- -

Teleoperation of industrial robot manipulators based on augmented reality

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Teleoperation of industrial robot manipulators based on augmented reality

Mostrar el registro completo del ítem

Solanes Galbis, JE.; Muñoz García, A.; Gracia Calandin, LI.; Martí Testón, A.; Girbés, V.; Tornero Montserrat, J. (2020). Teleoperation of industrial robot manipulators based on augmented reality. The International Journal of Advanced Manufacturing Technology. 111(3-4):1077-1097. https://doi.org/10.1007/s00170-020-05997-1

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162868

Ficheros en el ítem

Metadatos del ítem

Título: Teleoperation of industrial robot manipulators based on augmented reality
Autor: Solanes Galbis, Juan Ernesto Muñoz García, Adolfo Gracia Calandin, Luis Ignacio Martí Testón, Ana Girbés, Vicent Tornero Montserrat, Josep
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica
Universitat Politècnica de València. Departamento de Comunicación Audiovisual, Documentación e Historia del Arte - Departament de Comunicació Audiovisual, Documentació i Història de l'Art
Fecha difusión:
Resumen:
[EN] This research develops a novel teleoperation for robot manipulators based on augmented reality. The proposed interface is equipped with full capabilities in order to replace the classical teach pendant of the robot ...[+]
Palabras clave: Augmented reality interface , Industry 4.0 , Industrial robot teleoperation , Mixed reality interface , Guiding industrial robots
Derechos de uso: Reserva de todos los derechos
Fuente:
The International Journal of Advanced Manufacturing Technology. (issn: 0268-3768 )
DOI: 10.1007/s00170-020-05997-1
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s00170-020-05997-1
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-87656-C2-1-R/ES/VISION ARTIFICIAL Y ROBOTICA COLABORATIVA EN PULIDO DE SUPERFICIES EN LA INDUSTRIA/
info:eu-repo/grantAgreement/GVA//AEST%2F2019%2F010/
Agradecimientos:
This work was supported by the Spanish Government under the project DPI2017-87656-C2-1-R.
Tipo: Artículo

References

ABB: Abb teach pendant (Accessed 04/24/2020)

Attig C, Wessel D, Franke T (2017) Assessing personality differences in human-technology interaction: an overview of key self-report scales to predict successful interaction. In: Stephanidis C

(ed) HCI International 2017 - posters' extended abstracts. Springer International Publishing, Cham, pp 19-29 [+]
ABB: Abb teach pendant (Accessed 04/24/2020)

Attig C, Wessel D, Franke T (2017) Assessing personality differences in human-technology interaction: an overview of key self-report scales to predict successful interaction. In: Stephanidis C

(ed) HCI International 2017 - posters' extended abstracts. Springer International Publishing, Cham, pp 19-29

Bandala M, West C, Monk S, Montazeri A, Taylor CJ (2019) Vision-based assisted tele-operation of a dual-arm hydraulically actuated robot for pipe cutting and grasping in nuclear environments. Robotics 8(2):42

Bermejo C, Hui P (2017) A survey on haptic technologies for mobile augmented reality. arXiv:1709.00698

Billard A, Calinon S, Dillmann R, Schaal S (2008) Robot programming by demonstration. Springer, Berlin, pp 1371–1394

Bostanci E, Kanwal N, Ehsan S, Clark AF (2013) User tracking methods for augmented reality. In: International Journal of Computer Theory and Engineering, pp 93–98

Brooke J (1996) SUS-A quick and dirty usability scale Usability evaluation in industry. CRC Press, ISBN: 9780748404605

Cardoso JCS (2016) Comparison of gesture, gamepad, and gaze-based locomotion for VR worlds. In: Proceedings of the 22nd ACM conference on virtual reality software and technology. Association for Computing Machinery, New York, pp 319–320

Circuit 1 demonstration: https://media.upv.es/player/?id=8be7f8e0-99b4-11ea-a399-57da8aaa21ee (Accessed 05/14/2020)

Circuit 2 demonstration: https://media.upv.es/player/?id=afda6530-99b4-11ea-a399-57da8aaa21ee (Accessed 05/14/2020)

Circuit 3 demonstration: https://media.upv.es/player/?id=56c62d20-99b5-11ea-a399-57da8aaa21ee (Accessed 05/14/2020)

Circuit 4 demonstration: https://media.upv.es/player/?id=9461f740-99b5-11ea-a399-57da8aaa21ee (Accessed 05/14/2020)

Codd-Downey R, Jenkin M (2018) Wireless teleoperation of an underwater robot using li-fi. In: 2018 IEEE International conference on information and automation (ICIA), pp 859–864

Craig AB (2013) Chapter 2 - augmented reality concepts. In: Craig AB (ed) Understanding augmented reality. Morgan Kaufmann, Boston, pp 39–67

Fanuc: Fanuc ipendant (Accessed 04/24/2020)

Ferreira A, Bastos-filho TF, Null Cheein FA, Postigo JF, Carelli R (2006) Teleoperation of an industrial manipulator through a tcp/ip channel using eeg signals. 2006 IEEE International Symposium on Industrial Electronics 4:3066–3071

Fondazione Istituto Italiano di Tecnologia : force/torque sensors (2015). Accessed 04/04/2020

Franke T, Attig C, Wessel D (2018) A personal resource for technology interaction: development and validation of the affinity for technology interaction (ati) scale. Int J Human-Computer Interac 0(0):1–12

Gadre SY, Rosen E, Chien G, Phillips E, Tellex S, Konidaris G (2019) End-user robot programming using mixed reality. In: 2019 International conference on robotics and automation (ICRA), pp 2707–2713

Grahn I The vuforia sdk and unity3d game engine : evaluating performance on android devices

Hart SG, Staveland LE (1988) Development of nasa-tlx (task load index): results of empirical and theoretical research. In: Hancock PA, Meshkati N (eds) Human mental workload, advances in psychology, vol 52, North-Holland, pp 139–183

Hess R (2010) Blender foundations: the essential guide to learning blender 2.6 focal press

Isop WA, Gebhardt C, Nageli T, Fraundorfer F, Hilliges O, Schmalstieg D (2019) High-level teleoperation system for aerial exploration of indoor environments. Frontiers in Robotics and AI 6:95

Jackson S (2015) Unity 3D UI essentials. Packt Publishing

Kitson A, Hashemian AM, Stepanova ER, Kruijff E, Riecke BE (2017) Comparing leaning-based motion cueing interfaces for virtual reality locomotion. In: 2017 IEEE Symposium on 3d user interfaces (3DUI), pp 73–82

Kuka: Kuka smartpad teach pendant (Accessed 04/24/2020)

Li C, Fahmy A, Sienz J (2019) An augmented reality based human-robot interaction interface using kalman filter sensor fusion. Sensors 19(20):4586

Liang C, Liu C, Liu X, Cheng L, Yang C (2019) Robot teleoperation system based on mixed reality. In: 2019 IEEE 4Th international conference on advanced robotics and mechatronics (ICARM), pp 384–389

Marinho MM, Adorno BV, Harada K, Deie K, Deguet A, Kazanzides P, Taylor RH, Mitsuishi M (2019) A unified framework for the teleoperation of surgical robots in constrained workspaces. In: 2019 international conference on robotics and automation (ICRA)

Microsoft Hololens (2nd gen) hardware details: https://www.microsoft.com/en-us/hololens/hardware (Accessed 04/24/2020)

Munawar A, Fischer G (2016) A surgical robot teleoperation framework for providing haptic feedback incorporating virtual environment-based guidance. Frontiers in Robotics and AI 3:47

Muñoz A, Mahiques X, Solanes JE, Martí A, Gracia L, Tornero J (2019) Mixed reality-based user interface for quality control inspection of car body surfaces. J Manuf Syst 53:75–92

Muñoz A, Martí A, Mahiques X, Gracia L, Solanes JE, Tornero J (2020) Camera 3D positioning mixed reality-based interface to improve worker safety, ergonomics and productivity. CIRP J Manuf Sci Technol 28:24–37

Park DY (2017) Mrtk: Open-source building blocks for windows mixed reality experiences. https://github.com/cre8ivepark/

Rosen E, Whitney D, Phillips E, Chien G, Tompkin J, Konidaris G, Tellex S (2019) Communicating and controlling robot arm motion intent through mixed-reality head-mounted displays. Int J Robot Res 38(12-13):1513–1526

Siciliano B, Sciavicco L, Villani L, Oriolo G (2009) Robotics: modelling, planning and control. Springer, London

Vitor R, Keller B, D’Angelo T, Azpurua H, Bianchi AGC, Delabrida S (2019) Collaborative teleoperation evaluation for drones. In: Proceedings of the 18th Brazilian symposium on human factors in computing systems, IHC ‘19. Association for Computing Machinery, New York

Walker ME, Hedayati H, Szafir D (2019) Robot teleoperation with augmented reality virtual surrogates. In: 2019 14Th ACM/IEEE international conference on human-robot interaction (HRI), pp 202–210

Wang D, Guo Y, Liu S, Zhang Y, Xu W, Xiao J (2019) Haptic display for virtual reality: progress and challenges. Virtual Reality & Intelligent Hardware 1(2):136–162

Wei J, Ye G, Mullen T, Grundmann M, Ahmadyan A, Hou T (2019) Instant motion tracking and its applications to augmented reality

Wonnacott TH, Wonnacott RJ (1990) Introductory statistics for business and economics. Wiley, New York

Xu P, Zeng Q, Zhang G, Zhu C, Zhu Z (2019) Design of control system and human-robot-interaction system of teleoperation underwater robot. In: Yu H, Liu J, Liu L, Ju Z, Liu Y, Zhou D (eds) Intelligent robotics and applications. Springer International Publishing, Cham, pp 649–660

Yew AWW, Ong SK, Nee AYC (2017) Immersive augmented reality environment for the teleoperation of maintenance robots

Zhao J, Allison RS (2019) Comparing head gesture, hand gesture and gamepad interfaces for answering yes/no questions in virtual environments. Virtual Reality, pp 1–9

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem