- -

An integral approach to sludge handling in a WWTP operated for EBPR aiming phosphorus recovery: simulation of alternatives, LCA and LCC analyses

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An integral approach to sludge handling in a WWTP operated for EBPR aiming phosphorus recovery: simulation of alternatives, LCA and LCC analyses

Mostrar el registro completo del ítem

Roldán, M.; Bouzas, A.; Seco, A.; Mena, E.; Mayor, Á.; Barat, R. (2020). An integral approach to sludge handling in a WWTP operated for EBPR aiming phosphorus recovery: simulation of alternatives, LCA and LCC analyses. Water Research. 175:1-11. https://doi.org/10.1016/j.watres.2020.115647

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162871

Ficheros en el ítem

Metadatos del ítem

Título: An integral approach to sludge handling in a WWTP operated for EBPR aiming phosphorus recovery: simulation of alternatives, LCA and LCC analyses
Autor: Roldán, M. Bouzas, A. Seco, A. Mena, E. Mayor, Á. Barat, Ramón
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient
Fecha difusión:
Resumen:
[EN] As phosphorus is a non-renewable resource mainly used to produce fertilizers and helps to provide food all over the world, the proper management of its reserves is a global concern since it is expected to become scarcer ...[+]
Palabras clave: Phosphorus recovery , Extraction , Elutriation , Sludge management , Mathematical modelling , Waste water
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Water Research. (issn: 0043-1354 )
DOI: 10.1016/j.watres.2020.115647
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.watres.2020.115647
Código del Proyecto:
info:eu-repo/grantAgreement/EC//LIFE16 ENV%2FES%2F000375/EU/Enhanced Nitrogen and phosphorus Recovery from wastewater and Integration in the value Chain/LIFE ENRICH/
Descripción: ©IWA Publishing 2020. The definitive peer-reviewed and edited version of this article is published in Water Research, Volume 175, 15 May 2020, 115647, https://doi.org/10.1016/j.watres.2020.115647 and is available at www.iwapublishing.com.
Agradecimientos:
The LIFE Programme, the European Union's funding instrument for the environment and climate action, supported and co-funded this study as part of the LIFE ENRICH project (LIFE16 ENV/ES/000375).
Tipo: Artículo

References

Bouzas, A., Martí, N., Grau, S., Barat, R., Mangin, D., & Pastor, L. (2019). Implementation of a global P-recovery system in urban wastewater treatment plants. Journal of Cleaner Production, 227, 130-140. doi:10.1016/j.jclepro.2019.04.126

Bradford-Hartke, Z., Lane, J., Lant, P., & Leslie, G. (2015). Environmental Benefits and Burdens of Phosphorus Recovery from Municipal Wastewater. Environmental Science & Technology, 49(14), 8611-8622. doi:10.1021/es505102v

Cieślik, B., & Konieczka, P. (2017). A review of phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of «no solid waste generation» and analytical methods. Journal of Cleaner Production, 142, 1728-1740. doi:10.1016/j.jclepro.2016.11.116 [+]
Bouzas, A., Martí, N., Grau, S., Barat, R., Mangin, D., & Pastor, L. (2019). Implementation of a global P-recovery system in urban wastewater treatment plants. Journal of Cleaner Production, 227, 130-140. doi:10.1016/j.jclepro.2019.04.126

Bradford-Hartke, Z., Lane, J., Lant, P., & Leslie, G. (2015). Environmental Benefits and Burdens of Phosphorus Recovery from Municipal Wastewater. Environmental Science & Technology, 49(14), 8611-8622. doi:10.1021/es505102v

Cieślik, B., & Konieczka, P. (2017). A review of phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of «no solid waste generation» and analytical methods. Journal of Cleaner Production, 142, 1728-1740. doi:10.1016/j.jclepro.2016.11.116

Cornel, P., & Schaum, C. (2009). Phosphorus recovery from wastewater: needs, technologies and costs. Water Science and Technology, 59(6), 1069-1076. doi:10.2166/wst.2009.045

Cullen, N., Baur, R., & Schauer, P. (2013). Three years of operation of North America’s first nutrient recovery facility. Water Science and Technology, 68(4), 763-768. doi:10.2166/wst.2013.260

Egle, L., Rechberger, H., Krampe, J., & Zessner, M. (2016). Phosphorus recovery from municipal wastewater: An integrated comparative technological, environmental and economic assessment of P recovery technologies. Science of The Total Environment, 571, 522-542. doi:10.1016/j.scitotenv.2016.07.019

Ferrer, J., Pretel, R., Durán, F., Giménez, J. B., Robles, A., Ruano, M. V., … Seco, A. (2015). Design methodology for submerged anaerobic membrane bioreactors (AnMBR): A case study. Separation and Purification Technology, 141, 378-386. doi:10.1016/j.seppur.2014.12.018

Ferrer, J., Seco, A., Serralta, J., Ribes, J., Manga, J., Asensi, E., … Llavador, F. (2008). DESASS: A software tool for designing, simulating and optimising WWTPs. Environmental Modelling & Software, 23(1), 19-26. doi:10.1016/j.envsoft.2007.04.005

Guedes, P., Couto, N., Ottosen, L. M., & Ribeiro, A. B. (2014). Phosphorus recovery from sewage sludge ash through an electrodialytic process. Waste Management, 34(5), 886-892. doi:10.1016/j.wasman.2014.02.021

Guérin-Schneider, L., Tsanga-Tabi, M., Roux, P., Catel, L., & Biard, Y. (2018). How to better include environmental assessment in public decision-making: Lessons from the use of an LCA-calculator for wastewater systems. Journal of Cleaner Production, 187, 1057-1068. doi:10.1016/j.jclepro.2018.03.168

Harrison, E. Z., Oakes, S. R., Hysell, M., & Hay, A. (2006). Organic chemicals in sewage sludges. Science of The Total Environment, 367(2-3), 481-497. doi:10.1016/j.scitotenv.2006.04.002

Le Corre, K. S., Valsami-Jones, E., Hobbs, P., & Parsons, S. A. (2009). Phosphorus Recovery from Wastewater by Struvite Crystallization: A Review. Critical Reviews in Environmental Science and Technology, 39(6), 433-477. doi:10.1080/10643380701640573

Lizarralde, I., Fernández-Arévalo, T., Manas, A., Ayesa, E., & Grau, P. (2019). Model-based opti mization of phosphorus management strategies in Sur WWTP, Madrid. Water Research, 153, 39-52. doi:10.1016/j.watres.2018.12.056

Marti, N., Bouzas, A., Seco, A., & Ferrer, J. (2008). Struvite precipitation assessment in anaerobic digestion processes. Chemical Engineering Journal, 141(1-3), 67-74. doi:10.1016/j.cej.2007.10.023

Nättorp, A., Remmen, K., & Remy, C. (2017). Cost assessment of different routes for phosphorus recovery from wastewater using data from pilot and production plants. Water Science and Technology, 76(2), 413-424. doi:10.2166/wst.2017.212

Neethling, J. B., & Benisch, M. (2004). Struvite control through process and facility design as well as operation strategy. Water Science and Technology, 49(2), 191-199. doi:10.2166/wst.2004.0122

Pastor, L., Marti, N., Bouzas, A., & Seco, A. (2008). Sewage sludge management for phosphorus recovery as struvite in EBPR wastewater treatment plants. Bioresource Technology, 99(11), 4817-4824. doi:10.1016/j.biortech.2007.09.054

Peng, L., Dai, H., Wu, Y., Peng, Y., & Lu, X. (2018). A comprehensive review of phosphorus recovery from wastewater by crystallization processes. Chemosphere, 197, 768-781. doi:10.1016/j.chemosphere.2018.01.098

Robles, Á., Aguado, D., Barat, R., Borrás, L., Bouzas, A., Giménez, J. B., … Seco, A. (2020). New frontiers from removal to recycling of nitrogen and phosphorus from wastewater in the Circular Economy. Bioresource Technology, 300, 122673. doi:10.1016/j.biortech.2019.122673

Rodriguez-Garcia, G., Frison, N., Vázquez-Padín, J. R., Hospido, A., Garrido, J. M., Fatone, F., … Feijoo, G. (2014). Life cycle assessment of nutrient removal technologies for the treatment of anaerobic digestion supernatant and its integration in a wastewater treatment plant. Science of The Total Environment, 490, 871-879. doi:10.1016/j.scitotenv.2014.05.077

Sena, M., & Hicks, A. (2018). Life cycle assessment review of struvite precipitation in wastewater treatment. Resources, Conservation and Recycling, 139, 194-204. doi:10.1016/j.resconrec.2018.08.009

Shih, Y.-J., Abarca, R. R. M., de Luna, M. D. G., Huang, Y.-H., & Lu, M.-C. (2017). Recovery of phosphorus from synthetic wastewaters by struvite crystallization in a fluidized-bed reactor: Effects of pH, phosphate concentration and coexisting ions. Chemosphere, 173, 466-473. doi:10.1016/j.chemosphere.2017.01.088

Van Dijk, K. C., Lesschen, J. P., & Oenema, O. (2016). Phosphorus flows and balances of the European Union Member States. Science of The Total Environment, 542, 1078-1093. doi:10.1016/j.scitotenv.2015.08.048

Wang, J., You, S., Zong, Y., Træholt, C., Dong, Z. Y., & Zhou, Y. (2019). Flexibility of combined heat and power plants: A review of technologies and operation strategies. Applied Energy, 252, 113445. doi:10.1016/j.apenergy.2019.113445

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem