- -

Influence of Lane Width on Semi-Autonomous Vehicle Performance

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of Lane Width on Semi-Autonomous Vehicle Performance

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García García, Alfredo es_ES
dc.contributor.author Camacho-Torregrosa, Francisco Javier es_ES
dc.date.accessioned 2021-03-03T04:31:58Z
dc.date.available 2021-03-03T04:31:58Z
dc.date.issued 2020-09 es_ES
dc.identifier.issn 0361-1981 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162864
dc.description.abstract [EN] In the medium-term, the number of semi-autonomous vehicles is expected to rise significantly. These changes in vehicle capabilities make it necessary to analyze their interaction with road infrastructure, which has been developed for human-driven vehicles. Current systems use artificial vision, recording the oncoming road and using the center and edgeline road markings to automatically facilitate keeping the vehicle within the lane. In addition to alignment and road markings, lane width has emerged as one of the geometric parameters that might cause disengagement and therefore must be assessed. The objective of this research was to study the impact of lane width on semi-autonomous vehicle performance. The automatic lateral control of this type of vehicle was tested along 81 lanes of an urban arterial comprising diverse widths. Results showed that the semi-autonomous system tended to fail on narrow lanes. There was a maximum width below which human control was always required-referred to as the human lane width-measuring 2.5 m. A minimum width above which automatic control was always possible-the automatic lane width-was established to be 2.75 m. Finally, a lane width of 2.72 m was found to have the same probability of automatic and human lateral control, namely the critical lane width. Following a similar methodology, these parameters could be determined for other vehicles, enhancing the interaction between autonomous vehicles and road infrastructure and thus supporting rapid deployment of autonomous technology without compromising safety. es_ES
dc.language Inglés es_ES
dc.publisher Transportation Research Board es_ES
dc.relation.ispartof Transportation Research Record es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification INGENIERIA E INFRAESTRUCTURA DE LOS TRANSPORTES es_ES
dc.title Influence of Lane Width on Semi-Autonomous Vehicle Performance es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/0361198120928351 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería e Infraestructura de los Transportes - Departament d'Enginyeria i Infraestructura dels Transports es_ES
dc.description.bibliographicCitation García García, A.; Camacho-Torregrosa, FJ. (2020). Influence of Lane Width on Semi-Autonomous Vehicle Performance. Transportation Research Record. 2674(9):279-286. https://doi.org/10.1177/0361198120928351 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1177/0361198120928351 es_ES
dc.description.upvformatpinicio 279 es_ES
dc.description.upvformatpfin 286 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2674 es_ES
dc.description.issue 9 es_ES
dc.relation.pasarela S\417445 es_ES
dc.description.references Lu, Z., Zhang, B., Feldhütter, A., Happee, R., Martens, M., & De Winter, J. C. F. (2019). Beyond mere take-over requests: The effects of monitoring requests on driver attention, take-over performance, and acceptance. Transportation Research Part F: Traffic Psychology and Behaviour, 63, 22-37. doi:10.1016/j.trf.2019.03.018 es_ES
dc.description.references Dogan, E., Rahal, M.-C., Deborne, R., Delhomme, P., Kemeny, A., & Perrin, J. (2017). Transition of control in a partially automated vehicle: Effects of anticipation and non-driving-related task involvement. Transportation Research Part F: Traffic Psychology and Behaviour, 46, 205-215. doi:10.1016/j.trf.2017.01.012 es_ES
dc.description.references Shen, S., & Neyens, D. M. (2017). Assessing drivers’ response during automated driver support system failures with non-driving tasks. Journal of Safety Research, 61, 149-155. doi:10.1016/j.jsr.2017.02.009 es_ES
dc.description.references Du, X., & Tan, K. K. (2016). Comprehensive and Practical Vision System for Self-Driving Vehicle Lane-Level Localization. IEEE Transactions on Image Processing, 25(5), 2075-2088. doi:10.1109/tip.2016.2539683 es_ES
dc.description.references Du, X., & Tan, K. K. (2015). Vision-based approach towards lane line detection and vehicle localization. Machine Vision and Applications, 27(2), 175-191. doi:10.1007/s00138-015-0735-5 es_ES
dc.description.references Favarò, F., Eurich, S., & Nader, N. (2018). Autonomous vehicles’ disengagements: Trends, triggers, and regulatory limitations. Accident Analysis & Prevention, 110, 136-148. doi:10.1016/j.aap.2017.11.001 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem