- -

An extension of the Cayley transform method for a parameterized generalized inverse eigenvalue problem

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An extension of the Cayley transform method for a parameterized generalized inverse eigenvalue problem

Mostrar el registro completo del ítem

Dalvand, Z.; Hajarian, M.; Román Moltó, JE. (2020). An extension of the Cayley transform method for a parameterized generalized inverse eigenvalue problem. Numerical Linear Algebra with Applications. 27(6):1-24. https://doi.org/10.1002/nla.2327

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162860

Ficheros en el ítem

Metadatos del ítem

Título: An extension of the Cayley transform method for a parameterized generalized inverse eigenvalue problem
Autor: Dalvand, Zeynab Hajarian, Masoud Román Moltó, José Enrique
Entidad UPV: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Fecha difusión:
Resumen:
[EN] Since recent studies have shown that the Cayley transform method can be an effective iterative method for solving the inverse eigenvalue problem, in this work, we consider using an extension of it for solving a type ...[+]
Palabras clave: Cayley transform , Parameterized generalized inverse eigenvalue problem , QR-like decomposition
Derechos de uso: Reserva de todos los derechos
Fuente:
Numerical Linear Algebra with Applications. (issn: 1070-5325 )
DOI: 10.1002/nla.2327
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/nla.2327
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//TIN2016-75985-P/ES/SOLVERS DE VALORES PROPIOS ALTAMENTE ESCALABLES EN EL CONTEXTO DE LA BIBLIOTECA SLEPC/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107379RB-I00/ES/ALGORITMOS PARALELOS Y SOFTWARE PARA METODOS ALGEBRAICOS EN ANALISIS DE DATOS/
Agradecimientos:
The authors would like to express their heartfelt thanks to the editor and anonymous referees for their useful comments and constructive suggestions that substantially improved the quality and presentation of this article. ...[+]
Tipo: Artículo

References

Chu, M., & Golub, G. (2005). Inverse Eigenvalue Problems. doi:10.1093/acprof:oso/9780198566649.001.0001

Hajarian, M., & Abbas, H. (2018). Least squares solutions of quadratic inverse eigenvalue problem with partially bisymmetric matrices under prescribed submatrix constraints. Computers & Mathematics with Applications, 76(6), 1458-1475. doi:10.1016/j.camwa.2018.06.038

Hajarian, M. (2019). An efficient algorithm based on Lanczos type of BCR to solve constrained quadratic inverse eigenvalue problems. Journal of Computational and Applied Mathematics, 346, 418-431. doi:10.1016/j.cam.2018.07.025 [+]
Chu, M., & Golub, G. (2005). Inverse Eigenvalue Problems. doi:10.1093/acprof:oso/9780198566649.001.0001

Hajarian, M., & Abbas, H. (2018). Least squares solutions of quadratic inverse eigenvalue problem with partially bisymmetric matrices under prescribed submatrix constraints. Computers & Mathematics with Applications, 76(6), 1458-1475. doi:10.1016/j.camwa.2018.06.038

Hajarian, M. (2019). An efficient algorithm based on Lanczos type of BCR to solve constrained quadratic inverse eigenvalue problems. Journal of Computational and Applied Mathematics, 346, 418-431. doi:10.1016/j.cam.2018.07.025

Hajarian, M. (2018). Solving constrained quadratic inverse eigenvalue problem via conjugate direction method. Computers & Mathematics with Applications, 76(10), 2384-2401. doi:10.1016/j.camwa.2018.08.034

Chu, M. T., & Golub, G. H. (2002). Structured inverse eigenvalue problems. Acta Numerica, 11, 1-71. doi:10.1017/s0962492902000016

Ghanbari, K., & Parvizpour, F. (2012). Generalized inverse eigenvalue problem with mixed eigendata. Linear Algebra and its Applications, 437(8), 2056-2063. doi:10.1016/j.laa.2012.05.020

Yuan, Y.-X., & Dai, H. (2009). A generalized inverse eigenvalue problem in structural dynamic model updating. Journal of Computational and Applied Mathematics, 226(1), 42-49. doi:10.1016/j.cam.2008.05.015

Yuan, S.-F., Wang, Q.-W., & Xiong, Z.-P. (2013). Linear parameterized inverse eigenvalue problem of bisymmetric matrices. Linear Algebra and its Applications, 439(7), 1990-2007. doi:10.1016/j.laa.2013.05.026

Dai, H., Bai, Z.-Z., & Wei, Y. (2015). On the Solvability Condition and Numerical Algorithm for the Parameterized Generalized Inverse Eigenvalue Problem. SIAM Journal on Matrix Analysis and Applications, 36(2), 707-726. doi:10.1137/140972494

Gladwell, G. M. L. (1986). Inverse Problems in Vibration. Applied Mechanics Reviews, 39(7), 1013-1018. doi:10.1115/1.3149517

Friedland, S., Nocedal, J., & Overton, M. L. (1987). The Formulation and Analysis of Numerical Methods for Inverse Eigenvalue Problems. SIAM Journal on Numerical Analysis, 24(3), 634-667. doi:10.1137/0724043

Chan, R. H. (2003). BIT Numerical Mathematics, 43(1), 7-20. doi:10.1023/a:1023611931016

Bai, Z.-J., Chan, R. H., & Morini, B. (2004). An inexact Cayley transform method for inverse eigenvalue problems. Inverse Problems, 20(5), 1675-1689. doi:10.1088/0266-5611/20/5/022

Shen, W. P., Li, C., & Jin, X. Q. (2011). A Ulm-like method for inverse eigenvalue problems. Applied Numerical Mathematics, 61(3), 356-367. doi:10.1016/j.apnum.2010.11.001

Shen, W., & Li, C. (2012). AN ULM-LIKE CAYLEY TRANSFORM METHOD FOR INVERSE EIGENVALUE PROBLEMS. Taiwanese Journal of Mathematics, 16(1). doi:10.11650/twjm/1500406546

Aishima, K. (2018). A quadratically convergent algorithm based on matrix equations for inverse eigenvalue problems. Linear Algebra and its Applications, 542, 310-333. doi:10.1016/j.laa.2017.05.019

Shen, W. P., Li, C., & Jin, X. Q. (2015). An inexact Cayley transform method for inverse eigenvalue problems with multiple eigenvalues. Inverse Problems, 31(8), 085007. doi:10.1088/0266-5611/31/8/085007

Shen, W., Li, C., & Jin, X. (2016). An Ulm-like Cayley Transform Method for Inverse Eigenvalue Problems with Multiple Eigenvalues. Numerical Mathematics: Theory, Methods and Applications, 9(4), 664-685. doi:10.4208/nmtma.2016.y15030

Aishima, K. (2018). A quadratically convergent algorithm for inverse eigenvalue problems with multiple eigenvalues. Linear Algebra and its Applications, 549, 30-52. doi:10.1016/j.laa.2018.03.022

Li, L. (1995). Sufficient conditions for the solvability of an algebraic inverse eigenvalue problem. Linear Algebra and its Applications, 221, 117-129. doi:10.1016/0024-3795(93)00225-o

Biegler-König, F. W. (1981). Sufficient conditions for the solubility of inverse eigenvalue problems. Linear Algebra and its Applications, 40, 89-100. doi:10.1016/0024-3795(81)90142-7

Alexander, J. C. (1978). The additive inverse eigenvalue problem and topological degree. Proceedings of the American Mathematical Society, 70(1), 5-5. doi:10.1090/s0002-9939-1978-0487546-3

Byrnes, C. I., & Wang, X. (1993). The Additive Inverse Eigenvalue Problem for Lie Perturbations. SIAM Journal on Matrix Analysis and Applications, 14(1), 113-117. doi:10.1137/0614009

Wang, Z., & Vong, S. (2013). A Guass–Newton-like method for inverse eigenvalue problems. International Journal of Computer Mathematics, 90(7), 1435-1447. doi:10.1080/00207160.2012.750721

Jiang, J., Dai, H., & Yuan, Y. (2013). A symmetric generalized inverse eigenvalue problem in structural dynamics model updating. Linear Algebra and its Applications, 439(5), 1350-1363. doi:10.1016/j.laa.2013.04.021

Cox, S. J., Embree, M., & Hokanson, J. M. (2012). One Can Hear the Composition of a String: Experiments with an Inverse Eigenvalue Problem. SIAM Review, 54(1), 157-178. doi:10.1137/080731037

Ji, X. (1998). On matrix inverse eigenvalue problems. Inverse Problems, 14(2), 275-285. doi:10.1088/0266-5611/14/2/004

Dai, H., & Lancaster, P. (1997). Newton’s Method for a Generalized Inverse Eigenvalue Problem. Numerical Linear Algebra with Applications, 4(1), 1-21. doi:10.1002/(sici)1099-1506(199701/02)4:1<1::aid-nla95>3.0.co;2-d

Shu, L., Bo, W., & Ji-zhong, H. (2004). Homotopy solution of the inverse generalized eigenvalue problems in structural dynamics. Applied Mathematics and Mechanics, 25(5), 580-586. doi:10.1007/bf02437606

Dai, H. (1999). An algorithm for symmetric generalized inverse eigenvalue problems. Linear Algebra and its Applications, 296(1-3), 79-98. doi:10.1016/s0024-3795(99)00109-3

Lancaster, P. (1964). Algorithms for lambda-matrices. Numerische Mathematik, 6(1), 388-394. doi:10.1007/bf01386088

Biegler-K�nig, F. W. (1981). A Newton iteration process for inverse eigenvalue problems. Numerische Mathematik, 37(3), 349-354. doi:10.1007/bf01400314

Parlett, B. N. (1998). The Symmetric Eigenvalue Problem. doi:10.1137/1.9781611971163

Higham, N. J. (2008). Functions of Matrices. doi:10.1137/1.9780898717778

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem