Kafieh, R., Rabbani, H., Abramoff, M., & Sonka, M. (2013). Intra-retinal layer segmentation of optical coherence tomography using diffusion map. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. doi:10.1109/icassp.2013.6637816
Hussain, A. A., Themstrup, L., Mogensen, M., & Jemec, G. B. E. (2017). Optical Coherence Tomography Imaging of the Skin. Agache’s Measuring the Skin, 493-502. doi:10.1007/978-3-319-32383-1_53
Israelsen, N. M., Maria, M., Mogensen, M., Bojesen, S., Jensen, M., Haedersdal, M., … Bang, O. (2018). The value of ultrahigh resolution OCT in dermatology - delineating the dermo-epidermal junction, capillaries in the dermal papillae and vellus hairs. Biomedical Optics Express, 9(5), 2240. doi:10.1364/boe.9.002240
[+]
Kafieh, R., Rabbani, H., Abramoff, M., & Sonka, M. (2013). Intra-retinal layer segmentation of optical coherence tomography using diffusion map. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. doi:10.1109/icassp.2013.6637816
Hussain, A. A., Themstrup, L., Mogensen, M., & Jemec, G. B. E. (2017). Optical Coherence Tomography Imaging of the Skin. Agache’s Measuring the Skin, 493-502. doi:10.1007/978-3-319-32383-1_53
Israelsen, N. M., Maria, M., Mogensen, M., Bojesen, S., Jensen, M., Haedersdal, M., … Bang, O. (2018). The value of ultrahigh resolution OCT in dermatology - delineating the dermo-epidermal junction, capillaries in the dermal papillae and vellus hairs. Biomedical Optics Express, 9(5), 2240. doi:10.1364/boe.9.002240
Park, E. S. (2014). Skin-Layer Analysis Using Optical Coherence Tomography (OCT). Medical Lasers, 3(1), 1-4. doi:10.25289/ml.2014.3.1.1
Taghavikhalilbad, A., Adabi, S., Clayton, A., Soltanizadeh, H., Mehregan, D., & Avanaki, M. R. N. (2017). Semi-automated localization of dermal epidermal junction in optical coherence tomography images of skin. Applied Optics, 56(11), 3116. doi:10.1364/ao.56.003116
Srivastava, R., Yow, A. P., Cheng, J., Wong, D. W. K., & Tey, H. L. (2018). Three-dimensional graph-based skin layer segmentation in optical coherence tomography images for roughness estimation. Biomedical Optics Express, 9(8), 3590. doi:10.1364/boe.9.003590
Calderon-Delgado, M., Tjiu, J.-W., Lin, M.-Y., & Huang, S.-L. (2018). High Resolution Human Skin Image Segmentation by means of Fully Convolutional Neural Networks. 2018 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD). doi:10.1109/nusod.2018.8570241
Kepp, T., Droigk, C., Casper, M., Evers, M., Hüttmann, G., Salma, N., … Handels, H. (2019). Segmentation of mouse skin layers in optical coherence tomography image data using deep convolutional neural networks. Biomedical Optics Express, 10(7), 3484. doi:10.1364/boe.10.003484
Mogensen, M., Bojesen, S., Israelsen, N. M., Maria, M., Jensen, M., Podoleanu, A., … Haedersdal, M. (2018). Two optical coherence tomography systems detect topical gold nanoshells in hair follicles, sweat ducts and measure epidermis. Journal of Biophotonics, 11(9), e201700348. doi:10.1002/jbio.201700348
Mogensen, M., Morsy, H. A., Thrane, L., & Jemec, G. B. E. (2008). Morphology and Epidermal Thickness of Normal Skin Imaged by Optical Coherence Tomography. Dermatology, 217(1), 14-20. doi:10.1159/000118508
Savitzky, A., & Golay, M. J. E. (1964). Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Analytical Chemistry, 36(8), 1627-1639. doi:10.1021/ac60214a047
Heijmans, H. J. A. M. (1999). Connected Morphological Operators for Binary Images. Computer Vision and Image Understanding, 73(1), 99-120. doi:10.1006/cviu.1998.0703
Mogensen, M., Nürnberg, B. M., Forman, J. L., Thomsen, J. B., Thrane, L., & Jemec, G. B. E. (2009). In vivothickness measurement of basal cell carcinoma and actinic keratosis with optical coherence tomography and 20-MHz ultrasound. British Journal of Dermatology, 160(5), 1026-1033. doi:10.1111/j.1365-2133.2008.09003.x
Wang, G. Y., Wang, J., Mancianti, M.-L., & Epstein, E. H. (2011). Basal Cell Carcinomas Arise from Hair Follicle Stem Cells in Ptch1+/− Mice. Cancer Cell, 19(1), 114-124. doi:10.1016/j.ccr.2010.11.007
Peterson, S. C., Eberl, M., Vagnozzi, A. N., Belkadi, A., Veniaminova, N. A., Verhaegen, M. E., … Wong, S. Y. (2015). Basal Cell Carcinoma Preferentially Arises from Stem Cells within Hair Follicle and Mechanosensory Niches. Cell Stem Cell, 16(4), 400-412. doi:10.1016/j.stem.2015.02.006
Berekméri, A., Tiganescu, A., Alase, A. A., Vital, E., Stacey, M., & Wittmann, M. (2019). Non-invasive Approaches for the Diagnosis of Autoimmune/Autoinflammatory Skin Diseases—A Focus on Psoriasis and Lupus erythematosus. Frontiers in Immunology, 10. doi:10.3389/fimmu.2019.01931
Fuchs, C. S. K., Ortner, V. K., Mogensen, M., Philipsen, P. A., & Haedersdal, M. (2019). Transfollicular delivery of gold microparticles in healthy skin and acne vulgaris, assessed by
in vivo
reflectance confocal microscopy and optical coherence tomography. Lasers in Surgery and Medicine, 51(5), 430-438. doi:10.1002/lsm.23076
Durdu, M., & Ilkit, M. (2012). First step in the differential diagnosis of folliculitis: cytology. Critical Reviews in Microbiology, 39(1), 9-25. doi:10.3109/1040841x.2012.682051
Andersen, A. J. B., Fuchs, C., Ardigo, M., Haedersdal, M., & Mogensen, M. (2018). In vivo characterization of pustules in Malassezia Folliculitis by reflectance confocal microscopy and optical coherence tomography. A case series study. Skin Research and Technology, 24(4), 535-541. doi:10.1111/srt.12463
[-]