- -

An extension of the Cayley transform method for a parameterized generalized inverse eigenvalue problem

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An extension of the Cayley transform method for a parameterized generalized inverse eigenvalue problem

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Dalvand, Zeynab es_ES
dc.contributor.author Hajarian, Masoud es_ES
dc.contributor.author Román Moltó, José Enrique es_ES
dc.date.accessioned 2021-03-03T04:31:46Z
dc.date.available 2021-03-03T04:31:46Z
dc.date.issued 2020-12 es_ES
dc.identifier.issn 1070-5325 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162860
dc.description.abstract [EN] Since recent studies have shown that the Cayley transform method can be an effective iterative method for solving the inverse eigenvalue problem, in this work, we consider using an extension of it for solving a type of parameterized generalized inverse eigenvalue problem and prove its locally quadratic convergence. This type of inverse eigenvalue problem, which includes multiplicative and additive inverse eigenvalue problems, appears in many applications. Also, we consider the case where the given eigenvalues are multiple. In this case, we describe a modified problem that is not overdetermined and discuss the extension of the Cayley transform method for this modified problem. Finally, to demonstrate the effectiveness of these algorithms, we present some numerical examples to show that the proposed methods are practical and efficient. es_ES
dc.description.sponsorship The authors would like to express their heartfelt thanks to the editor and anonymous referees for their useful comments and constructive suggestions that substantially improved the quality and presentation of this article. This research was developed during a visit of Z.D. to Universitat Politecnica de Valencia. Z.D. would like to thank the hospitality shown by D. Sistemes Informatics i Computacio, Universitat Politecnica de Valencia. J.E.R. was partially supported by the Spanish Agencia Estatal de Investigacion (AEI) under grant TIN2016-75985-P, which includes European Commission ERDF funds. The authors thank Carmen Campos for useful comments on an initial draft of the article. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Numerical Linear Algebra with Applications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Cayley transform es_ES
dc.subject Parameterized generalized inverse eigenvalue problem es_ES
dc.subject QR-like decomposition es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.title An extension of the Cayley transform method for a parameterized generalized inverse eigenvalue problem es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/nla.2327 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2016-75985-P/ES/SOLVERS DE VALORES PROPIOS ALTAMENTE ESCALABLES EN EL CONTEXTO DE LA BIBLIOTECA SLEPC/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107379RB-I00/ES/ALGORITMOS PARALELOS Y SOFTWARE PARA METODOS ALGEBRAICOS EN ANALISIS DE DATOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Dalvand, Z.; Hajarian, M.; Román Moltó, JE. (2020). An extension of the Cayley transform method for a parameterized generalized inverse eigenvalue problem. Numerical Linear Algebra with Applications. 27(6):1-24. https://doi.org/10.1002/nla.2327 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/nla.2327 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 24 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 27 es_ES
dc.description.issue 6 es_ES
dc.relation.pasarela S\425590 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Chu, M., & Golub, G. (2005). Inverse Eigenvalue Problems. doi:10.1093/acprof:oso/9780198566649.001.0001 es_ES
dc.description.references Hajarian, M., & Abbas, H. (2018). Least squares solutions of quadratic inverse eigenvalue problem with partially bisymmetric matrices under prescribed submatrix constraints. Computers & Mathematics with Applications, 76(6), 1458-1475. doi:10.1016/j.camwa.2018.06.038 es_ES
dc.description.references Hajarian, M. (2019). An efficient algorithm based on Lanczos type of BCR to solve constrained quadratic inverse eigenvalue problems. Journal of Computational and Applied Mathematics, 346, 418-431. doi:10.1016/j.cam.2018.07.025 es_ES
dc.description.references Hajarian, M. (2018). Solving constrained quadratic inverse eigenvalue problem via conjugate direction method. Computers & Mathematics with Applications, 76(10), 2384-2401. doi:10.1016/j.camwa.2018.08.034 es_ES
dc.description.references Chu, M. T., & Golub, G. H. (2002). Structured inverse eigenvalue problems. Acta Numerica, 11, 1-71. doi:10.1017/s0962492902000016 es_ES
dc.description.references Ghanbari, K., & Parvizpour, F. (2012). Generalized inverse eigenvalue problem with mixed eigendata. Linear Algebra and its Applications, 437(8), 2056-2063. doi:10.1016/j.laa.2012.05.020 es_ES
dc.description.references Yuan, Y.-X., & Dai, H. (2009). A generalized inverse eigenvalue problem in structural dynamic model updating. Journal of Computational and Applied Mathematics, 226(1), 42-49. doi:10.1016/j.cam.2008.05.015 es_ES
dc.description.references Yuan, S.-F., Wang, Q.-W., & Xiong, Z.-P. (2013). Linear parameterized inverse eigenvalue problem of bisymmetric matrices. Linear Algebra and its Applications, 439(7), 1990-2007. doi:10.1016/j.laa.2013.05.026 es_ES
dc.description.references Dai, H., Bai, Z.-Z., & Wei, Y. (2015). On the Solvability Condition and Numerical Algorithm for the Parameterized Generalized Inverse Eigenvalue Problem. SIAM Journal on Matrix Analysis and Applications, 36(2), 707-726. doi:10.1137/140972494 es_ES
dc.description.references Gladwell, G. M. L. (1986). Inverse Problems in Vibration. Applied Mechanics Reviews, 39(7), 1013-1018. doi:10.1115/1.3149517 es_ES
dc.description.references Friedland, S., Nocedal, J., & Overton, M. L. (1987). The Formulation and Analysis of Numerical Methods for Inverse Eigenvalue Problems. SIAM Journal on Numerical Analysis, 24(3), 634-667. doi:10.1137/0724043 es_ES
dc.description.references Chan, R. H. (2003). BIT Numerical Mathematics, 43(1), 7-20. doi:10.1023/a:1023611931016 es_ES
dc.description.references Bai, Z.-J., Chan, R. H., & Morini, B. (2004). An inexact Cayley transform method for inverse eigenvalue problems. Inverse Problems, 20(5), 1675-1689. doi:10.1088/0266-5611/20/5/022 es_ES
dc.description.references Shen, W. P., Li, C., & Jin, X. Q. (2011). A Ulm-like method for inverse eigenvalue problems. Applied Numerical Mathematics, 61(3), 356-367. doi:10.1016/j.apnum.2010.11.001 es_ES
dc.description.references Shen, W., & Li, C. (2012). AN ULM-LIKE CAYLEY TRANSFORM METHOD FOR INVERSE EIGENVALUE PROBLEMS. Taiwanese Journal of Mathematics, 16(1). doi:10.11650/twjm/1500406546 es_ES
dc.description.references Aishima, K. (2018). A quadratically convergent algorithm based on matrix equations for inverse eigenvalue problems. Linear Algebra and its Applications, 542, 310-333. doi:10.1016/j.laa.2017.05.019 es_ES
dc.description.references Shen, W. P., Li, C., & Jin, X. Q. (2015). An inexact Cayley transform method for inverse eigenvalue problems with multiple eigenvalues. Inverse Problems, 31(8), 085007. doi:10.1088/0266-5611/31/8/085007 es_ES
dc.description.references Shen, W., Li, C., & Jin, X. (2016). An Ulm-like Cayley Transform Method for Inverse Eigenvalue Problems with Multiple Eigenvalues. Numerical Mathematics: Theory, Methods and Applications, 9(4), 664-685. doi:10.4208/nmtma.2016.y15030 es_ES
dc.description.references Aishima, K. (2018). A quadratically convergent algorithm for inverse eigenvalue problems with multiple eigenvalues. Linear Algebra and its Applications, 549, 30-52. doi:10.1016/j.laa.2018.03.022 es_ES
dc.description.references Li, L. (1995). Sufficient conditions for the solvability of an algebraic inverse eigenvalue problem. Linear Algebra and its Applications, 221, 117-129. doi:10.1016/0024-3795(93)00225-o es_ES
dc.description.references Biegler-König, F. W. (1981). Sufficient conditions for the solubility of inverse eigenvalue problems. Linear Algebra and its Applications, 40, 89-100. doi:10.1016/0024-3795(81)90142-7 es_ES
dc.description.references Alexander, J. C. (1978). The additive inverse eigenvalue problem and topological degree. Proceedings of the American Mathematical Society, 70(1), 5-5. doi:10.1090/s0002-9939-1978-0487546-3 es_ES
dc.description.references Byrnes, C. I., & Wang, X. (1993). The Additive Inverse Eigenvalue Problem for Lie Perturbations. SIAM Journal on Matrix Analysis and Applications, 14(1), 113-117. doi:10.1137/0614009 es_ES
dc.description.references Wang, Z., & Vong, S. (2013). A Guass–Newton-like method for inverse eigenvalue problems. International Journal of Computer Mathematics, 90(7), 1435-1447. doi:10.1080/00207160.2012.750721 es_ES
dc.description.references Jiang, J., Dai, H., & Yuan, Y. (2013). A symmetric generalized inverse eigenvalue problem in structural dynamics model updating. Linear Algebra and its Applications, 439(5), 1350-1363. doi:10.1016/j.laa.2013.04.021 es_ES
dc.description.references Cox, S. J., Embree, M., & Hokanson, J. M. (2012). One Can Hear the Composition of a String: Experiments with an Inverse Eigenvalue Problem. SIAM Review, 54(1), 157-178. doi:10.1137/080731037 es_ES
dc.description.references Ji, X. (1998). On matrix inverse eigenvalue problems. Inverse Problems, 14(2), 275-285. doi:10.1088/0266-5611/14/2/004 es_ES
dc.description.references Dai, H., & Lancaster, P. (1997). Newton’s Method for a Generalized Inverse Eigenvalue Problem. Numerical Linear Algebra with Applications, 4(1), 1-21. doi:10.1002/(sici)1099-1506(199701/02)4:1<1::aid-nla95>3.0.co;2-d es_ES
dc.description.references Shu, L., Bo, W., & Ji-zhong, H. (2004). Homotopy solution of the inverse generalized eigenvalue problems in structural dynamics. Applied Mathematics and Mechanics, 25(5), 580-586. doi:10.1007/bf02437606 es_ES
dc.description.references Dai, H. (1999). An algorithm for symmetric generalized inverse eigenvalue problems. Linear Algebra and its Applications, 296(1-3), 79-98. doi:10.1016/s0024-3795(99)00109-3 es_ES
dc.description.references Lancaster, P. (1964). Algorithms for lambda-matrices. Numerische Mathematik, 6(1), 388-394. doi:10.1007/bf01386088 es_ES
dc.description.references Biegler-K�nig, F. W. (1981). A Newton iteration process for inverse eigenvalue problems. Numerische Mathematik, 37(3), 349-354. doi:10.1007/bf01400314 es_ES
dc.description.references Parlett, B. N. (1998). The Symmetric Eigenvalue Problem. doi:10.1137/1.9781611971163 es_ES
dc.description.references Higham, N. J. (2008). Functions of Matrices. doi:10.1137/1.9780898717778 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem