- -

Non-linear eigenvalue problems with GetDP and SLEPc: Eigenmode computations of frequency-dispersive photonic open structures

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Non-linear eigenvalue problems with GetDP and SLEPc: Eigenmode computations of frequency-dispersive photonic open structures

Show full item record

Demesy, G.; Nicolet, A.; Gralak, B.; Geuzaine, C.; Campos, C.; Roman, JE. (2020). Non-linear eigenvalue problems with GetDP and SLEPc: Eigenmode computations of frequency-dispersive photonic open structures. Computer Physics Communications. 257:1-15. https://doi.org/10.1016/j.cpc.2020.107509

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162869

Files in this item

Item Metadata

Title: Non-linear eigenvalue problems with GetDP and SLEPc: Eigenmode computations of frequency-dispersive photonic open structures
Author: Demesy, Guillaume Nicolet, André Gralak, Boris Geuzaine, Christophe Campos, Carmen Roman, Jose E.
UPV Unit: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Issued date:
Embargo end date: 2022-07-29
Abstract:
[EN] We present a framework to solve non-linear eigenvalue problems suitable for a Finite Element discretization. The implementation is based on the open-source finite element software GetDP and the open-source library ...[+]
Subjects: Electromagnetism , Photonics , Frequency-dispersion , Non-linear eigenvalue problem , Finite elements
Copyrigths: Embargado
Source:
Computer Physics Communications. (issn: 0010-4655 )
DOI: 10.1016/j.cpc.2020.107509
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.cpc.2020.107509
Project ID:
MINECO/TIN2016-75985-P
ANR/ANR-16-CE240013
Fédération Wallonie-Bruxelles/ARC WAVES 15/19-03
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107379RB-I00/ES/ALGORITMOS PARALELOS Y SOFTWARE PARA METODOS ALGEBRAICOS EN ANALISIS DE DATOS/
Thanks:
The work was partly supported by the French National Agency for Research (ANR) under the project "Resonance" (ANR-16-CE240013). The authors acknowledge the members of the project "Resonance'' for fruitful discussions. C. ...[+]
Type: Artículo

References

Betcke, T., Higham, N. J., Mehrmann, V., Schröder, C., & Tisseur, F. (2013). NLEVP. ACM Transactions on Mathematical Software, 39(2), 1-28. doi:10.1145/2427023.2427024

Silveirinha, M. G. (2007). Metamaterial homogenization approach with application to the characterization of microstructured composites with negative parameters. Physical Review B, 75(11). doi:10.1103/physrevb.75.115104

Alù, A. (2011). First-principles homogenization theory for periodic metamaterials. Physical Review B, 84(7). doi:10.1103/physrevb.84.075153 [+]
Betcke, T., Higham, N. J., Mehrmann, V., Schröder, C., & Tisseur, F. (2013). NLEVP. ACM Transactions on Mathematical Software, 39(2), 1-28. doi:10.1145/2427023.2427024

Silveirinha, M. G. (2007). Metamaterial homogenization approach with application to the characterization of microstructured composites with negative parameters. Physical Review B, 75(11). doi:10.1103/physrevb.75.115104

Alù, A. (2011). First-principles homogenization theory for periodic metamaterials. Physical Review B, 84(7). doi:10.1103/physrevb.84.075153

Etchegoin, P. G., Le Ru, E. C., & Meyer, M. (2006). An analytic model for the optical properties of gold. The Journal of Chemical Physics, 125(16), 164705. doi:10.1063/1.2360270

Garcia-Vergara, M., Demésy, G., & Zolla, F. (2017). Extracting an accurate model for permittivity from experimental data: hunting complex poles from the real line. Optics Letters, 42(6), 1145. doi:10.1364/ol.42.001145

Sauvan, C., Hugonin, J. P., Maksymov, I. S., & Lalanne, P. (2013). Theory of the Spontaneous Optical Emission of Nanosize Photonic and Plasmon Resonators. Physical Review Letters, 110(23). doi:10.1103/physrevlett.110.237401

Vial, B., Commandré, M., Demésy, G., Nicolet, A., Zolla, F., Bedu, F., … Roux, L. (2014). Transmission enhancement through square coaxial aperture arrays in metallic film: when leaky modes filter infrared light for multispectral imaging. Optics Letters, 39(16), 4723. doi:10.1364/ol.39.004723

Yan, W., Faggiani, R., & Lalanne, P. (2018). Rigorous modal analysis of plasmonic nanoresonators. Physical Review B, 97(20). doi:10.1103/physrevb.97.205422

Lalanne, P., Yan, W., Vynck, K., Sauvan, C., & Hugonin, J.-P. (2018). Light Interaction with Photonic and Plasmonic Resonances. Laser & Photonics Reviews, 12(5), 1700113. doi:10.1002/lpor.201700113

Van der Lem, H., Tip, A., & Moroz, A. (2003). Band structure of absorptive two-dimensional photonic crystals. Journal of the Optical Society of America B, 20(6), 1334. doi:10.1364/josab.20.001334

Bai, Q., Perrin, M., Sauvan, C., Hugonin, J.-P., & Lalanne, P. (2013). Efficient and intuitive method for the analysis of light scattering by a resonant nanostructure. Optics Express, 21(22), 27371. doi:10.1364/oe.21.027371

Weiss, T., Mesch, M., Schäferling, M., Giessen, H., Langbein, W., & Muljarov, E. A. (2016). From Dark to Bright: First-Order Perturbation Theory with Analytical Mode Normalization for Plasmonic Nanoantenna Arrays Applied to Refractive Index Sensing. Physical Review Letters, 116(23). doi:10.1103/physrevlett.116.237401

Zimmerling, J., Wei, L., Urbach, P., & Remis, R. (2016). A Lanczos model-order reduction technique to efficiently simulate electromagnetic wave propagation in dispersive media. Journal of Computational Physics, 315, 348-362. doi:10.1016/j.jcp.2016.03.057

Zimmerling, J., Wei, L., Urbach, P., & Remis, R. (2016). Efficient computation of the spontaneous decay rate of arbitrarily shaped 3D nanosized resonators: a Krylov model-order reduction approach. Applied Physics A, 122(3). doi:10.1007/s00339-016-9643-4

Powell, D. A. (2014). Resonant dynamics of arbitrarily shaped meta-atoms. Physical Review B, 90(7). doi:10.1103/physrevb.90.075108

Tisseur, F., & Meerbergen, K. (2001). The Quadratic Eigenvalue Problem. SIAM Review, 43(2), 235-286. doi:10.1137/s0036144500381988

Güttel, S., & Tisseur, F. (2017). The nonlinear eigenvalue problem. Acta Numerica, 26, 1-94. doi:10.1017/s0962492917000034

Hernandez, V., Roman, J. E., & Vidal, V. (2005). SLEPc. ACM Transactions on Mathematical Software, 31(3), 351-362. doi:10.1145/1089014.1089019

Dular, P., Geuzaine, C., Henrotte, F., & Legros, W. (1998). A general environment for the treatment of discrete problems and its application to the finite element method. IEEE Transactions on Magnetics, 34(5), 3395-3398. doi:10.1109/20.717799

G. Demésy, 2018. URL: https://gitlab.onelab.info/doc/models/tree/master/NonLinearEVP.

Brûlé, Y., Gralak, B., & Demésy, G. (2016). Calculation and analysis of the complex band structure of dispersive and dissipative two-dimensional photonic crystals. Journal of the Optical Society of America B, 33(4), 691. doi:10.1364/josab.33.000691

Teixeira, F. L., & Chew, W. C. (1997). Systematic derivation of anisotropic PML absorbing media in cylindrical and spherical coordinates. IEEE Microwave and Guided Wave Letters, 7(11), 371-373. doi:10.1109/75.641424

Vial, B., Zolla, F., Nicolet, A., & Commandré, M. (2014). Quasimodal expansion of electromagnetic fields in open two-dimensional structures. Physical Review A, 89(2). doi:10.1103/physreva.89.023829

Bermúdez, A., Hervella-Nieto, L., Prieto, A., & Rodrı´guez, R. (2007). An optimal perfectly matched layer with unbounded absorbing function for time-harmonic acoustic scattering problems. Journal of Computational Physics, 223(2), 469-488. doi:10.1016/j.jcp.2006.09.018

Modave, A., Delhez, E., & Geuzaine, C. (2014). Optimizing perfectly matched layers in discrete contexts. International Journal for Numerical Methods in Engineering, 99(6), 410-437. doi:10.1002/nme.4690

Tip, A. (1998). Linear absorptive dielectrics. Physical Review A, 57(6), 4818-4841. doi:10.1103/physreva.57.4818

Gralak, B., & Tip, A. (2010). Macroscopic Maxwell’s equations and negative index materials. Journal of Mathematical Physics, 51(5), 052902. doi:10.1063/1.3374670

Tip, A. (2006). Some mathematical properties of Maxwell’s equations for macroscopic dielectrics. Journal of Mathematical Physics, 47(1), 012902. doi:10.1063/1.2158432

Raman, A., & Fan, S. (2010). Photonic Band Structure of Dispersive Metamaterials Formulated as a Hermitian Eigenvalue Problem. Physical Review Letters, 104(8). doi:10.1103/physrevlett.104.087401

Nicolet, A., Guenneau, S., Geuzaine, C., & Zolla, F. (2004). Modelling of electromagnetic waves in periodic media with finite elements. Journal of Computational and Applied Mathematics, 168(1-2), 321-329. doi:10.1016/j.cam.2003.07.002

Geuzaine, C., & Remacle, J.-F. (2009). Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11), 1309-1331. doi:10.1002/nme.2579

Webb, J. P., & Forgahani, B. (1993). Hierarchal scalar and vector tetrahedra. IEEE Transactions on Magnetics, 29(2), 1495-1498. doi:10.1109/20.250686

Geuzaine, C., Meys, B., Dular, P., & Legros, W. (1999). Convergence of high order curl-conforming finite elements [for EM field calculations]. IEEE Transactions on Magnetics, 35(3), 1442-1445. doi:10.1109/20.767237

Lu, D., Su, Y., & Bai, Z. (2016). Stability Analysis of the Two-level Orthogonal Arnoldi Procedure. SIAM Journal on Matrix Analysis and Applications, 37(1), 195-214. doi:10.1137/151005142

Campos, C., & Roman, J. E. (2016). Parallel Krylov Solvers for the Polynomial Eigenvalue Problem in SLEPc. SIAM Journal on Scientific Computing, 38(5), S385-S411. doi:10.1137/15m1022458

Güttel, S., Van Beeumen, R., Meerbergen, K., & Michiels, W. (2014). NLEIGS: A Class of Fully Rational Krylov Methods for Nonlinear Eigenvalue Problems. SIAM Journal on Scientific Computing, 36(6), A2842-A2864. doi:10.1137/130935045

Lalanne, P., Yan, W., Gras, A., Sauvan, C., Hugonin, J.-P., Besbes, M., … Weiss, T. (2019). Quasinormal mode solvers for resonators with dispersive materials. Journal of the Optical Society of America A, 36(4), 686. doi:10.1364/josaa.36.000686

Chesnel, L., & Ciarlet, P. (2012). T-coercivity and continuous Galerkin methods: application to transmission problems with sign changing coefficients. Numerische Mathematik, 124(1), 1-29. doi:10.1007/s00211-012-0510-8

Bonnet-Ben Dhia, A.-S., Carvalho, C., & Ciarlet, P. (2017). Mesh requirements for the finite element approximation of problems with sign-changing coefficients. Numerische Mathematik, 138(4), 801-838. doi:10.1007/s00211-017-0923-5

Zolla, F., Nicolet, A., & Demésy, G. (2018). Photonics in highly dispersive media: the exact modal expansion. Optics Letters, 43(23), 5813. doi:10.1364/ol.43.005813

Lalanne, P., Rodier, J. C., & Hugonin, J. P. (2005). Surface plasmons of metallic surfaces perforated by nanohole arrays. Journal of Optics A: Pure and Applied Optics, 7(8), 422-426. doi:10.1088/1464-4258/7/8/013

Lalanne, P., Hugonin, J. P., & Chavel, P. (2006). Optical properties of deep lamellar Gratings: A coupled Bloch-mode insight. Journal of Lightwave Technology, 24(6), 2442-2449. doi:10.1109/jlt.2006.874555

Schider, G., Krenn, J. R., Hohenau, A., Ditlbacher, H., Leitner, A., Aussenegg, F. R., … Boreman, G. (2003). Plasmon dispersion relation of Au and Ag nanowires. Physical Review B, 68(15). doi:10.1103/physrevb.68.155427

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record