Mostrar el registro sencillo del ítem
dc.contributor.author | del Amor, Rocío | es_ES |
dc.contributor.author | Morales, Sandra | es_ES |
dc.contributor.author | Colomer, Adrián | es_ES |
dc.contributor.author | Mogensen, Mette | es_ES |
dc.contributor.author | Jensen, Mikkel | es_ES |
dc.contributor.author | Israelsen, Niels M. | es_ES |
dc.contributor.author | Bang, Ole | es_ES |
dc.contributor.author | Naranjo Ornedo, Valeriana | es_ES |
dc.date.accessioned | 2021-03-04T04:30:52Z | |
dc.date.available | 2021-03-04T04:30:52Z | |
dc.date.issued | 2020-06-04 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/162954 | |
dc.description.abstract | [EN] Optical coherence tomography (OCT) is a well-established bedside imaging modality that allows analysis of skin structures in a non-invasive way. Automated OCT analysis of skin layers is of great relevance to study dermatological diseases. In this paper, an approach to detect the epidermal layer along with the follicular structures in healthy human OCT images is presented. To the best of the authors' knowledge, the approach presented in this paper is the only epidermis detection algorithm that segments the pilosebaceous unit, which is of importance in the progression of several skin disorders such as folliculitis, acne, lupus erythematosus, and basal cell carcinoma. The proposed approach is composed of two main stages. The first stage is a Convolutional Neural Network based on U-Net architecture. The second stage is a robust post-processing composed by a Savitzky-Golay filter and Fourier Domain Filtering to fully define the borders belonging to the hair follicles. After validation, an average Dice of 0.83 +/- 0.06 and a thickness error of 10.25 mu mis obtained on 270 human skin OCT images. Based on these results, the proposed method outperforms other state-of-the-art methods for epidermis segmentation. It demonstrates that the proposed image segmentation method successfully detects the epidermal region in a fully automatic way in addition to defining the follicular skin structures as main novelty. | es_ES |
dc.description.sponsorship | This work has been partially supported by Horizon 2020, the European Union's Framework Programme for Research and Innovation, under grant agreement No. 732613 (GALAHAD Project), the Spanish Ministry of Economy and Competitiveness through project DPI2016-77869, and GVA through project PROMETEO/2019/109. The OCT system and the work of NI were funded by Innovation Fund Denmark, Grant No. 4107-00011A (ShapeOCT). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Frontiers Media | es_ES |
dc.relation.ispartof | Frontiers in Medicine | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Skin OCT | es_ES |
dc.subject | Follicular structures | es_ES |
dc.subject | Layer segmentation | es_ES |
dc.subject | Epidermis | es_ES |
dc.subject | Convolutional neural networks | es_ES |
dc.subject | Pilosebaceous unit | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Automatic Segmentation of Epidermis and Hair Follicles in Optical Coherence Tomography Images of Normal Skin by Convolutional Neural Networks | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3389/fmed.2020.00220 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/732613/EU/Glaucoma – Advanced, LAbel-free High resolution Automated OCT Diagnostics/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/IFD//4107-00011A/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DPI2016-77869-C2-1-R/ES/SISTEMA DE INTERPRETACION DE IMAGENES HISTOPATOLOGICAS PARA LA DETECCION DE CANCER DE PROSTATA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F109/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Del Amor, R.; Morales, S.; Colomer, A.; Mogensen, M.; Jensen, M.; Israelsen, NM.; Bang, O.... (2020). Automatic Segmentation of Epidermis and Hair Follicles in Optical Coherence Tomography Images of Normal Skin by Convolutional Neural Networks. Frontiers in Medicine. 7:1-11. https://doi.org/10.3389/fmed.2020.00220 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3389/fmed.2020.00220 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 11 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 7 | es_ES |
dc.identifier.eissn | 2296-858X | es_ES |
dc.identifier.pmid | 32582729 | es_ES |
dc.identifier.pmcid | PMC7287173 | es_ES |
dc.relation.pasarela | S\413417 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Innovation Fund Denmark | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Kafieh, R., Rabbani, H., Abramoff, M., & Sonka, M. (2013). Intra-retinal layer segmentation of optical coherence tomography using diffusion map. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. doi:10.1109/icassp.2013.6637816 | es_ES |
dc.description.references | Hussain, A. A., Themstrup, L., Mogensen, M., & Jemec, G. B. E. (2017). Optical Coherence Tomography Imaging of the Skin. Agache’s Measuring the Skin, 493-502. doi:10.1007/978-3-319-32383-1_53 | es_ES |
dc.description.references | Israelsen, N. M., Maria, M., Mogensen, M., Bojesen, S., Jensen, M., Haedersdal, M., … Bang, O. (2018). The value of ultrahigh resolution OCT in dermatology - delineating the dermo-epidermal junction, capillaries in the dermal papillae and vellus hairs. Biomedical Optics Express, 9(5), 2240. doi:10.1364/boe.9.002240 | es_ES |
dc.description.references | Park, E. S. (2014). Skin-Layer Analysis Using Optical Coherence Tomography (OCT). Medical Lasers, 3(1), 1-4. doi:10.25289/ml.2014.3.1.1 | es_ES |
dc.description.references | Taghavikhalilbad, A., Adabi, S., Clayton, A., Soltanizadeh, H., Mehregan, D., & Avanaki, M. R. N. (2017). Semi-automated localization of dermal epidermal junction in optical coherence tomography images of skin. Applied Optics, 56(11), 3116. doi:10.1364/ao.56.003116 | es_ES |
dc.description.references | Srivastava, R., Yow, A. P., Cheng, J., Wong, D. W. K., & Tey, H. L. (2018). Three-dimensional graph-based skin layer segmentation in optical coherence tomography images for roughness estimation. Biomedical Optics Express, 9(8), 3590. doi:10.1364/boe.9.003590 | es_ES |
dc.description.references | Calderon-Delgado, M., Tjiu, J.-W., Lin, M.-Y., & Huang, S.-L. (2018). High Resolution Human Skin Image Segmentation by means of Fully Convolutional Neural Networks. 2018 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD). doi:10.1109/nusod.2018.8570241 | es_ES |
dc.description.references | Kepp, T., Droigk, C., Casper, M., Evers, M., Hüttmann, G., Salma, N., … Handels, H. (2019). Segmentation of mouse skin layers in optical coherence tomography image data using deep convolutional neural networks. Biomedical Optics Express, 10(7), 3484. doi:10.1364/boe.10.003484 | es_ES |
dc.description.references | Mogensen, M., Bojesen, S., Israelsen, N. M., Maria, M., Jensen, M., Podoleanu, A., … Haedersdal, M. (2018). Two optical coherence tomography systems detect topical gold nanoshells in hair follicles, sweat ducts and measure epidermis. Journal of Biophotonics, 11(9), e201700348. doi:10.1002/jbio.201700348 | es_ES |
dc.description.references | Mogensen, M., Morsy, H. A., Thrane, L., & Jemec, G. B. E. (2008). Morphology and Epidermal Thickness of Normal Skin Imaged by Optical Coherence Tomography. Dermatology, 217(1), 14-20. doi:10.1159/000118508 | es_ES |
dc.description.references | Savitzky, A., & Golay, M. J. E. (1964). Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Analytical Chemistry, 36(8), 1627-1639. doi:10.1021/ac60214a047 | es_ES |
dc.description.references | Heijmans, H. J. A. M. (1999). Connected Morphological Operators for Binary Images. Computer Vision and Image Understanding, 73(1), 99-120. doi:10.1006/cviu.1998.0703 | es_ES |
dc.description.references | Mogensen, M., Nürnberg, B. M., Forman, J. L., Thomsen, J. B., Thrane, L., & Jemec, G. B. E. (2009). In vivothickness measurement of basal cell carcinoma and actinic keratosis with optical coherence tomography and 20-MHz ultrasound. British Journal of Dermatology, 160(5), 1026-1033. doi:10.1111/j.1365-2133.2008.09003.x | es_ES |
dc.description.references | Wang, G. Y., Wang, J., Mancianti, M.-L., & Epstein, E. H. (2011). Basal Cell Carcinomas Arise from Hair Follicle Stem Cells in Ptch1+/− Mice. Cancer Cell, 19(1), 114-124. doi:10.1016/j.ccr.2010.11.007 | es_ES |
dc.description.references | Peterson, S. C., Eberl, M., Vagnozzi, A. N., Belkadi, A., Veniaminova, N. A., Verhaegen, M. E., … Wong, S. Y. (2015). Basal Cell Carcinoma Preferentially Arises from Stem Cells within Hair Follicle and Mechanosensory Niches. Cell Stem Cell, 16(4), 400-412. doi:10.1016/j.stem.2015.02.006 | es_ES |
dc.description.references | Berekméri, A., Tiganescu, A., Alase, A. A., Vital, E., Stacey, M., & Wittmann, M. (2019). Non-invasive Approaches for the Diagnosis of Autoimmune/Autoinflammatory Skin Diseases—A Focus on Psoriasis and Lupus erythematosus. Frontiers in Immunology, 10. doi:10.3389/fimmu.2019.01931 | es_ES |
dc.description.references | Fuchs, C. S. K., Ortner, V. K., Mogensen, M., Philipsen, P. A., & Haedersdal, M. (2019). Transfollicular delivery of gold microparticles in healthy skin and acne vulgaris, assessed by in vivo reflectance confocal microscopy and optical coherence tomography. Lasers in Surgery and Medicine, 51(5), 430-438. doi:10.1002/lsm.23076 | es_ES |
dc.description.references | Durdu, M., & Ilkit, M. (2012). First step in the differential diagnosis of folliculitis: cytology. Critical Reviews in Microbiology, 39(1), 9-25. doi:10.3109/1040841x.2012.682051 | es_ES |
dc.description.references | Andersen, A. J. B., Fuchs, C., Ardigo, M., Haedersdal, M., & Mogensen, M. (2018). In vivo characterization of pustules in Malassezia Folliculitis by reflectance confocal microscopy and optical coherence tomography. A case series study. Skin Research and Technology, 24(4), 535-541. doi:10.1111/srt.12463 | es_ES |