- -

Temperature-Induced Explosive Behaviour and Thermo-Chemical Damage on Pyrite-Bearing Limestones: Causes and Mechanisms

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


  • Estadisticas de Uso

Temperature-Induced Explosive Behaviour and Thermo-Chemical Damage on Pyrite-Bearing Limestones: Causes and Mechanisms

Show full item record

Martínez Ibáñez, V.; Benavente, D.; Hidalgo Signes, C.; Tomás, R.; Garrido De La Torre, ME. (2021). Temperature-Induced Explosive Behaviour and Thermo-Chemical Damage on Pyrite-Bearing Limestones: Causes and Mechanisms. Rock Mechanics and Rock Engineering. 54(1):219-234. https://doi.org/10.1007/s00603-020-02278-x

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162861

Files in this item

Item Metadata

Title: Temperature-Induced Explosive Behaviour and Thermo-Chemical Damage on Pyrite-Bearing Limestones: Causes and Mechanisms
Author: Martínez Ibáñez, Víctor Benavente, D. Hidalgo Signes, Carlos Tomás, R. Garrido De La Torre, Mª Elvira
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería del Terreno - Departament d'Enginyeria del Terreny
Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil
Issued date:
[EN] In this investigation, two different varieties of 'Prada' limestones were studied: a dark grey texture, bearing quartz, clay minerals, organic matter and pyrites, and a light grey texture with little or no presence ...[+]
Subjects: Limestone , Pyrite oxidation , Thermal treatment , Explosive behaviour , Thermo-chemical damage
Copyrigths: Reserva de todos los derechos
Rock Mechanics and Rock Engineering. (issn: 0723-2632 )
DOI: 10.1007/s00603-020-02278-x
Publisher version: https://doi.org/10.1007/s00603-020-02278-x
Project ID:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-099052-B-I00/ES/CUANTIFICACION Y MODELIZACION DEL TRANSPORTE DE RADON EN SUELOS. VALORACION DE SU RIESGO POTENCIAL Y USO COMO TRAZADOR GEOQUIMICO NATURAL/
The authors wish to acknowledge Dr Julio Company Rodriguez from the Universitat Politecnica de Valencia and Professor Juan Carlos Canaveras from the University of Alicante, for their valuable help on mineralogical and ...[+]
Type: Artículo


Andriani GF, Germinario L (2014) Thermal decay of carbonate dimension stones: fabric, physical and mechanical changes. Environ Earth Sci 72:2523–2539. https://doi.org/10.1007/s12665-014-3160-6

ATSDR (1998) Public Health Statement-Sulfur Dioxide CAS#: 7446-09-5. ATSDR-Public Heal Statement

Behnia D, Ahangari K, Moeinossadat SR (2017) Modeling of shear wave velocity in limestone by soft computing methods. Int J Min Sci Technol 27:423–430. https://doi.org/10.1016/j.ijmst.2017.03.006 [+]
Andriani GF, Germinario L (2014) Thermal decay of carbonate dimension stones: fabric, physical and mechanical changes. Environ Earth Sci 72:2523–2539. https://doi.org/10.1007/s12665-014-3160-6

ATSDR (1998) Public Health Statement-Sulfur Dioxide CAS#: 7446-09-5. ATSDR-Public Heal Statement

Behnia D, Ahangari K, Moeinossadat SR (2017) Modeling of shear wave velocity in limestone by soft computing methods. Int J Min Sci Technol 27:423–430. https://doi.org/10.1016/j.ijmst.2017.03.006

Belmokhtar M, Delage P, Ghabezloo S, Conil N (2017) Thermal volume changes and creep in the callovo-oxfordian claystone. Rock Mech Rock Eng 50:2297–2309. https://doi.org/10.1007/s00603-017-1238-7

Benavente D, Pla C (2018) Effect of pore structure and moisture content on gas diffusion and permeability in porous building stones. Mater Struct Constr 51:1–14. https://doi.org/10.1617/s11527-018-1153-8

Benavente D, Martinez-Martinez J, Cueto N et al (2018) Impact of salt and frost weathering on the physical and durability properties of travertines and carbonate tufas used as building material. Environ Earth Sci 77:147. https://doi.org/10.1007/s12665-018-7339-0

Berner RA (1970) Sedimentary pyrite formation. Am J Sci 268:1–23. https://doi.org/10.2475/ajs.268.1.1

Berner RA (1982) Burial of organic carbon and pyrite sulfur in the modern ocean; its geochemical and environmental significance. Am J Sci 282:451–473. https://doi.org/10.2475/ajs.282.4.451

Berner RA (1985) Sulphate reduction, organic matter decomposition and pyrite formation. Philos Trans R Soc Lond Ser A Math Phys Sci 315:25–38. https://doi.org/10.1098/rsta.1985.0027

Boyle J (2004) A comparison of two methods for estimating the organic matter content of sediments. J Paleolimnol 31:125–127. https://doi.org/10.1023/B:JOPL.0000013354.67645.df

Brotóns V, Tomás R, Ivorra S, Alarcón JC (2013) Temperature influence on the physical and mechanical properties of a porous rock: San Julian’s calcarenite. Eng Geol 167:117–127. https://doi.org/10.1016/j.enggeo.2013.10.012

Cheng H, Liu Q, Zhang S et al (2014) Evolved gas analysis of coal-derived pyrite/marcasite. J Therm Anal Calorim 116:887–894. https://doi.org/10.1007/s10973-013-3595-0

CIE (1977) CIE recommendations on uniform color spaces, color-difference equations, and metric color terms. Color Res Appl 2:5–6. https://doi.org/10.1002/j.1520-6378.1977.tb00102.x

Currie JA (1960) Gaseous diffusion in porous media part 1. A non-steady state method. Br J Appl Phys 11:314–317. https://doi.org/10.1088/0508-3443/11/8/302

Cuypers C, Grotenhuis T, Nierop KGJ et al (2002) Amorphous and condensed organic matter domains: the effect of persulfate oxidation on the composition of soil/sediment organic matter. Chemosphere 48:919–931. https://doi.org/10.1016/S0045-6535(02)00123-6

Delage P, Sultan N, Cui YJ (2000) On the thermal consolidation of Boom clay. Can Geotech J 37:343–354. https://doi.org/10.1139/cgj-37-2-343

Fairhurst C, Hudson JA (1987) International society for rock mechanics commission on testing methods. Int J Rock Mech Min Sci Geomech Abstr 24:53. https://doi.org/10.1016/0148-9062(87)91231-9

Fioretti G, Mazzoleni P, Acquafredda P, Andriani GF (2018) On the technical properties of the Carovigno stone from Apulia (Italy): physical characterization and decay effects by means of experimental ageing tests. Environ Earth Sci 77:17. https://doi.org/10.1007/s12665-017-7201-9

Franklin J (1979) Suggested methods for determining water content, porosity, density absorption and related properties and swelling and slake- durability index properties. Int J Rock Mech Min Sci 16:141–156

Galbács G, Kántor T, Moens L, Dams R (1998) Mass spectrometric studies of thermal decomposition products of reference materials for use in solid sampling atomic spectrometry. Spectrochim Acta Part B At Spectrosc 53:1335–1346. https://doi.org/10.1016/S0584-8547(98)00177-3

García Senz J, Muñoz JA, Cabrera L (2002) Departament de Geodinàmica i Geofísica Cuencas extensivas del cretácico inferior en los Pirineos centrales, formación y subsecuente inversión. Universitat de Barcelona

Gazulla MF, Gómez MP, Orduña M et al (2009) Sulfur determination in geological samples based on coupled analytical techniques: electric furnace-IC and TGA-EGA. Geostand Geoanal Res 33:71–84. https://doi.org/10.1111/j.1751-908X.2008.00902.x

Gens A, Vaunat J, Garitte B, Wileveau Y (2011) In situ behaviour of a stiff layered clay subject to thermal loading: observations and interpretation. Stiff Sedimentary Clays. Thomas Telford Ltd, London, pp 123–144

Glover PWJ, Baud P, Darot M et al (1995) α/β Phase transition in quartz monitored using acoustic emissions. Geophys J Int 120:775–782. https://doi.org/10.1111/j.1365-246X.1995.tb01852.x

Gómez-Tena MP, Machí C, Gilabert J, Zumaquero E (2014) Methodologies for the detection and quantification of pyrite in clay raw materials. Congr Mund La Calid Del Azulejo Y Del Paviment Ceram Qualicer

González-Gómez WS, Quintana P, May-Pat A et al (2015) Thermal effects on the physical properties of limestones from the Yucatan Peninsula. Int J Rock Mech Min Sci 75:182–189. https://doi.org/10.1016/j.ijrmms.2014.12.010

Griffits AA (1920) The phenomena of rupture and flow in solids. Masinovedenie 221:163–195. https://doi.org/10.1098/rsta.1921.0006

Hansen JP, Jensen LS, Wedel S, Dam-Johansen K (2003) Decomposition and oxidation of pyrite in a fixed-bed reactor. Ind Eng Chem Res 42:4290–4295. https://doi.org/10.1021/ie030195u

Hong Y, Fegley B (1997) The kinetics and mechanism of pyrite thermal decomposition. Berichte der Bunsengesellschaft für Phys Chemie 101:1870–1881. https://doi.org/10.1002/bbpc.19971011212

Hu G, Dam-Johansen K, Wedel S, Hansen JP (2006) Decomposition and oxidation of pyrite. Prog Energy Combust Sci 32:295–314. https://doi.org/10.1016/j.pecs.2005.11.004

Kim K, Kemeny J, Nickerson M (2014) Effect of rapid thermal cooling on mechanical rock properties. Rock Mech Rock Eng 47:2005–2019. https://doi.org/10.1007/s00603-013-0523-3

Kumar P, Imam B (2013) Footprints of air pollution and changing environment on the sustainability of built infrastructure. Sci Total Environ 444:85–101. https://doi.org/10.1016/j.scitotenv.2012.11.056

Kumari WGP, Ranjith PG, Perera MSA, Chen BK (2018) Experimental investigation of quenching effect on mechanical, microstructural and flow characteristics of reservoir rocks: thermal stimulation method for geothermal energy extraction. J Pet Sci Eng 162:419–433. https://doi.org/10.1016/j.petrol.2017.12.033

Lion M, Skoczylas F, Ledésert B (2005) Effects of heating on the hydraulic and poroelastic properties of bourgogne limestone. Int J Rock Mech Min Sci 42:508–520. https://doi.org/10.1016/j.ijrmms.2005.01.005

Liu S, Xu J (2013) Study on dynamic characteristics of marble under impact loading and high temperature. Int J Rock Mech Min Sci 62:51–58. https://doi.org/10.1016/j.ijrmms.2013.03.014

Lv W, Yu D, Wu J et al (2015) The chemical role of CO2 in pyrite thermal decomposition. Proc Combust Inst 35:3637–3644. https://doi.org/10.1016/j.proci.2014.06.066

Malaga-Starzec K, Åkesson U, Lindqvist JE, Schouenborg B (2006) Microscopic and macroscopic characterization of the porosity of marble as a function of temperature and impregnation. Constr Build Mater 20:939–947. https://doi.org/10.1016/j.conbuildmat.2005.06.016

Mallet C, Fortin J, Guéguen Y, Bouyer F (2014) Evolution of the crack network in glass samples submitted to brittle creep conditions. Int J Fract 190:111–124. https://doi.org/10.1007/s10704-014-9978-9

Martínez-Martínez J, Benavente D, Gomez-Heras M et al (2013) Non-linear decay of building stones during freeze–thaw weathering processes. Constr Build Mater 38:443–454. https://doi.org/10.1016/j.conbuildmat.2012.07.059

Meng Q-B, Wang C-K, Liu J-F et al (2020) Physical and micro-structural characteristics of limestone after high temperature exposure. Bull Eng Geol Environ 79:1259–1274. https://doi.org/10.1007/s10064-019-01620-0

Nordlund E, Zhang P, Dineva S et al (2014) Impact of fire on the stability of hard rock tunnels in Sweden. Stockholm

Pei L, Blöcher G, Milsch H et al (2018) Thermo-mechanical properties of Upper Jurassic (Malm) carbonate rock under drained conditions. Rock Mech Rock Eng 51:23–45. https://doi.org/10.1007/s00603-017-1313-0

Pospíšil J, Hrdý J, Hrdý J (2007) Basic methods for measuring the reflectance color of iron oxides. Optik (Stuttg) 118:278–288. https://doi.org/10.1016/j.ijleo.2006.03.020

Rossi E, Kant MA, Madonna C et al (2018) The effects of high heating rate and high temperature on the rock strength: feasibility study of a thermally assisted drilling method. Rock Mech Rock Eng 51:2957–2964. https://doi.org/10.1007/s00603-018-1507-0

Sawlowicz Z (2000) Framboids: From their origin to application. Pr Mineral 88:1–58

Seehra MS, Jagadeesh MS (1981) A comparative study of the properties of marcasite and pyrite. AIP Conference Proceedings 70:448–448. https://doi.org/10.1063/1.32915

Sengun N (2014) Influence of thermal damage on the physical and mechanical properties of carbonate rocks. Arab J Geosci 7:5543–5551. https://doi.org/10.1007/s12517-013-1177-x

Shawar L, Halevy I, Said-Ahmad W et al (2018) Dynamics of pyrite formation and organic matter sulfurization in organic-rich carbonate sediments. Geochim Cosmochim Acta 241:219–239. https://doi.org/10.1016/j.gca.2018.08.048

Sippel J, Siegesmund S, Weiss T et al (2007) Decay of natural stones caused by fire damage. Geol Soc Lond Spec Publ 271:139–151. https://doi.org/10.1144/GSL.SP.2007.271.01.15

Smith BJ, Gomez-Heras M, McCabe S (2008) Understanding the decay of stone-built cultural heritage. Prog Phys Geogr Earth Environ 32:439–461. https://doi.org/10.1177/0309133308098119

Sultan N, Delage P, Cui YJ (2002) Temperature effects on the volume change behaviour of Boom clay. Eng Geol 64:135–145. https://doi.org/10.1016/S0013-7952(01)00143-0

UNE-EN-103204 U-E (2019) Determinación del contenido de materia orgánica oxidable de un suelo por el método del permanganato de potasio

Van der Molen I (1981) The shift of the α-β transition temperature of quartz associated with the thermal expansion of granite at high pressure. Tectonophysics 73:323–342. https://doi.org/10.1016/0040-1951(81)90221-3

Verron H, Sterpenich J, Bonnet J et al (2019) Experimental study of pyrite oxidation at 100 °C: implications for deep geological radwaste repository in claystone. Minerals 9:427. https://doi.org/10.3390/min9070427

Villarraga CJ, Gasc-Barbier M, Vaunat J, Darrozes J (2018) The effect of thermal cycles on limestone mechanical degradation. Int J Rock Mech Min Sci 109:115–123. https://doi.org/10.1016/j.ijrmms.2018.06.017

Xu ZX, Wang Q, Fu XQ (2015) Thermal stability and mechanism of decomposition of emulsion explosives in the presence of pyrite. J Hazard Mater 300:702–710. https://doi.org/10.1016/j.jhazmat.2015.07.069

Yang J, Fu L-Y, Zhang W, Wang Z (2019) Mechanical property and thermal damage factor of limestone at high temperature. Int J Rock Mech Min Sci 117:11–19. https://doi.org/10.1016/j.ijrmms.2019.03.012

Yavuz H, Demirdag S, Caran S (2010) Thermal effect on the physical properties of carbonate rocks. Int J Rock Mech Min Sci 47:94–103. https://doi.org/10.1016/j.ijrmms.2009.09.014

Zhang W, Lv C (2020) Effects of mineral content on limestone properties with exposure to different temperatures. J Pet Sci Eng 188:106941. https://doi.org/10.1016/j.petrol.2020.106941

Zhang C-L, Conil N, Armand G (2017a) Thermal effects on clay rocks for deep disposal of high-level radioactive waste. J Rock Mech Geotech Eng 9:463–478. https://doi.org/10.1016/j.jrmge.2016.08.006

Zhang W, Sun Q, Zhu S, Wang B (2017b) Experimental study on mechanical and porous characteristics of limestone affected by high temperature. Appl Therm Eng 110:356–362. https://doi.org/10.1016/j.applthermaleng.2016.08.194

Zhang X, Kou J, Sun C (2019) A comparative study of the thermal decomposition of pyrite under microwave and conventional heating with different temperatures. J Anal Appl Pyrolysis 138:41–53. https://doi.org/10.1016/j.jaap.2018.12.002




This item appears in the following Collection(s)

Show full item record