Andriani GF, Germinario L (2014) Thermal decay of carbonate dimension stones: fabric, physical and mechanical changes. Environ Earth Sci 72:2523–2539. https://doi.org/10.1007/s12665-014-3160-6
ATSDR (1998) Public Health Statement-Sulfur Dioxide CAS#: 7446-09-5. ATSDR-Public Heal Statement
Behnia D, Ahangari K, Moeinossadat SR (2017) Modeling of shear wave velocity in limestone by soft computing methods. Int J Min Sci Technol 27:423–430. https://doi.org/10.1016/j.ijmst.2017.03.006
[+]
Andriani GF, Germinario L (2014) Thermal decay of carbonate dimension stones: fabric, physical and mechanical changes. Environ Earth Sci 72:2523–2539. https://doi.org/10.1007/s12665-014-3160-6
ATSDR (1998) Public Health Statement-Sulfur Dioxide CAS#: 7446-09-5. ATSDR-Public Heal Statement
Behnia D, Ahangari K, Moeinossadat SR (2017) Modeling of shear wave velocity in limestone by soft computing methods. Int J Min Sci Technol 27:423–430. https://doi.org/10.1016/j.ijmst.2017.03.006
Belmokhtar M, Delage P, Ghabezloo S, Conil N (2017) Thermal volume changes and creep in the callovo-oxfordian claystone. Rock Mech Rock Eng 50:2297–2309. https://doi.org/10.1007/s00603-017-1238-7
Benavente D, Pla C (2018) Effect of pore structure and moisture content on gas diffusion and permeability in porous building stones. Mater Struct Constr 51:1–14. https://doi.org/10.1617/s11527-018-1153-8
Benavente D, Martinez-Martinez J, Cueto N et al (2018) Impact of salt and frost weathering on the physical and durability properties of travertines and carbonate tufas used as building material. Environ Earth Sci 77:147. https://doi.org/10.1007/s12665-018-7339-0
Berner RA (1970) Sedimentary pyrite formation. Am J Sci 268:1–23. https://doi.org/10.2475/ajs.268.1.1
Berner RA (1982) Burial of organic carbon and pyrite sulfur in the modern ocean; its geochemical and environmental significance. Am J Sci 282:451–473. https://doi.org/10.2475/ajs.282.4.451
Berner RA (1985) Sulphate reduction, organic matter decomposition and pyrite formation. Philos Trans R Soc Lond Ser A Math Phys Sci 315:25–38. https://doi.org/10.1098/rsta.1985.0027
Boyle J (2004) A comparison of two methods for estimating the organic matter content of sediments. J Paleolimnol 31:125–127. https://doi.org/10.1023/B:JOPL.0000013354.67645.df
Brotóns V, Tomás R, Ivorra S, Alarcón JC (2013) Temperature influence on the physical and mechanical properties of a porous rock: San Julian’s calcarenite. Eng Geol 167:117–127. https://doi.org/10.1016/j.enggeo.2013.10.012
Cheng H, Liu Q, Zhang S et al (2014) Evolved gas analysis of coal-derived pyrite/marcasite. J Therm Anal Calorim 116:887–894. https://doi.org/10.1007/s10973-013-3595-0
CIE (1977) CIE recommendations on uniform color spaces, color-difference equations, and metric color terms. Color Res Appl 2:5–6. https://doi.org/10.1002/j.1520-6378.1977.tb00102.x
Currie JA (1960) Gaseous diffusion in porous media part 1. A non-steady state method. Br J Appl Phys 11:314–317. https://doi.org/10.1088/0508-3443/11/8/302
Cuypers C, Grotenhuis T, Nierop KGJ et al (2002) Amorphous and condensed organic matter domains: the effect of persulfate oxidation on the composition of soil/sediment organic matter. Chemosphere 48:919–931. https://doi.org/10.1016/S0045-6535(02)00123-6
Delage P, Sultan N, Cui YJ (2000) On the thermal consolidation of Boom clay. Can Geotech J 37:343–354. https://doi.org/10.1139/cgj-37-2-343
Fairhurst C, Hudson JA (1987) International society for rock mechanics commission on testing methods. Int J Rock Mech Min Sci Geomech Abstr 24:53. https://doi.org/10.1016/0148-9062(87)91231-9
Fioretti G, Mazzoleni P, Acquafredda P, Andriani GF (2018) On the technical properties of the Carovigno stone from Apulia (Italy): physical characterization and decay effects by means of experimental ageing tests. Environ Earth Sci 77:17. https://doi.org/10.1007/s12665-017-7201-9
Franklin J (1979) Suggested methods for determining water content, porosity, density absorption and related properties and swelling and slake- durability index properties. Int J Rock Mech Min Sci 16:141–156
Galbács G, Kántor T, Moens L, Dams R (1998) Mass spectrometric studies of thermal decomposition products of reference materials for use in solid sampling atomic spectrometry. Spectrochim Acta Part B At Spectrosc 53:1335–1346. https://doi.org/10.1016/S0584-8547(98)00177-3
García Senz J, Muñoz JA, Cabrera L (2002) Departament de Geodinàmica i Geofísica Cuencas extensivas del cretácico inferior en los Pirineos centrales, formación y subsecuente inversión. Universitat de Barcelona
Gazulla MF, Gómez MP, Orduña M et al (2009) Sulfur determination in geological samples based on coupled analytical techniques: electric furnace-IC and TGA-EGA. Geostand Geoanal Res 33:71–84. https://doi.org/10.1111/j.1751-908X.2008.00902.x
Gens A, Vaunat J, Garitte B, Wileveau Y (2011) In situ behaviour of a stiff layered clay subject to thermal loading: observations and interpretation. Stiff Sedimentary Clays. Thomas Telford Ltd, London, pp 123–144
Glover PWJ, Baud P, Darot M et al (1995) α/β Phase transition in quartz monitored using acoustic emissions. Geophys J Int 120:775–782. https://doi.org/10.1111/j.1365-246X.1995.tb01852.x
Gómez-Tena MP, Machí C, Gilabert J, Zumaquero E (2014) Methodologies for the detection and quantification of pyrite in clay raw materials. Congr Mund La Calid Del Azulejo Y Del Paviment Ceram Qualicer
González-Gómez WS, Quintana P, May-Pat A et al (2015) Thermal effects on the physical properties of limestones from the Yucatan Peninsula. Int J Rock Mech Min Sci 75:182–189. https://doi.org/10.1016/j.ijrmms.2014.12.010
Griffits AA (1920) The phenomena of rupture and flow in solids. Masinovedenie 221:163–195. https://doi.org/10.1098/rsta.1921.0006
Hansen JP, Jensen LS, Wedel S, Dam-Johansen K (2003) Decomposition and oxidation of pyrite in a fixed-bed reactor. Ind Eng Chem Res 42:4290–4295. https://doi.org/10.1021/ie030195u
Hong Y, Fegley B (1997) The kinetics and mechanism of pyrite thermal decomposition. Berichte der Bunsengesellschaft für Phys Chemie 101:1870–1881. https://doi.org/10.1002/bbpc.19971011212
Hu G, Dam-Johansen K, Wedel S, Hansen JP (2006) Decomposition and oxidation of pyrite. Prog Energy Combust Sci 32:295–314. https://doi.org/10.1016/j.pecs.2005.11.004
Kim K, Kemeny J, Nickerson M (2014) Effect of rapid thermal cooling on mechanical rock properties. Rock Mech Rock Eng 47:2005–2019. https://doi.org/10.1007/s00603-013-0523-3
Kumar P, Imam B (2013) Footprints of air pollution and changing environment on the sustainability of built infrastructure. Sci Total Environ 444:85–101. https://doi.org/10.1016/j.scitotenv.2012.11.056
Kumari WGP, Ranjith PG, Perera MSA, Chen BK (2018) Experimental investigation of quenching effect on mechanical, microstructural and flow characteristics of reservoir rocks: thermal stimulation method for geothermal energy extraction. J Pet Sci Eng 162:419–433. https://doi.org/10.1016/j.petrol.2017.12.033
Lion M, Skoczylas F, Ledésert B (2005) Effects of heating on the hydraulic and poroelastic properties of bourgogne limestone. Int J Rock Mech Min Sci 42:508–520. https://doi.org/10.1016/j.ijrmms.2005.01.005
Liu S, Xu J (2013) Study on dynamic characteristics of marble under impact loading and high temperature. Int J Rock Mech Min Sci 62:51–58. https://doi.org/10.1016/j.ijrmms.2013.03.014
Lv W, Yu D, Wu J et al (2015) The chemical role of CO2 in pyrite thermal decomposition. Proc Combust Inst 35:3637–3644. https://doi.org/10.1016/j.proci.2014.06.066
Malaga-Starzec K, Åkesson U, Lindqvist JE, Schouenborg B (2006) Microscopic and macroscopic characterization of the porosity of marble as a function of temperature and impregnation. Constr Build Mater 20:939–947. https://doi.org/10.1016/j.conbuildmat.2005.06.016
Mallet C, Fortin J, Guéguen Y, Bouyer F (2014) Evolution of the crack network in glass samples submitted to brittle creep conditions. Int J Fract 190:111–124. https://doi.org/10.1007/s10704-014-9978-9
Martínez-Martínez J, Benavente D, Gomez-Heras M et al (2013) Non-linear decay of building stones during freeze–thaw weathering processes. Constr Build Mater 38:443–454. https://doi.org/10.1016/j.conbuildmat.2012.07.059
Meng Q-B, Wang C-K, Liu J-F et al (2020) Physical and micro-structural characteristics of limestone after high temperature exposure. Bull Eng Geol Environ 79:1259–1274. https://doi.org/10.1007/s10064-019-01620-0
Nordlund E, Zhang P, Dineva S et al (2014) Impact of fire on the stability of hard rock tunnels in Sweden. Stockholm
Pei L, Blöcher G, Milsch H et al (2018) Thermo-mechanical properties of Upper Jurassic (Malm) carbonate rock under drained conditions. Rock Mech Rock Eng 51:23–45. https://doi.org/10.1007/s00603-017-1313-0
Pospíšil J, Hrdý J, Hrdý J (2007) Basic methods for measuring the reflectance color of iron oxides. Optik (Stuttg) 118:278–288. https://doi.org/10.1016/j.ijleo.2006.03.020
Rossi E, Kant MA, Madonna C et al (2018) The effects of high heating rate and high temperature on the rock strength: feasibility study of a thermally assisted drilling method. Rock Mech Rock Eng 51:2957–2964. https://doi.org/10.1007/s00603-018-1507-0
Sawlowicz Z (2000) Framboids: From their origin to application. Pr Mineral 88:1–58
Seehra MS, Jagadeesh MS (1981) A comparative study of the properties of marcasite and pyrite. AIP Conference Proceedings 70:448–448. https://doi.org/10.1063/1.32915
Sengun N (2014) Influence of thermal damage on the physical and mechanical properties of carbonate rocks. Arab J Geosci 7:5543–5551. https://doi.org/10.1007/s12517-013-1177-x
Shawar L, Halevy I, Said-Ahmad W et al (2018) Dynamics of pyrite formation and organic matter sulfurization in organic-rich carbonate sediments. Geochim Cosmochim Acta 241:219–239. https://doi.org/10.1016/j.gca.2018.08.048
Sippel J, Siegesmund S, Weiss T et al (2007) Decay of natural stones caused by fire damage. Geol Soc Lond Spec Publ 271:139–151. https://doi.org/10.1144/GSL.SP.2007.271.01.15
Smith BJ, Gomez-Heras M, McCabe S (2008) Understanding the decay of stone-built cultural heritage. Prog Phys Geogr Earth Environ 32:439–461. https://doi.org/10.1177/0309133308098119
Sultan N, Delage P, Cui YJ (2002) Temperature effects on the volume change behaviour of Boom clay. Eng Geol 64:135–145. https://doi.org/10.1016/S0013-7952(01)00143-0
UNE-EN-103204 U-E (2019) Determinación del contenido de materia orgánica oxidable de un suelo por el método del permanganato de potasio
Van der Molen I (1981) The shift of the α-β transition temperature of quartz associated with the thermal expansion of granite at high pressure. Tectonophysics 73:323–342. https://doi.org/10.1016/0040-1951(81)90221-3
Verron H, Sterpenich J, Bonnet J et al (2019) Experimental study of pyrite oxidation at 100 °C: implications for deep geological radwaste repository in claystone. Minerals 9:427. https://doi.org/10.3390/min9070427
Villarraga CJ, Gasc-Barbier M, Vaunat J, Darrozes J (2018) The effect of thermal cycles on limestone mechanical degradation. Int J Rock Mech Min Sci 109:115–123. https://doi.org/10.1016/j.ijrmms.2018.06.017
Xu ZX, Wang Q, Fu XQ (2015) Thermal stability and mechanism of decomposition of emulsion explosives in the presence of pyrite. J Hazard Mater 300:702–710. https://doi.org/10.1016/j.jhazmat.2015.07.069
Yang J, Fu L-Y, Zhang W, Wang Z (2019) Mechanical property and thermal damage factor of limestone at high temperature. Int J Rock Mech Min Sci 117:11–19. https://doi.org/10.1016/j.ijrmms.2019.03.012
Yavuz H, Demirdag S, Caran S (2010) Thermal effect on the physical properties of carbonate rocks. Int J Rock Mech Min Sci 47:94–103. https://doi.org/10.1016/j.ijrmms.2009.09.014
Zhang W, Lv C (2020) Effects of mineral content on limestone properties with exposure to different temperatures. J Pet Sci Eng 188:106941. https://doi.org/10.1016/j.petrol.2020.106941
Zhang C-L, Conil N, Armand G (2017a) Thermal effects on clay rocks for deep disposal of high-level radioactive waste. J Rock Mech Geotech Eng 9:463–478. https://doi.org/10.1016/j.jrmge.2016.08.006
Zhang W, Sun Q, Zhu S, Wang B (2017b) Experimental study on mechanical and porous characteristics of limestone affected by high temperature. Appl Therm Eng 110:356–362. https://doi.org/10.1016/j.applthermaleng.2016.08.194
Zhang X, Kou J, Sun C (2019) A comparative study of the thermal decomposition of pyrite under microwave and conventional heating with different temperatures. J Anal Appl Pyrolysis 138:41–53. https://doi.org/10.1016/j.jaap.2018.12.002
[-]