- -

Automatic evaluation of degree of cleanliness in capsule endoscopy based on a novel CNN architecture

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Automatic evaluation of degree of cleanliness in capsule endoscopy based on a novel CNN architecture

Show full item record

Noorda, R.; Nevárez, A.; Colomer, A.; Pons Beltrán, V.; Naranjo Ornedo, V. (2020). Automatic evaluation of degree of cleanliness in capsule endoscopy based on a novel CNN architecture. Scientific Reports. 10(1):1-13. https://doi.org/10.1038/s41598-020-74668-8

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162956

Files in this item

Item Metadata

Title: Automatic evaluation of degree of cleanliness in capsule endoscopy based on a novel CNN architecture
Author: Noorda, Reinier Nevárez, Andrea Colomer, Adrián Pons Beltrán, Vicente Naranjo Ornedo, Valeriana
UPV Unit: Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Issued date:
Abstract:
[EN] Capsule endoscopy (CE) is a widely used, minimally invasive alternative to traditional endoscopy that allows visualisation of the entire small intestine. Patient preparation can help to obtain a cleaner intestine and ...[+]
Subjects: Wireless capsule endoscopy , Convolutional neural networks , Deep learning , Object detection , Bowel cleanliness , Patient preparation , Computer-aided diagnosis
Copyrigths: Reconocimiento (by)
Source:
Scientific Reports. (issn: 2045-2322 )
DOI: 10.1038/s41598-020-74668-8
Publisher:
Nature Publishing Group
Publisher version: https://doi.org/10.1038/s41598-020-74668-8
Project ID:
info:eu-repo/grantAgreement/EC/H2020/675353/EU/Wireless In-Body Environment/
Thanks:
This work was funded by the European Union's H2020: MSCA: ITN program for the "Wireless In-body Environment Communication - WiBEC" project under the grant agreement no. 675353. Additionally, we gratefully acknowledge the ...[+]
Type: Artículo

References

Pons Beltrán, V. et al. Evaluation of different bowel preparations for small bowel capsule endoscopy: a prospective, randomized, controlled study. Dig. Dis. Sci. 56, 2900–2905. https://doi.org/10.1007/s10620-011-1693-z (2011).

Klein, A., Gizbar, M., Bourke, M. J. & Ahlenstiel, G. Validated computed cleansing score for video capsule endoscopy. Dig. Endosc. 28, 564–569. https://doi.org/10.1111/den.12599 (2016).

Vilarino, F., Spyridonos, P., Pujol, O., Vitria, J. & Radeva, P. Automatic detection of intestinal juices in wireless capsule video endoscopy. In 18th International Conference on Pattern Recognition (ICPR’06), Vol. 4, 719–722, https://doi.org/10.1109/ICPR.2006.296 (2006). [+]
Pons Beltrán, V. et al. Evaluation of different bowel preparations for small bowel capsule endoscopy: a prospective, randomized, controlled study. Dig. Dis. Sci. 56, 2900–2905. https://doi.org/10.1007/s10620-011-1693-z (2011).

Klein, A., Gizbar, M., Bourke, M. J. & Ahlenstiel, G. Validated computed cleansing score for video capsule endoscopy. Dig. Endosc. 28, 564–569. https://doi.org/10.1111/den.12599 (2016).

Vilarino, F., Spyridonos, P., Pujol, O., Vitria, J. & Radeva, P. Automatic detection of intestinal juices in wireless capsule video endoscopy. In 18th International Conference on Pattern Recognition (ICPR’06), Vol. 4, 719–722, https://doi.org/10.1109/ICPR.2006.296 (2006).

Wang, Q. et al. Reduction of bubble-like frames using a rss filter in wireless capsule endoscopy video. Opt. Laser Technol. 110, 152–157. https://doi.org/10.1016/j.optlastec.2018.08.051 (2019).

Mewes, P. W. et al. Automatic region-of-interest segmentation and pathology detection in magnetically guided capsule endoscopy. In International Conference on Medical Image Computing and Computer-Assisted Intervention 141–148, https://doi.org/10.1007/978-3-642-23626-6_18 (Springer 2011).

Bashar, M. K., Mori, K., Suenaga, Y., Kitasaka, T. & Mekada, Y. Detecting informative frames from wireless capsule endoscopic video using color and texture features. In Medical Image Computing and Computer-Assisted Intervention (MICCAI 2008), 603–610, https://doi.org/10.1007/978-3-540-85990-1_72 (Springer, Berlin, 2008).

Sun, Z., Li, B., Zhou, R., Zheng, H. & Meng, M. Q. H. Removal of non-informative frames for wireless capsule endoscopy video segmentation. In 2012 IEEE International Conference on Automation and Logistics, 294–299, https://doi.org/10.1109/ICAL.2012.6308214 (2012).

Khun, P. C., Zhuo, Z., Yang, L. Z., Liyuan, L. & Jiang, L. Feature selection and classification for wireless capsule endoscopic frames. In 2009 International Conference on Biomedical and Pharmaceutical Engineering, 1–6, https://doi.org/10.1109/ICBPE.2009.5384106 (2009).

Segui, S. et al. Categorization and segmentation of intestinal content frames for wireless capsule endoscopy. IEEE Trans. Inf Technol. Biomed. 16, 1341–1352. https://doi.org/10.1109/TITB.2012.2221472 (2012).

Maghsoudi, O. H., Talebpour, A., Soltanian-Zadeh, H., Alizadeh, M. & Soleimani, H. A. Informative and uninformative regions detection in wce frames. J. Adv. Comput. 3, 12–34. https://doi.org/10.7726/jac.2014.1002a (2014).

Noorda, R., Nevarez, A., Colomer, A., Naranjo, V. & Pons, V. Automatic detection of intestinal content to evaluate visibility in capsule endoscopy. In $$13^{th}$$International Symposium on Medical Information and Communication Technology (ISMICT 2019) (Oslo, Norway, 2019).

Andrearczyk, V. & Whelan, P. F. Deep learning in texture analysis and its application to tissue image classification. In Biomedical Texture Analysis (eds Depeursinge, A. et al.) 95–129 (Elsevier, Amsterdam, 2017). https://doi.org/10.1016/B978-0-12-812133-7.00004-1.

Werbos, P. J. et al. Backpropagation through time: what it does and how to do it. Proc. IEEE 78, 1550–1560. https://doi.org/10.1109/5.58337 (1990).

Jia, X. & Meng, M. Q.-H. A deep convolutional neural network for bleeding detection in wireless capsule endoscopy images. In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 639–642, https://doi.org/10.1109/EMBC.2016.7590783 (IEEE, 2016).

Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. https://doi.org/10.1109/ACPR.2015.7486599(2014).

Springenberg, J. T., Dosovitskiy, A., Brox, T. & Riedmiller, M. Striving for simplicity: the all convolutional net. arXiv preprint arXiv:1412.6806 (2014).

Chollet, F. et al. Keras (2015). Software available from keras.io.

Abadi, M. et al. TensorFlow: large-scale machine learning on heterogeneous systems (2015). Software available from tensorflow.org.

Beltrán, V. P., Carretero, C., Gonzalez-Suárez, B., Fernández-Urien, I. & Muñoz-Navas, M. Intestinal preparation prior to capsule endoscopy administration. World J. Gastroenterol. 14, 5773. https://doi.org/10.3748/wjg.14.5773 (2008).

Koo, T. K. & Li, M. Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 15, 155–163. https://doi.org/10.1016/j.jcm.2016.02.012 (2016).

Cohen, J. Weighted kappa: nominal scale agreement provision for scaled disagreement or partial credit. Psychol. Bull. 70, 213. https://doi.org/10.1037/h0026256 (1968).

Warrens, M. J. Conditional inequalities between Cohens kappa and weighted kappas. Stat. Methodol. 10, 14–22. https://doi.org/10.1016/j.stamet.2012.05.004 (2013).

Sim, J. & Wright, C. C. The kappa statistic in reliability studies: use, interpretation, and sample size requirements. Phys. Ther. 85, 257–268. https://doi.org/10.1093/ptj/85.3.257 (2005).

Cardillo, G. Cohen’s kappa. https://www.github.com/dnafinder/Cohen (2020).

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record