA APLICACION DE LA TECNOLOGIA DE MEMBRANAS PARA POTENCIAR LA RECUPERACION DE RECURSOS EN LAS EDAR ACTUALES./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTM2011-28595-C02-01/ES/MODELACION Y CONTROL DE LA RECUPERACION COMO BIOGAS DE LA ENERGIA DE LA MATERIA ORGANICA Y NUTRIENTES DEL AGUA RESIDUAL, ACOPLANDO UN ANBRM Y UN CULTIVO DE MICROALGAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTM2017-86751-C2-2-R/ES/MODELACION Y CONTROL PARA LA IMPLEMENTACION DE LA LA TECNOLOGIA DE MEMBRANAS EN LAS EDAR ACTUALES PARA SU TRANSFORMACION EN ESTACIONES DE RECUPERACION DE RECURSOS./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Durán, F.; Robles Martínez, Á.; Giménez, JB.; Ferrer, J.; Ribes, J.; Serralta Sevilla, J. (2020). Modeling the anaerobic treatment of sulfate rich urban wastewater. Application to AnMBR technology. Water Research. 184:1-15. https://doi.org/10.1016/j.watres.2020.116133 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.watres.2020.116133 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 184 es_ES
dc.identifier.pmid 32721762 es_ES
dc.relation.pasarela S\425075 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Ahammad, S. Z., Gomes, J., & Sreekrishnan, T. R. (2011). A Mathematical Model for the Interactive Behavior of Sulfate-Reducing Bacteria and Methanogens During Anaerobic Digestion. Water Environment Research, 83(9), 791-801. doi:10.2175/106143011x12989211840819 es_ES
dc.description.references Ahmed, W., & Rodríguez, J. (2017). Generalized parameter estimation and calibration for biokinetic models using correlation and single variable optimisations: Application to sulfate reduction modelling in anaerobic digestion. Water Research, 122, 407-418. doi:10.1016/j.watres.2017.05.067 es_ES
dc.description.references Ahmed, W., & Rodríguez, J. (2018). Modelling sulfate reduction in anaerobic digestion: Complexity evaluation and parameter calibration. Water Research, 130, 255-262. doi:10.1016/j.watres.2017.11.064 es_ES
dc.description.references Aquino, S. F., & Stuckey, D. C. (2008). Integrated model of the production of soluble microbial products (SMP) and extracellular polymeric substances (EPS) in anaerobic chemostats during transient conditions. Biochemical Engineering Journal, 38(2), 138-146. doi:10.1016/j.bej.2007.06.010 es_ES
dc.description.references Barat, R., Serralta, J., Ruano, M. V., Jiménez, E., Ribes, J., Seco, A., & Ferrer, J. (2013). Biological Nutrient Removal Model No. 2 (BNRM2): a general model for wastewater treatment plants. Water Science and Technology, 67(7), 1481-1489. doi:10.2166/wst.2013.004 es_ES
dc.description.references Barrera, E. L., Spanjers, H., Solon, K., Amerlinck, Y., Nopens, I., & Dewulf, J. (2015). Modeling the anaerobic digestion of cane-molasses vinasse: Extension of the Anaerobic Digestion Model No. 1 (ADM1) with sulfate reduction for a very high strength and sulfate rich wastewater. Water Research, 71, 42-54. doi:10.1016/j.watres.2014.12.026 es_ES
dc.description.references Batstone, D. J. (2006). Mathematical Modelling of Anaerobic Reactors Treating Domestic Wastewater: Rational Criteria for Model Use. Reviews in Environmental Science and Bio/Technology, 5(1), 57-71. doi:10.1007/s11157-005-7191-z es_ES
dc.description.references Batstone, D. J., Keller, J., Angelidaki, I., Kalyuzhnyi, S. V., Pavlostathis, S. G., Rozzi, A., … Vavilin, V. A. (2002). The IWA Anaerobic Digestion Model No 1 (ADM1). Water Science and Technology, 45(10), 65-73. doi:10.2166/wst.2002.0292 es_ES
dc.description.references Batstone, D. J., Keller, J., & Steyer, J. P. (2006). A review of ADM1 extensions, applications, and analysis: 2002–2005. Water Science and Technology, 54(4), 1-10. doi:10.2166/wst.2006.520 es_ES
dc.description.references Batstone, D. J., Puyol, D., Flores-Alsina, X., & Rodríguez, J. (2015). Mathematical modelling of anaerobic digestion processes: applications and future needs. Reviews in Environmental Science and Bio/Technology, 14(4), 595-613. doi:10.1007/s11157-015-9376-4 es_ES
dc.description.references Becker, A. M., Yu, K., Stadler, L. B., & Smith, A. L. (2017). Co-management of domestic wastewater and food waste: A life cycle comparison of alternative food waste diversion strategies. Bioresource Technology, 223, 131-140. doi:10.1016/j.biortech.2016.10.031 es_ES
dc.description.references Benyahia, B., Sari, T., Cherki, B., & Harmand, J. (2013). Anaerobic membrane bioreactor modeling in the presence of Soluble Microbial Products (SMP) – the Anaerobic Model AM2b. Chemical Engineering Journal, 228, 1011-1022. doi:10.1016/j.cej.2013.05.073 es_ES
dc.description.references Bernard, O., Hadj-Sadok, Z., Dochain, D., Genovesi, A., & Steyer, J.-P. (2001). Dynamical model development and parameter identification for an anaerobic wastewater treatment process. Biotechnology and Bioengineering, 75(4), 424-438. doi:10.1002/bit.10036 es_ES
dc.description.references Cassidy, J., Lubberding, H. J., Esposito, G., Keesman, K. J., & Lens, P. N. L. (2015). Automated biological sulphate reduction: a review on mathematical models, monitoring and bioprocess control. FEMS Microbiology Reviews, 39(6), 823-853. doi:10.1093/femsre/fuv033 es_ES
dc.description.references Charfi, A., Thongmak, N., Benyahia, B., Aslam, M., Harmand, J., Amar, N. B., … Heran, M. (2017). A modelling approach to study the fouling of an anaerobic membrane bioreactor for industrial wastewater treatment. Bioresource Technology, 245, 207-215. doi:10.1016/j.biortech.2017.08.003 es_ES
dc.description.references Cookney, J., Mcleod, A., Mathioudakis, V., Ncube, P., Soares, A., Jefferson, B., & McAdam, E. J. (2016). Dissolved methane recovery from anaerobic effluents using hollow fibre membrane contactors. Journal of Membrane Science, 502, 141-150. doi:10.1016/j.memsci.2015.12.037 es_ES
dc.description.references Copp, J. B., Belia, E., Snowling, S., & Schraa, O. (2005). Anaerobic digestion: a new model for plant-wide wastewater treatment process modelling. Water Science and Technology, 52(10-11), 1-11. doi:10.2166/wst.2005.0673 es_ES
dc.description.references Corominas, L., Rieger, L., Takács, I., Ekama, G., Hauduc, H., Vanrolleghem, P. A., … Comeau, Y. (2010). New framework for standardized notation in wastewater treatment modelling. Water Science and Technology, 61(4), 841-857. doi:10.2166/wst.2010.912 es_ES
dc.description.references Crone, B. C., Garland, J. L., Sorial, G. A., & Vane, L. M. (2016). Significance of dissolved methane in effluents of anaerobically treated low strength wastewater and potential for recovery as an energy product: A review. Water Research, 104, 520-531. doi:10.1016/j.watres.2016.08.019 es_ES
dc.description.references Fedorovich, V., Lens, P., & Kalyuzhnyi, S. (2003). Extension of Anaerobic Digestion Model No. 1 with Processes of Sulfate Reduction. Applied Biochemistry and Biotechnology, 109(1-3), 33-46. doi:10.1385/abab:109:1-3:33 es_ES
dc.description.references Fernández-Arévalo, T., Lizarralde, I., Fdz-Polanco, F., Pérez-Elvira, S. I., Garrido, J. M., Puig, S., … Ayesa, E. (2017). Quantitative assessment of energy and resource recovery in wastewater treatment plants based on plant-wide simulations. Water Research, 118, 272-288. doi:10.1016/j.watres.2017.04.001 es_ES
dc.description.references Ferrer, J., Seco, A., Serralta, J., Ribes, J., Manga, J., Asensi, E., … Llavador, F. (2008). DESASS: A software tool for designing, simulating and optimising WWTPs. Environmental Modelling & Software, 23(1), 19-26. doi:10.1016/j.envsoft.2007.04.005 es_ES
dc.description.references Fomichev, A. O., & Vavilin, V. A. (1997). The reduced model of self-oscillating dynamics in an anaerobic system with sulfate-reduction. Ecological Modelling, 95(2-3), 133-144. doi:10.1016/s0304-3800(96)00041-5 es_ES
dc.description.references Frunzo, L., Esposito, G., Pirozzi, F., & Lens, P. (2012). Dynamic mathematical modeling of sulfate reducing gas-lift reactors. Process Biochemistry, 47(12), 2172-2181. doi:10.1016/j.procbio.2012.08.010 es_ES
dc.description.references Giménez, J. B., Robles, A., Carretero, L., Durán, F., Ruano, M. V., Gatti, M. N., … Seco, A. (2011). Experimental study of the anaerobic urban wastewater treatment in a submerged hollow-fibre membrane bioreactor at pilot scale. Bioresource Technology, 102(19), 8799-8806. doi:10.1016/j.biortech.2011.07.014 es_ES
dc.description.references Giménez, J. B., Carretero, L., Gatti, M. N., Martí, N., Borrás, L., Ribes, J., & Seco, A. (2012). Reliable method for assessing the COD mass balance of a submerged anaerobic membrane bioreactor (SAMBR) treating sulphate-rich municipal wastewater. Water Science and Technology, 66(3), 494-502. doi:10.2166/wst.2012.184 es_ES
dc.description.references Giménez, J. B., Martí, N., Ferrer, J., & Seco, A. (2012). Methane recovery efficiency in a submerged anaerobic membrane bioreactor (SAnMBR) treating sulphate-rich urban wastewater: Evaluation of methane losses with the effluent. Bioresource Technology, 118, 67-72. doi:10.1016/j.biortech.2012.05.019 es_ES
dc.description.references Giménez, J. B., Martí, N., Robles, A., Ferrer, J., & Seco, A. (2014). Anaerobic treatment of urban wastewater in membrane bioreactors: evaluation of seasonal temperature variations. Water Science and Technology, 69(7), 1581-1588. doi:10.2166/wst.2014.069 es_ES
dc.description.references Harerimana, C., Keffala, C., Jupsin, H., & Vasel, J.-L. (2013). Development of a simple model for anaerobic digestion based on preliminary measurements of the bacterial sulphur activity in wastewater stabilization ponds. Environmental Technology, 34(15), 2213-2220. doi:10.1080/09593330.2012.725773 es_ES
dc.description.references Henares, M., Izquierdo, M., Marzal, P., & Martínez-Soria, V. (2017). Demethanization of aqueous anaerobic effluents using a polydimethylsiloxane membrane module: Mass transfer, fouling and energy analysis. Separation and Purification Technology, 186, 10-19. doi:10.1016/j.seppur.2017.05.035 es_ES
dc.description.references Henze, M., Gujer, W., Mino, T., Matsuo, T., Wentzel, M. C., Marais, G. v. R., & Van Loosdrecht, M. C. M. (1999). Activated Sludge Model No.2d, ASM2D. Water Science and Technology, 39(1), 165-182. doi:10.2166/wst.1999.0036 es_ES
dc.description.references Kalyuzhnyi, S. V., & Fedorovich, V. V. (1998). Mathematical modelling of competition between sulphate reduction and methanogenesis in anaerobic reactors. Bioresource Technology, 65(3), 227-242. doi:10.1016/s0960-8524(98)00019-4 es_ES
dc.description.references Knobel, A. N., & Lewis, A. E. (2002). A mathematical model of a high sulphate wastewater anaerobic treatment system. Water Research, 36(1), 257-265. doi:10.1016/s0043-1354(01)00209-3 es_ES
dc.description.references Kythreotou, N., Florides, G., & Tassou, S. A. (2014). A review of simple to scientific models for anaerobic digestion. Renewable Energy, 71, 701-714. doi:10.1016/j.renene.2014.05.055 es_ES
dc.description.references Laanbroek, H. J., Geerligs, H. J., Sijtsma, L., & Veldkamp, H. (1984). Competition for Sulfate and Ethanol Among Desulfobacter, Desulfobulbus , and Desulfovibrio Species Isolated from Intertidal Sediments. Applied and Environmental Microbiology, 47(2), 329-334. doi:10.1128/aem.47.2.329-334.1984 es_ES
dc.description.references Lei, Z., Yang, S., Li, Y., Wen, W., Wang, X. C., & Chen, R. (2018). Application of anaerobic membrane bioreactors to municipal wastewater treatment at ambient temperature: A review of achievements, challenges, and perspectives. Bioresource Technology, 267, 756-768. doi:10.1016/j.biortech.2018.07.050 es_ES
dc.description.references Lens, P. N. L., Visser, A., Janssen, A. J. H., Pol, L. W. H., & Lettinga, G. (1998). Biotechnological Treatment of Sulfate-Rich Wastewaters. Critical Reviews in Environmental Science and Technology, 28(1), 41-88. doi:10.1080/10643389891254160 es_ES
dc.description.references Lizarralde, I., Fernández-Arévalo, T., Manas, A., Ayesa, E., & Grau, P. (2019). Model-based opti mization of phosphorus management strategies in Sur WWTP, Madrid. Water Research, 153, 39-52. doi:10.1016/j.watres.2018.12.056 es_ES
dc.description.references Maaz, M., Yasin, M., Aslam, M., Kumar, G., Atabani, A. E., Idrees, M., … Kim, J. (2019). Anaerobic membrane bioreactors for wastewater treatment: Novel configurations, fouling control and energy considerations. Bioresource Technology, 283, 358-372. doi:10.1016/j.biortech.2019.03.061 es_ES
dc.description.references Maree, J. P., & Strydom, W. F. (1985). Biological sulphate removal in an upflow packed bed reactor. Water Research, 19(9), 1101-1106. doi:10.1016/0043-1354(85)90346-x es_ES
dc.description.references Mei, X., Wang, Z., Miao, Y., & Wu, Z. (2016). Recover energy from domestic wastewater using anaerobic membrane bioreactor: Operating parameters optimization and energy balance analysis. Energy, 98, 146-154. doi:10.1016/j.energy.2016.01.011 es_ES
dc.description.references Merkel, W., & Krauth, K. (1999). Mass transfer of carbon dioxide in anaerobic reactors under dynamic substrate loading conditions. Water Research, 33(9), 2011-2020. doi:10.1016/s0043-1354(98)00434-5 es_ES
dc.description.references Pelaz, L., Gómez, A., Garralón, G., Letona, A., & Fdz-Polanco, M. (2018). Recirculation of gas emissions to achieve advanced denitrification of the effluent from the anaerobic treatment of domestic wastewater. Bioresource Technology, 250, 758-763. doi:10.1016/j.biortech.2017.11.104 es_ES
dc.description.references Pretel, R., Robles, A., Ruano, M. V., Seco, A., & Ferrer, J. (2014). The operating cost of an anaerobic membrane bioreactor (AnMBR) treating sulphate-rich urban wastewater. Separation and Purification Technology, 126, 30-38. doi:10.1016/j.seppur.2014.02.013 es_ES
dc.description.references Robles, A., Ruano, M. V., Ribes, J., Seco, A., & Ferrer, J. (2013). Mathematical modelling of filtration in submerged anaerobic MBRs (SAnMBRs): Long-term validation. Journal of Membrane Science, 446, 303-309. doi:10.1016/j.memsci.2013.07.001 es_ES
dc.description.references Robles, A., Ruano, M. V., Ribes, J., Seco, A., & Ferrer, J. (2013). A filtration model applied to submerged anaerobic MBRs (SAnMBRs). Journal of Membrane Science, 444, 139-147. doi:10.1016/j.memsci.2013.05.021 es_ES
dc.description.references Robles, A., Ruano, M. V., Ribes, J., Seco, A., & Ferrer, J. (2014). Global sensitivity analysis of a filtration model for submerged anaerobic membrane bioreactors (AnMBR). Bioresource Technology, 158, 365-373. doi:10.1016/j.biortech.2014.02.087 es_ES
dc.description.references Robles, Á., Ruano, M. V., Charfi, A., Lesage, G., Heran, M., Harmand, J., … Ferrer, J. (2018). A review on anaerobic membrane bioreactors (AnMBRs) focused on modelling and control aspects. Bioresource Technology, 270, 612-626. doi:10.1016/j.biortech.2018.09.049 es_ES
dc.description.references Sanchis-Perucho, P., Robles, Á., Durán, F., Ferrer, J., & Seco, A. (2020). PDMS membranes for feasible recovery of dissolved methane from AnMBR effluents. Journal of Membrane Science, 604, 118070. doi:10.1016/j.memsci.2020.118070 es_ES
dc.description.references Seco, A., Ribes, J., Serralta, J., & Ferrer, J. (2004). Biological nutrient removal model No.1 (BNRM1). Water Science and Technology, 50(6), 69-70. doi:10.2166/wst.2004.0361 es_ES
dc.description.references Seco, A., Ruano, M. V., Ruiz-Martinez, A., Robles, A., Barat, R., Serralta, J., & Ferrer, J. (2020). Plant-wide modelling in wastewater treatment: showcasing experiences using the Biological Nutrient Removal Model. Water Science and Technology, 81(8), 1700-1714. doi:10.2166/wst.2020.056 es_ES
dc.description.references Serralta, J., Ferrer, J., Borrás, L., & Seco, A. (2004). An extension of ASM2d including pH calculation. Water Research, 38(19), 4029-4038. doi:10.1016/j.watres.2004.07.009 es_ES
dc.description.references Shin, C., & Bae, J. (2018). Current status of the pilot-scale anaerobic membrane bioreactor treatments of domestic wastewaters: A critical review. Bioresource Technology, 247, 1038-1046. doi:10.1016/j.biortech.2017.09.002 es_ES
dc.description.references Siegrist, H., Renggli, D., & Gujer, W. (1993). Mathematical Modelling of Anaerobic Mesophilic Sewage Sludge Treatment. Water Science and Technology, 27(2), 25-36. doi:10.2166/wst.1993.0070 es_ES
dc.description.references Siegrist, H., Vogt, D., Garcia-Heras, J. L., & Gujer, W. (2002). Mathematical Model for Meso- and Thermophilic Anaerobic Sewage Sludge Digestion. Environmental Science & Technology, 36(5), 1113-1123. doi:10.1021/es010139p es_ES
dc.description.references Solon, K., Volcke, E. I. P., Spérandio, M., & van Loosdrecht, M. C. M. (2019). Resource recovery and wastewater treatment modelling. Environmental Science: Water Research & Technology, 5(4), 631-642. doi:10.1039/c8ew00765a es_ES
dc.description.references ZAHER, U., GRAU, P., BENEDETTI, L., AYESA, E., & VANROLLEGHEM, P. (2007). Transformers for interfacing anaerobic digestion models to pre- and post-treatment processes in a plant-wide modelling context. Environmental Modelling & Software, 22(1), 40-58. doi:10.1016/j.envsoft.2005.11.002 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem