Mostrar el registro sencillo del ítem
dc.contributor.author | Martínez Ibáñez, Víctor | es_ES |
dc.contributor.author | Benavente, D. | es_ES |
dc.contributor.author | Hidalgo Signes, Carlos | es_ES |
dc.contributor.author | Tomás, R. | es_ES |
dc.contributor.author | Garrido De La Torre, Mª Elvira | es_ES |
dc.date.accessioned | 2021-03-03T04:31:48Z | |
dc.date.available | 2021-03-03T04:31:48Z | |
dc.date.issued | 2021-01 | es_ES |
dc.identifier.issn | 0723-2632 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/162861 | |
dc.description.abstract | [EN] In this investigation, two different varieties of 'Prada' limestones were studied: a dark grey texture, bearing quartz, clay minerals, organic matter and pyrites, and a light grey texture with little or no presence of such components. We have observed two effects of different intensity when heating the dark texture from 400 degrees C: (1) the explosion of certain samples and (2) greater thermal damage than in the light grey texture. Chemical and mineralogical composition, texture, microstructure, and physical properties (i.e. colour, open porosity, P and S-wave velocity) have been evaluated at temperatures of 105, 300, 400, and 500 degrees C in order to identify differences between textures. The violence of the explosive events was clear and cannot be confounded with ordinary splitting and cracking on thermally treated rocks: exploded samples underwent a total loss of integrity, displacing and overturning the surrounding samples, and embedding fragments in the walls of the furnace, whose impacts were clearly heard in the laboratory. Thermogravimetric results allowed the identification of a process of oxidation of pyrites releasing SO2 from 400 degrees C. This process jointly with the presence of microfissures in the dark texture, would cause a dramatic increase in pore pressure, leading to a rapid growth and coalescence of microcracks that leads to a process of catastrophic decay in rock integrity. In addition to the explosive events, average ultrasound velocities and open porosity showed a greater variation in the dark grey texture from 400 degrees C. That result also points towards a significant contribution of oxidation of pyrites on the thermo-chemical damage of the rock, among other factors such as the pre-existence of microfissures and the thermal expansion coefficient mismatch between minerals. Implications in underground infrastructure and mining engineering works are critical, as the explosive potential of pyrite-bearing limestones bears risk for mass fracturing and dramatic strength decay from 400 degrees C. Moreover, SO2 released has harmful effects on health of people and the potential to form acid compounds that corrode materials, shortening their durability and increasing maintenance costs. | es_ES |
dc.description.sponsorship | The authors wish to acknowledge Dr Julio Company Rodriguez from the Universitat Politecnica de Valencia and Professor Juan Carlos Canaveras from the University of Alicante, for their valuable help on mineralogical and petrographic description of the rock, respectively, in addition, Mr. Manuel Angel Morilla Rubio from the Universitat Politecnica de Valencia for his support on laboratory tests. Also Kreum SA, Ayesa SA, Infraestructures de la Generalitat de Catalunya, S.A.U., and the Lleida regional roads authority (Servei Territorial de Carreteres de Lleida, Generalitat de Catalunya) for providing rock samples. This work was supported by the Spanish Government [Grant number RTI2018-099052-B-I00] and by the Department of Geological and Geotechnical Engineering, Universitat Politecnica de Valencia. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Rock Mechanics and Rock Engineering | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Limestone | es_ES |
dc.subject | Pyrite oxidation | es_ES |
dc.subject | Thermal treatment | es_ES |
dc.subject | Explosive behaviour | es_ES |
dc.subject | Thermo-chemical damage | es_ES |
dc.subject.classification | PROYECTOS DE INGENIERIA | es_ES |
dc.subject.classification | INGENIERIA DEL TERRENO | es_ES |
dc.title | Temperature-Induced Explosive Behaviour and Thermo-Chemical Damage on Pyrite-Bearing Limestones: Causes and Mechanisms | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00603-020-02278-x | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-099052-B-I00/ES/CUANTIFICACION Y MODELIZACION DEL TRANSPORTE DE RADON EN SUELOS. VALORACION DE SU RIESGO POTENCIAL Y USO COMO TRAZADOR GEOQUIMICO NATURAL/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería del Terreno - Departament d'Enginyeria del Terreny | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil | es_ES |
dc.description.bibliographicCitation | Martínez Ibáñez, V.; Benavente, D.; Hidalgo Signes, C.; Tomás, R.; Garrido De La Torre, ME. (2021). Temperature-Induced Explosive Behaviour and Thermo-Chemical Damage on Pyrite-Bearing Limestones: Causes and Mechanisms. Rock Mechanics and Rock Engineering. 54(1):219-234. https://doi.org/10.1007/s00603-020-02278-x | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s00603-020-02278-x | es_ES |
dc.description.upvformatpinicio | 219 | es_ES |
dc.description.upvformatpfin | 234 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 54 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\420501 | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Andriani GF, Germinario L (2014) Thermal decay of carbonate dimension stones: fabric, physical and mechanical changes. Environ Earth Sci 72:2523–2539. https://doi.org/10.1007/s12665-014-3160-6 | es_ES |
dc.description.references | ATSDR (1998) Public Health Statement-Sulfur Dioxide CAS#: 7446-09-5. ATSDR-Public Heal Statement | es_ES |
dc.description.references | Behnia D, Ahangari K, Moeinossadat SR (2017) Modeling of shear wave velocity in limestone by soft computing methods. Int J Min Sci Technol 27:423–430. https://doi.org/10.1016/j.ijmst.2017.03.006 | es_ES |
dc.description.references | Belmokhtar M, Delage P, Ghabezloo S, Conil N (2017) Thermal volume changes and creep in the callovo-oxfordian claystone. Rock Mech Rock Eng 50:2297–2309. https://doi.org/10.1007/s00603-017-1238-7 | es_ES |
dc.description.references | Benavente D, Pla C (2018) Effect of pore structure and moisture content on gas diffusion and permeability in porous building stones. Mater Struct Constr 51:1–14. https://doi.org/10.1617/s11527-018-1153-8 | es_ES |
dc.description.references | Benavente D, Martinez-Martinez J, Cueto N et al (2018) Impact of salt and frost weathering on the physical and durability properties of travertines and carbonate tufas used as building material. Environ Earth Sci 77:147. https://doi.org/10.1007/s12665-018-7339-0 | es_ES |
dc.description.references | Berner RA (1970) Sedimentary pyrite formation. Am J Sci 268:1–23. https://doi.org/10.2475/ajs.268.1.1 | es_ES |
dc.description.references | Berner RA (1982) Burial of organic carbon and pyrite sulfur in the modern ocean; its geochemical and environmental significance. Am J Sci 282:451–473. https://doi.org/10.2475/ajs.282.4.451 | es_ES |
dc.description.references | Berner RA (1985) Sulphate reduction, organic matter decomposition and pyrite formation. Philos Trans R Soc Lond Ser A Math Phys Sci 315:25–38. https://doi.org/10.1098/rsta.1985.0027 | es_ES |
dc.description.references | Boyle J (2004) A comparison of two methods for estimating the organic matter content of sediments. J Paleolimnol 31:125–127. https://doi.org/10.1023/B:JOPL.0000013354.67645.df | es_ES |
dc.description.references | Brotóns V, Tomás R, Ivorra S, Alarcón JC (2013) Temperature influence on the physical and mechanical properties of a porous rock: San Julian’s calcarenite. Eng Geol 167:117–127. https://doi.org/10.1016/j.enggeo.2013.10.012 | es_ES |
dc.description.references | Cheng H, Liu Q, Zhang S et al (2014) Evolved gas analysis of coal-derived pyrite/marcasite. J Therm Anal Calorim 116:887–894. https://doi.org/10.1007/s10973-013-3595-0 | es_ES |
dc.description.references | CIE (1977) CIE recommendations on uniform color spaces, color-difference equations, and metric color terms. Color Res Appl 2:5–6. https://doi.org/10.1002/j.1520-6378.1977.tb00102.x | es_ES |
dc.description.references | Currie JA (1960) Gaseous diffusion in porous media part 1. A non-steady state method. Br J Appl Phys 11:314–317. https://doi.org/10.1088/0508-3443/11/8/302 | es_ES |
dc.description.references | Cuypers C, Grotenhuis T, Nierop KGJ et al (2002) Amorphous and condensed organic matter domains: the effect of persulfate oxidation on the composition of soil/sediment organic matter. Chemosphere 48:919–931. https://doi.org/10.1016/S0045-6535(02)00123-6 | es_ES |
dc.description.references | Delage P, Sultan N, Cui YJ (2000) On the thermal consolidation of Boom clay. Can Geotech J 37:343–354. https://doi.org/10.1139/cgj-37-2-343 | es_ES |
dc.description.references | Fairhurst C, Hudson JA (1987) International society for rock mechanics commission on testing methods. Int J Rock Mech Min Sci Geomech Abstr 24:53. https://doi.org/10.1016/0148-9062(87)91231-9 | es_ES |
dc.description.references | Fioretti G, Mazzoleni P, Acquafredda P, Andriani GF (2018) On the technical properties of the Carovigno stone from Apulia (Italy): physical characterization and decay effects by means of experimental ageing tests. Environ Earth Sci 77:17. https://doi.org/10.1007/s12665-017-7201-9 | es_ES |
dc.description.references | Franklin J (1979) Suggested methods for determining water content, porosity, density absorption and related properties and swelling and slake- durability index properties. Int J Rock Mech Min Sci 16:141–156 | es_ES |
dc.description.references | Galbács G, Kántor T, Moens L, Dams R (1998) Mass spectrometric studies of thermal decomposition products of reference materials for use in solid sampling atomic spectrometry. Spectrochim Acta Part B At Spectrosc 53:1335–1346. https://doi.org/10.1016/S0584-8547(98)00177-3 | es_ES |
dc.description.references | García Senz J, Muñoz JA, Cabrera L (2002) Departament de Geodinàmica i Geofísica Cuencas extensivas del cretácico inferior en los Pirineos centrales, formación y subsecuente inversión. Universitat de Barcelona | es_ES |
dc.description.references | Gazulla MF, Gómez MP, Orduña M et al (2009) Sulfur determination in geological samples based on coupled analytical techniques: electric furnace-IC and TGA-EGA. Geostand Geoanal Res 33:71–84. https://doi.org/10.1111/j.1751-908X.2008.00902.x | es_ES |
dc.description.references | Gens A, Vaunat J, Garitte B, Wileveau Y (2011) In situ behaviour of a stiff layered clay subject to thermal loading: observations and interpretation. Stiff Sedimentary Clays. Thomas Telford Ltd, London, pp 123–144 | es_ES |
dc.description.references | Glover PWJ, Baud P, Darot M et al (1995) α/β Phase transition in quartz monitored using acoustic emissions. Geophys J Int 120:775–782. https://doi.org/10.1111/j.1365-246X.1995.tb01852.x | es_ES |
dc.description.references | Gómez-Tena MP, Machí C, Gilabert J, Zumaquero E (2014) Methodologies for the detection and quantification of pyrite in clay raw materials. Congr Mund La Calid Del Azulejo Y Del Paviment Ceram Qualicer | es_ES |
dc.description.references | González-Gómez WS, Quintana P, May-Pat A et al (2015) Thermal effects on the physical properties of limestones from the Yucatan Peninsula. Int J Rock Mech Min Sci 75:182–189. https://doi.org/10.1016/j.ijrmms.2014.12.010 | es_ES |
dc.description.references | Griffits AA (1920) The phenomena of rupture and flow in solids. Masinovedenie 221:163–195. https://doi.org/10.1098/rsta.1921.0006 | es_ES |
dc.description.references | Hansen JP, Jensen LS, Wedel S, Dam-Johansen K (2003) Decomposition and oxidation of pyrite in a fixed-bed reactor. Ind Eng Chem Res 42:4290–4295. https://doi.org/10.1021/ie030195u | es_ES |
dc.description.references | Hong Y, Fegley B (1997) The kinetics and mechanism of pyrite thermal decomposition. Berichte der Bunsengesellschaft für Phys Chemie 101:1870–1881. https://doi.org/10.1002/bbpc.19971011212 | es_ES |
dc.description.references | Hu G, Dam-Johansen K, Wedel S, Hansen JP (2006) Decomposition and oxidation of pyrite. Prog Energy Combust Sci 32:295–314. https://doi.org/10.1016/j.pecs.2005.11.004 | es_ES |
dc.description.references | Kim K, Kemeny J, Nickerson M (2014) Effect of rapid thermal cooling on mechanical rock properties. Rock Mech Rock Eng 47:2005–2019. https://doi.org/10.1007/s00603-013-0523-3 | es_ES |
dc.description.references | Kumar P, Imam B (2013) Footprints of air pollution and changing environment on the sustainability of built infrastructure. Sci Total Environ 444:85–101. https://doi.org/10.1016/j.scitotenv.2012.11.056 | es_ES |
dc.description.references | Kumari WGP, Ranjith PG, Perera MSA, Chen BK (2018) Experimental investigation of quenching effect on mechanical, microstructural and flow characteristics of reservoir rocks: thermal stimulation method for geothermal energy extraction. J Pet Sci Eng 162:419–433. https://doi.org/10.1016/j.petrol.2017.12.033 | es_ES |
dc.description.references | Lion M, Skoczylas F, Ledésert B (2005) Effects of heating on the hydraulic and poroelastic properties of bourgogne limestone. Int J Rock Mech Min Sci 42:508–520. https://doi.org/10.1016/j.ijrmms.2005.01.005 | es_ES |
dc.description.references | Liu S, Xu J (2013) Study on dynamic characteristics of marble under impact loading and high temperature. Int J Rock Mech Min Sci 62:51–58. https://doi.org/10.1016/j.ijrmms.2013.03.014 | es_ES |
dc.description.references | Lv W, Yu D, Wu J et al (2015) The chemical role of CO2 in pyrite thermal decomposition. Proc Combust Inst 35:3637–3644. https://doi.org/10.1016/j.proci.2014.06.066 | es_ES |
dc.description.references | Malaga-Starzec K, Åkesson U, Lindqvist JE, Schouenborg B (2006) Microscopic and macroscopic characterization of the porosity of marble as a function of temperature and impregnation. Constr Build Mater 20:939–947. https://doi.org/10.1016/j.conbuildmat.2005.06.016 | es_ES |
dc.description.references | Mallet C, Fortin J, Guéguen Y, Bouyer F (2014) Evolution of the crack network in glass samples submitted to brittle creep conditions. Int J Fract 190:111–124. https://doi.org/10.1007/s10704-014-9978-9 | es_ES |
dc.description.references | Martínez-Martínez J, Benavente D, Gomez-Heras M et al (2013) Non-linear decay of building stones during freeze–thaw weathering processes. Constr Build Mater 38:443–454. https://doi.org/10.1016/j.conbuildmat.2012.07.059 | es_ES |
dc.description.references | Meng Q-B, Wang C-K, Liu J-F et al (2020) Physical and micro-structural characteristics of limestone after high temperature exposure. Bull Eng Geol Environ 79:1259–1274. https://doi.org/10.1007/s10064-019-01620-0 | es_ES |
dc.description.references | Nordlund E, Zhang P, Dineva S et al (2014) Impact of fire on the stability of hard rock tunnels in Sweden. Stockholm | es_ES |
dc.description.references | Pei L, Blöcher G, Milsch H et al (2018) Thermo-mechanical properties of Upper Jurassic (Malm) carbonate rock under drained conditions. Rock Mech Rock Eng 51:23–45. https://doi.org/10.1007/s00603-017-1313-0 | es_ES |
dc.description.references | Pospíšil J, Hrdý J, Hrdý J (2007) Basic methods for measuring the reflectance color of iron oxides. Optik (Stuttg) 118:278–288. https://doi.org/10.1016/j.ijleo.2006.03.020 | es_ES |
dc.description.references | Rossi E, Kant MA, Madonna C et al (2018) The effects of high heating rate and high temperature on the rock strength: feasibility study of a thermally assisted drilling method. Rock Mech Rock Eng 51:2957–2964. https://doi.org/10.1007/s00603-018-1507-0 | es_ES |
dc.description.references | Sawlowicz Z (2000) Framboids: From their origin to application. Pr Mineral 88:1–58 | es_ES |
dc.description.references | Seehra MS, Jagadeesh MS (1981) A comparative study of the properties of marcasite and pyrite. AIP Conference Proceedings 70:448–448. https://doi.org/10.1063/1.32915 | es_ES |
dc.description.references | Sengun N (2014) Influence of thermal damage on the physical and mechanical properties of carbonate rocks. Arab J Geosci 7:5543–5551. https://doi.org/10.1007/s12517-013-1177-x | es_ES |
dc.description.references | Shawar L, Halevy I, Said-Ahmad W et al (2018) Dynamics of pyrite formation and organic matter sulfurization in organic-rich carbonate sediments. Geochim Cosmochim Acta 241:219–239. https://doi.org/10.1016/j.gca.2018.08.048 | es_ES |
dc.description.references | Sippel J, Siegesmund S, Weiss T et al (2007) Decay of natural stones caused by fire damage. Geol Soc Lond Spec Publ 271:139–151. https://doi.org/10.1144/GSL.SP.2007.271.01.15 | es_ES |
dc.description.references | Smith BJ, Gomez-Heras M, McCabe S (2008) Understanding the decay of stone-built cultural heritage. Prog Phys Geogr Earth Environ 32:439–461. https://doi.org/10.1177/0309133308098119 | es_ES |
dc.description.references | Sultan N, Delage P, Cui YJ (2002) Temperature effects on the volume change behaviour of Boom clay. Eng Geol 64:135–145. https://doi.org/10.1016/S0013-7952(01)00143-0 | es_ES |
dc.description.references | UNE-EN-103204 U-E (2019) Determinación del contenido de materia orgánica oxidable de un suelo por el método del permanganato de potasio | es_ES |
dc.description.references | Van der Molen I (1981) The shift of the α-β transition temperature of quartz associated with the thermal expansion of granite at high pressure. Tectonophysics 73:323–342. https://doi.org/10.1016/0040-1951(81)90221-3 | es_ES |
dc.description.references | Verron H, Sterpenich J, Bonnet J et al (2019) Experimental study of pyrite oxidation at 100 °C: implications for deep geological radwaste repository in claystone. Minerals 9:427. https://doi.org/10.3390/min9070427 | es_ES |
dc.description.references | Villarraga CJ, Gasc-Barbier M, Vaunat J, Darrozes J (2018) The effect of thermal cycles on limestone mechanical degradation. Int J Rock Mech Min Sci 109:115–123. https://doi.org/10.1016/j.ijrmms.2018.06.017 | es_ES |
dc.description.references | Xu ZX, Wang Q, Fu XQ (2015) Thermal stability and mechanism of decomposition of emulsion explosives in the presence of pyrite. J Hazard Mater 300:702–710. https://doi.org/10.1016/j.jhazmat.2015.07.069 | es_ES |
dc.description.references | Yang J, Fu L-Y, Zhang W, Wang Z (2019) Mechanical property and thermal damage factor of limestone at high temperature. Int J Rock Mech Min Sci 117:11–19. https://doi.org/10.1016/j.ijrmms.2019.03.012 | es_ES |
dc.description.references | Yavuz H, Demirdag S, Caran S (2010) Thermal effect on the physical properties of carbonate rocks. Int J Rock Mech Min Sci 47:94–103. https://doi.org/10.1016/j.ijrmms.2009.09.014 | es_ES |
dc.description.references | Zhang W, Lv C (2020) Effects of mineral content on limestone properties with exposure to different temperatures. J Pet Sci Eng 188:106941. https://doi.org/10.1016/j.petrol.2020.106941 | es_ES |
dc.description.references | Zhang C-L, Conil N, Armand G (2017a) Thermal effects on clay rocks for deep disposal of high-level radioactive waste. J Rock Mech Geotech Eng 9:463–478. https://doi.org/10.1016/j.jrmge.2016.08.006 | es_ES |
dc.description.references | Zhang W, Sun Q, Zhu S, Wang B (2017b) Experimental study on mechanical and porous characteristics of limestone affected by high temperature. Appl Therm Eng 110:356–362. https://doi.org/10.1016/j.applthermaleng.2016.08.194 | es_ES |
dc.description.references | Zhang X, Kou J, Sun C (2019) A comparative study of the thermal decomposition of pyrite under microwave and conventional heating with different temperatures. J Anal Appl Pyrolysis 138:41–53. https://doi.org/10.1016/j.jaap.2018.12.002 | es_ES |