- -

Non-linear eigenvalue problems with GetDP and SLEPc: Eigenmode computations of frequency-dispersive photonic open structures

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Non-linear eigenvalue problems with GetDP and SLEPc: Eigenmode computations of frequency-dispersive photonic open structures

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Demesy, Guillaume es_ES
dc.contributor.author Nicolet, André es_ES
dc.contributor.author Gralak, Boris es_ES
dc.contributor.author Geuzaine, Christophe es_ES
dc.contributor.author Campos, Carmen es_ES
dc.contributor.author Roman, Jose E. es_ES
dc.date.accessioned 2021-03-03T04:32:13Z
dc.date.available 2021-03-03T04:32:13Z
dc.date.issued 2020-12 es_ES
dc.identifier.issn 0010-4655 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162869
dc.description.abstract [EN] We present a framework to solve non-linear eigenvalue problems suitable for a Finite Element discretization. The implementation is based on the open-source finite element software GetDP and the open-source library SLEPc. As template examples, we propose and compare in detail different ways to address the numerical computation of the electromagnetic modes of frequency-dispersive objects. This is a non-linear eigenvalue problem involving a non-Hermitian operator. A classical finite element formulation is derived for five different solutions and solved using algorithms adapted to the large size of the resulting discrete problem. The proposed solutions are applied to the computation of the dispersion relation of a diffraction grating made of a Drude material. The important numerical consequences linked to the presence of sharp corners and sign-changing coefficients are carefully examined. For each method, the convergence of the eigenvalues with respect to the mesh refinement and the shape function order, as well as computation time and memory requirements are investigated. The open-source template model used to obtain the numerical results is provided. Details of the implementation of polynomial and rational eigenvalue problems in GetDP are given in the appendix. Program summary Program title: NonLinearEVP.pro CPC Library link to program files: http://dx.doi.org/10.17632/r57nxxtc62.1 Licensing provisions: GNU General Public License 3 Programming language: Gmsh (http://gmsh.info), GetDP (http://getdp.info) Nature of problem: Computing the eigenvalues and eigenvectors of electromagnetic wave problems involving frequency-dispersive materials. The resulting eigenvalue problem is non-linear and non-hermitian. Solution method: Finite element method coupled to efficient non-linear eigenvalue solvers: Relevant SLEPc solvers were interfaced to the Finite Element software GetDP. Several linearization schemes are benchmarked. (C) 2020 Elsevier B.V. All rights reserved. es_ES
dc.description.sponsorship The work was partly supported by the French National Agency for Research (ANR) under the project "Resonance" (ANR-16-CE240013). The authors acknowledge the members of the project "Resonance'' for fruitful discussions. C. Campos and J. E. Roman were supported by the Spanish Agencia Estatal de Investigacion (AEI) under project SLEPc-HS (TIN2016-75985-P), which includes European Commission ERDF funds. C. Geuzaine was supported by ARC grant for Concerted Research Actions (ARC WAVES 15/19-03), financed by the Wallonia-Brussels Federation of Belgium. The authors thank Christian Engström from Ume¿ Universitet for helpful comments. Maxence Cassier from Institut Fresnel is acknowledged. Finally, the authors address special thanks to Anne-Sophie Bonnet Ben-Dhia and Camille Carvalho from INRIA (POEMS) for their motivating remarks and insights. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Computer Physics Communications es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Electromagnetism es_ES
dc.subject Photonics es_ES
dc.subject Frequency-dispersion es_ES
dc.subject Non-linear eigenvalue problem es_ES
dc.subject Finite elements es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.title Non-linear eigenvalue problems with GetDP and SLEPc: Eigenmode computations of frequency-dispersive photonic open structures es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.cpc.2020.107509 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2016-75985-P/ES/SOLVERS DE VALORES PROPIOS ALTAMENTE ESCALABLES EN EL CONTEXTO DE LA BIBLIOTECA SLEPC/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-16-CE24-0013/FR/Theory and numerical modeling of optical resonance/Resonance/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Fédération Wallonie-Bruxelles//ARC WAVES 15%2F19-03/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107379RB-I00/ES/ALGORITMOS PARALELOS Y SOFTWARE PARA METODOS ALGEBRAICOS EN ANALISIS DE DATOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Demesy, G.; Nicolet, A.; Gralak, B.; Geuzaine, C.; Campos, C.; Roman, JE. (2020). Non-linear eigenvalue problems with GetDP and SLEPc: Eigenmode computations of frequency-dispersive photonic open structures. Computer Physics Communications. 257:1-15. https://doi.org/10.1016/j.cpc.2020.107509 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.cpc.2020.107509 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 257 es_ES
dc.relation.pasarela S\425589 es_ES
dc.contributor.funder Fédération Wallonie-Bruxelles es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Agence Nationale de la Recherche, Francia es_ES
dc.description.references Betcke, T., Higham, N. J., Mehrmann, V., Schröder, C., & Tisseur, F. (2013). NLEVP. ACM Transactions on Mathematical Software, 39(2), 1-28. doi:10.1145/2427023.2427024 es_ES
dc.description.references Silveirinha, M. G. (2007). Metamaterial homogenization approach with application to the characterization of microstructured composites with negative parameters. Physical Review B, 75(11). doi:10.1103/physrevb.75.115104 es_ES
dc.description.references Alù, A. (2011). First-principles homogenization theory for periodic metamaterials. Physical Review B, 84(7). doi:10.1103/physrevb.84.075153 es_ES
dc.description.references Etchegoin, P. G., Le Ru, E. C., & Meyer, M. (2006). An analytic model for the optical properties of gold. The Journal of Chemical Physics, 125(16), 164705. doi:10.1063/1.2360270 es_ES
dc.description.references Garcia-Vergara, M., Demésy, G., & Zolla, F. (2017). Extracting an accurate model for permittivity from experimental data: hunting complex poles from the real line. Optics Letters, 42(6), 1145. doi:10.1364/ol.42.001145 es_ES
dc.description.references Sauvan, C., Hugonin, J. P., Maksymov, I. S., & Lalanne, P. (2013). Theory of the Spontaneous Optical Emission of Nanosize Photonic and Plasmon Resonators. Physical Review Letters, 110(23). doi:10.1103/physrevlett.110.237401 es_ES
dc.description.references Vial, B., Commandré, M., Demésy, G., Nicolet, A., Zolla, F., Bedu, F., … Roux, L. (2014). Transmission enhancement through square coaxial aperture arrays in metallic film: when leaky modes filter infrared light for multispectral imaging. Optics Letters, 39(16), 4723. doi:10.1364/ol.39.004723 es_ES
dc.description.references Yan, W., Faggiani, R., & Lalanne, P. (2018). Rigorous modal analysis of plasmonic nanoresonators. Physical Review B, 97(20). doi:10.1103/physrevb.97.205422 es_ES
dc.description.references Lalanne, P., Yan, W., Vynck, K., Sauvan, C., & Hugonin, J.-P. (2018). Light Interaction with Photonic and Plasmonic Resonances. Laser & Photonics Reviews, 12(5), 1700113. doi:10.1002/lpor.201700113 es_ES
dc.description.references Van der Lem, H., Tip, A., & Moroz, A. (2003). Band structure of absorptive two-dimensional photonic crystals. Journal of the Optical Society of America B, 20(6), 1334. doi:10.1364/josab.20.001334 es_ES
dc.description.references Bai, Q., Perrin, M., Sauvan, C., Hugonin, J.-P., & Lalanne, P. (2013). Efficient and intuitive method for the analysis of light scattering by a resonant nanostructure. Optics Express, 21(22), 27371. doi:10.1364/oe.21.027371 es_ES
dc.description.references Weiss, T., Mesch, M., Schäferling, M., Giessen, H., Langbein, W., & Muljarov, E. A. (2016). From Dark to Bright: First-Order Perturbation Theory with Analytical Mode Normalization for Plasmonic Nanoantenna Arrays Applied to Refractive Index Sensing. Physical Review Letters, 116(23). doi:10.1103/physrevlett.116.237401 es_ES
dc.description.references Zimmerling, J., Wei, L., Urbach, P., & Remis, R. (2016). A Lanczos model-order reduction technique to efficiently simulate electromagnetic wave propagation in dispersive media. Journal of Computational Physics, 315, 348-362. doi:10.1016/j.jcp.2016.03.057 es_ES
dc.description.references Zimmerling, J., Wei, L., Urbach, P., & Remis, R. (2016). Efficient computation of the spontaneous decay rate of arbitrarily shaped 3D nanosized resonators: a Krylov model-order reduction approach. Applied Physics A, 122(3). doi:10.1007/s00339-016-9643-4 es_ES
dc.description.references Powell, D. A. (2014). Resonant dynamics of arbitrarily shaped meta-atoms. Physical Review B, 90(7). doi:10.1103/physrevb.90.075108 es_ES
dc.description.references Tisseur, F., & Meerbergen, K. (2001). The Quadratic Eigenvalue Problem. SIAM Review, 43(2), 235-286. doi:10.1137/s0036144500381988 es_ES
dc.description.references Güttel, S., & Tisseur, F. (2017). The nonlinear eigenvalue problem. Acta Numerica, 26, 1-94. doi:10.1017/s0962492917000034 es_ES
dc.description.references Hernandez, V., Roman, J. E., & Vidal, V. (2005). SLEPc. ACM Transactions on Mathematical Software, 31(3), 351-362. doi:10.1145/1089014.1089019 es_ES
dc.description.references Dular, P., Geuzaine, C., Henrotte, F., & Legros, W. (1998). A general environment for the treatment of discrete problems and its application to the finite element method. IEEE Transactions on Magnetics, 34(5), 3395-3398. doi:10.1109/20.717799 es_ES
dc.description.references G. Demésy, 2018. URL: https://gitlab.onelab.info/doc/models/tree/master/NonLinearEVP. es_ES
dc.description.references Brûlé, Y., Gralak, B., & Demésy, G. (2016). Calculation and analysis of the complex band structure of dispersive and dissipative two-dimensional photonic crystals. Journal of the Optical Society of America B, 33(4), 691. doi:10.1364/josab.33.000691 es_ES
dc.description.references Teixeira, F. L., & Chew, W. C. (1997). Systematic derivation of anisotropic PML absorbing media in cylindrical and spherical coordinates. IEEE Microwave and Guided Wave Letters, 7(11), 371-373. doi:10.1109/75.641424 es_ES
dc.description.references Vial, B., Zolla, F., Nicolet, A., & Commandré, M. (2014). Quasimodal expansion of electromagnetic fields in open two-dimensional structures. Physical Review A, 89(2). doi:10.1103/physreva.89.023829 es_ES
dc.description.references Bermúdez, A., Hervella-Nieto, L., Prieto, A., & Rodrı´guez, R. (2007). An optimal perfectly matched layer with unbounded absorbing function for time-harmonic acoustic scattering problems. Journal of Computational Physics, 223(2), 469-488. doi:10.1016/j.jcp.2006.09.018 es_ES
dc.description.references Modave, A., Delhez, E., & Geuzaine, C. (2014). Optimizing perfectly matched layers in discrete contexts. International Journal for Numerical Methods in Engineering, 99(6), 410-437. doi:10.1002/nme.4690 es_ES
dc.description.references Tip, A. (1998). Linear absorptive dielectrics. Physical Review A, 57(6), 4818-4841. doi:10.1103/physreva.57.4818 es_ES
dc.description.references Gralak, B., & Tip, A. (2010). Macroscopic Maxwell’s equations and negative index materials. Journal of Mathematical Physics, 51(5), 052902. doi:10.1063/1.3374670 es_ES
dc.description.references Tip, A. (2006). Some mathematical properties of Maxwell’s equations for macroscopic dielectrics. Journal of Mathematical Physics, 47(1), 012902. doi:10.1063/1.2158432 es_ES
dc.description.references Raman, A., & Fan, S. (2010). Photonic Band Structure of Dispersive Metamaterials Formulated as a Hermitian Eigenvalue Problem. Physical Review Letters, 104(8). doi:10.1103/physrevlett.104.087401 es_ES
dc.description.references Nicolet, A., Guenneau, S., Geuzaine, C., & Zolla, F. (2004). Modelling of electromagnetic waves in periodic media with finite elements. Journal of Computational and Applied Mathematics, 168(1-2), 321-329. doi:10.1016/j.cam.2003.07.002 es_ES
dc.description.references Geuzaine, C., & Remacle, J.-F. (2009). Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11), 1309-1331. doi:10.1002/nme.2579 es_ES
dc.description.references Webb, J. P., & Forgahani, B. (1993). Hierarchal scalar and vector tetrahedra. IEEE Transactions on Magnetics, 29(2), 1495-1498. doi:10.1109/20.250686 es_ES
dc.description.references Geuzaine, C., Meys, B., Dular, P., & Legros, W. (1999). Convergence of high order curl-conforming finite elements [for EM field calculations]. IEEE Transactions on Magnetics, 35(3), 1442-1445. doi:10.1109/20.767237 es_ES
dc.description.references Lu, D., Su, Y., & Bai, Z. (2016). Stability Analysis of the Two-level Orthogonal Arnoldi Procedure. SIAM Journal on Matrix Analysis and Applications, 37(1), 195-214. doi:10.1137/151005142 es_ES
dc.description.references Campos, C., & Roman, J. E. (2016). Parallel Krylov Solvers for the Polynomial Eigenvalue Problem in SLEPc. SIAM Journal on Scientific Computing, 38(5), S385-S411. doi:10.1137/15m1022458 es_ES
dc.description.references Güttel, S., Van Beeumen, R., Meerbergen, K., & Michiels, W. (2014). NLEIGS: A Class of Fully Rational Krylov Methods for Nonlinear Eigenvalue Problems. SIAM Journal on Scientific Computing, 36(6), A2842-A2864. doi:10.1137/130935045 es_ES
dc.description.references Lalanne, P., Yan, W., Gras, A., Sauvan, C., Hugonin, J.-P., Besbes, M., … Weiss, T. (2019). Quasinormal mode solvers for resonators with dispersive materials. Journal of the Optical Society of America A, 36(4), 686. doi:10.1364/josaa.36.000686 es_ES
dc.description.references Chesnel, L., & Ciarlet, P. (2012). T-coercivity and continuous Galerkin methods: application to transmission problems with sign changing coefficients. Numerische Mathematik, 124(1), 1-29. doi:10.1007/s00211-012-0510-8 es_ES
dc.description.references Bonnet-Ben Dhia, A.-S., Carvalho, C., & Ciarlet, P. (2017). Mesh requirements for the finite element approximation of problems with sign-changing coefficients. Numerische Mathematik, 138(4), 801-838. doi:10.1007/s00211-017-0923-5 es_ES
dc.description.references Zolla, F., Nicolet, A., & Demésy, G. (2018). Photonics in highly dispersive media: the exact modal expansion. Optics Letters, 43(23), 5813. doi:10.1364/ol.43.005813 es_ES
dc.description.references Lalanne, P., Rodier, J. C., & Hugonin, J. P. (2005). Surface plasmons of metallic surfaces perforated by nanohole arrays. Journal of Optics A: Pure and Applied Optics, 7(8), 422-426. doi:10.1088/1464-4258/7/8/013 es_ES
dc.description.references Lalanne, P., Hugonin, J. P., & Chavel, P. (2006). Optical properties of deep lamellar Gratings: A coupled Bloch-mode insight. Journal of Lightwave Technology, 24(6), 2442-2449. doi:10.1109/jlt.2006.874555 es_ES
dc.description.references Schider, G., Krenn, J. R., Hohenau, A., Ditlbacher, H., Leitner, A., Aussenegg, F. R., … Boreman, G. (2003). Plasmon dispersion relation of Au and Ag nanowires. Physical Review B, 68(15). doi:10.1103/physrevb.68.155427 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem