- -

Automatic Segmentation of Epidermis and Hair Follicles in Optical Coherence Tomography Images of Normal Skin by Convolutional Neural Networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Automatic Segmentation of Epidermis and Hair Follicles in Optical Coherence Tomography Images of Normal Skin by Convolutional Neural Networks

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author del Amor, Rocío es_ES
dc.contributor.author Morales, Sandra es_ES
dc.contributor.author Colomer, Adrián es_ES
dc.contributor.author Mogensen, Mette es_ES
dc.contributor.author Jensen, Mikkel es_ES
dc.contributor.author Israelsen, Niels M. es_ES
dc.contributor.author Bang, Ole es_ES
dc.contributor.author Naranjo Ornedo, Valeriana es_ES
dc.date.accessioned 2021-03-04T04:30:52Z
dc.date.available 2021-03-04T04:30:52Z
dc.date.issued 2020-06-04 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162954
dc.description.abstract [EN] Optical coherence tomography (OCT) is a well-established bedside imaging modality that allows analysis of skin structures in a non-invasive way. Automated OCT analysis of skin layers is of great relevance to study dermatological diseases. In this paper, an approach to detect the epidermal layer along with the follicular structures in healthy human OCT images is presented. To the best of the authors' knowledge, the approach presented in this paper is the only epidermis detection algorithm that segments the pilosebaceous unit, which is of importance in the progression of several skin disorders such as folliculitis, acne, lupus erythematosus, and basal cell carcinoma. The proposed approach is composed of two main stages. The first stage is a Convolutional Neural Network based on U-Net architecture. The second stage is a robust post-processing composed by a Savitzky-Golay filter and Fourier Domain Filtering to fully define the borders belonging to the hair follicles. After validation, an average Dice of 0.83 +/- 0.06 and a thickness error of 10.25 mu mis obtained on 270 human skin OCT images. Based on these results, the proposed method outperforms other state-of-the-art methods for epidermis segmentation. It demonstrates that the proposed image segmentation method successfully detects the epidermal region in a fully automatic way in addition to defining the follicular skin structures as main novelty. es_ES
dc.description.sponsorship This work has been partially supported by Horizon 2020, the European Union's Framework Programme for Research and Innovation, under grant agreement No. 732613 (GALAHAD Project), the Spanish Ministry of Economy and Competitiveness through project DPI2016-77869, and GVA through project PROMETEO/2019/109. The OCT system and the work of NI were funded by Innovation Fund Denmark, Grant No. 4107-00011A (ShapeOCT). es_ES
dc.language Inglés es_ES
dc.publisher Frontiers Media es_ES
dc.relation.ispartof Frontiers in Medicine es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Skin OCT es_ES
dc.subject Follicular structures es_ES
dc.subject Layer segmentation es_ES
dc.subject Epidermis es_ES
dc.subject Convolutional neural networks es_ES
dc.subject Pilosebaceous unit es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Automatic Segmentation of Epidermis and Hair Follicles in Optical Coherence Tomography Images of Normal Skin by Convolutional Neural Networks es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/fmed.2020.00220 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/732613/EU/Glaucoma – Advanced, LAbel-free High resolution Automated OCT Diagnostics/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/IFD//4107-00011A/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2016-77869-C2-1-R/ES/SISTEMA DE INTERPRETACION DE IMAGENES HISTOPATOLOGICAS PARA LA DETECCION DE CANCER DE PROSTATA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F109/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Del Amor, R.; Morales, S.; Colomer, A.; Mogensen, M.; Jensen, M.; Israelsen, NM.; Bang, O.... (2020). Automatic Segmentation of Epidermis and Hair Follicles in Optical Coherence Tomography Images of Normal Skin by Convolutional Neural Networks. Frontiers in Medicine. 7:1-11. https://doi.org/10.3389/fmed.2020.00220 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3389/fmed.2020.00220 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.identifier.eissn 2296-858X es_ES
dc.identifier.pmid 32582729 es_ES
dc.identifier.pmcid PMC7287173 es_ES
dc.relation.pasarela S\413417 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Innovation Fund Denmark es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Kafieh, R., Rabbani, H., Abramoff, M., & Sonka, M. (2013). Intra-retinal layer segmentation of optical coherence tomography using diffusion map. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. doi:10.1109/icassp.2013.6637816 es_ES
dc.description.references Hussain, A. A., Themstrup, L., Mogensen, M., & Jemec, G. B. E. (2017). Optical Coherence Tomography Imaging of the Skin. Agache’s Measuring the Skin, 493-502. doi:10.1007/978-3-319-32383-1_53 es_ES
dc.description.references Israelsen, N. M., Maria, M., Mogensen, M., Bojesen, S., Jensen, M., Haedersdal, M., … Bang, O. (2018). The value of ultrahigh resolution OCT in dermatology - delineating the dermo-epidermal junction, capillaries in the dermal papillae and vellus hairs. Biomedical Optics Express, 9(5), 2240. doi:10.1364/boe.9.002240 es_ES
dc.description.references Park, E. S. (2014). Skin-Layer Analysis Using Optical Coherence Tomography (OCT). Medical Lasers, 3(1), 1-4. doi:10.25289/ml.2014.3.1.1 es_ES
dc.description.references Taghavikhalilbad, A., Adabi, S., Clayton, A., Soltanizadeh, H., Mehregan, D., & Avanaki, M. R. N. (2017). Semi-automated localization of dermal epidermal junction in optical coherence tomography images of skin. Applied Optics, 56(11), 3116. doi:10.1364/ao.56.003116 es_ES
dc.description.references Srivastava, R., Yow, A. P., Cheng, J., Wong, D. W. K., & Tey, H. L. (2018). Three-dimensional graph-based skin layer segmentation in optical coherence tomography images for roughness estimation. Biomedical Optics Express, 9(8), 3590. doi:10.1364/boe.9.003590 es_ES
dc.description.references Calderon-Delgado, M., Tjiu, J.-W., Lin, M.-Y., & Huang, S.-L. (2018). High Resolution Human Skin Image Segmentation by means of Fully Convolutional Neural Networks. 2018 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD). doi:10.1109/nusod.2018.8570241 es_ES
dc.description.references Kepp, T., Droigk, C., Casper, M., Evers, M., Hüttmann, G., Salma, N., … Handels, H. (2019). Segmentation of mouse skin layers in optical coherence tomography image data using deep convolutional neural networks. Biomedical Optics Express, 10(7), 3484. doi:10.1364/boe.10.003484 es_ES
dc.description.references Mogensen, M., Bojesen, S., Israelsen, N. M., Maria, M., Jensen, M., Podoleanu, A., … Haedersdal, M. (2018). Two optical coherence tomography systems detect topical gold nanoshells in hair follicles, sweat ducts and measure epidermis. Journal of Biophotonics, 11(9), e201700348. doi:10.1002/jbio.201700348 es_ES
dc.description.references Mogensen, M., Morsy, H. A., Thrane, L., & Jemec, G. B. E. (2008). Morphology and Epidermal Thickness of Normal Skin Imaged by Optical Coherence Tomography. Dermatology, 217(1), 14-20. doi:10.1159/000118508 es_ES
dc.description.references Savitzky, A., & Golay, M. J. E. (1964). Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Analytical Chemistry, 36(8), 1627-1639. doi:10.1021/ac60214a047 es_ES
dc.description.references Heijmans, H. J. A. M. (1999). Connected Morphological Operators for Binary Images. Computer Vision and Image Understanding, 73(1), 99-120. doi:10.1006/cviu.1998.0703 es_ES
dc.description.references Mogensen, M., Nürnberg, B. M., Forman, J. L., Thomsen, J. B., Thrane, L., & Jemec, G. B. E. (2009). In vivothickness measurement of basal cell carcinoma and actinic keratosis with optical coherence tomography and 20-MHz ultrasound. British Journal of Dermatology, 160(5), 1026-1033. doi:10.1111/j.1365-2133.2008.09003.x es_ES
dc.description.references Wang, G. Y., Wang, J., Mancianti, M.-L., & Epstein, E. H. (2011). Basal Cell Carcinomas Arise from Hair Follicle Stem Cells in Ptch1+/− Mice. Cancer Cell, 19(1), 114-124. doi:10.1016/j.ccr.2010.11.007 es_ES
dc.description.references Peterson, S. C., Eberl, M., Vagnozzi, A. N., Belkadi, A., Veniaminova, N. A., Verhaegen, M. E., … Wong, S. Y. (2015). Basal Cell Carcinoma Preferentially Arises from Stem Cells within Hair Follicle and Mechanosensory Niches. Cell Stem Cell, 16(4), 400-412. doi:10.1016/j.stem.2015.02.006 es_ES
dc.description.references Berekméri, A., Tiganescu, A., Alase, A. A., Vital, E., Stacey, M., & Wittmann, M. (2019). Non-invasive Approaches for the Diagnosis of Autoimmune/Autoinflammatory Skin Diseases—A Focus on Psoriasis and Lupus erythematosus. Frontiers in Immunology, 10. doi:10.3389/fimmu.2019.01931 es_ES
dc.description.references Fuchs, C. S. K., Ortner, V. K., Mogensen, M., Philipsen, P. A., & Haedersdal, M. (2019). Transfollicular delivery of gold microparticles in healthy skin and acne vulgaris, assessed by in vivo reflectance confocal microscopy and optical coherence tomography. Lasers in Surgery and Medicine, 51(5), 430-438. doi:10.1002/lsm.23076 es_ES
dc.description.references Durdu, M., & Ilkit, M. (2012). First step in the differential diagnosis of folliculitis: cytology. Critical Reviews in Microbiology, 39(1), 9-25. doi:10.3109/1040841x.2012.682051 es_ES
dc.description.references Andersen, A. J. B., Fuchs, C., Ardigo, M., Haedersdal, M., & Mogensen, M. (2018). In vivo characterization of pustules in Malassezia Folliculitis by reflectance confocal microscopy and optical coherence tomography. A case series study. Skin Research and Technology, 24(4), 535-541. doi:10.1111/srt.12463 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem