- -

Automatic evaluation of degree of cleanliness in capsule endoscopy based on a novel CNN architecture

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Automatic evaluation of degree of cleanliness in capsule endoscopy based on a novel CNN architecture

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Noorda, Reinier es_ES
dc.contributor.author Nevárez, Andrea es_ES
dc.contributor.author Colomer, Adrián es_ES
dc.contributor.author Pons Beltrán, Vicente es_ES
dc.contributor.author Naranjo Ornedo, Valeriana es_ES
dc.date.accessioned 2021-03-04T04:31:01Z
dc.date.available 2021-03-04T04:31:01Z
dc.date.issued 2020-10-19 es_ES
dc.identifier.issn 2045-2322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162956
dc.description.abstract [EN] Capsule endoscopy (CE) is a widely used, minimally invasive alternative to traditional endoscopy that allows visualisation of the entire small intestine. Patient preparation can help to obtain a cleaner intestine and thus better visibility in the resulting videos. However, studies on the most effective preparation method are conflicting due to the absence of objective, automatic cleanliness evaluation methods. In this work, we aim to provide such a method capable of presenting results on an intuitive scale, with a relatively light-weight novel convolutional neural network architecture at its core. We trained our model using 5-fold cross-validation on an extensive data set of over 50,000 image patches, collected from 35 different CE procedures, and compared it with state-of-the-art classification methods. From the patch classification results, we developed a method to automatically estimate pixel-level probabilities and deduce cleanliness evaluation scores through automatically learnt thresholds. We then validated our method in a clinical setting on 30 newly collected CE videos, comparing the resulting scores to those independently assigned by human specialists. We obtained the highest classification accuracy for the proposed method (95.23%), with significantly lower average prediction times than for the second-best method. In the validation of our method, we found acceptable agreement with two human specialists compared to interhuman agreement, showing its validity as an objective evaluation method. es_ES
dc.description.sponsorship This work was funded by the European Union's H2020: MSCA: ITN program for the "Wireless In-body Environment Communication - WiBEC" project under the grant agreement no. 675353. Additionally, we gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan V GPU used for this research. Figures 2 and 3 were drawn by the authors. es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Wireless capsule endoscopy es_ES
dc.subject Convolutional neural networks es_ES
dc.subject Deep learning es_ES
dc.subject Object detection es_ES
dc.subject Bowel cleanliness es_ES
dc.subject Patient preparation es_ES
dc.subject Computer-aided diagnosis es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Automatic evaluation of degree of cleanliness in capsule endoscopy based on a novel CNN architecture es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41598-020-74668-8 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/675353/EU/Wireless In-Body Environment/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Noorda, R.; Nevárez, A.; Colomer, A.; Pons Beltrán, V.; Naranjo Ornedo, V. (2020). Automatic evaluation of degree of cleanliness in capsule endoscopy based on a novel CNN architecture. Scientific Reports. 10(1):1-13. https://doi.org/10.1038/s41598-020-74668-8 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41598-020-74668-8 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 33077755 es_ES
dc.identifier.pmcid PMC7573687 es_ES
dc.relation.pasarela S\420359 es_ES
dc.contributor.funder European Commission es_ES
dc.description.references Pons Beltrán, V. et al. Evaluation of different bowel preparations for small bowel capsule endoscopy: a prospective, randomized, controlled study. Dig. Dis. Sci. 56, 2900–2905. https://doi.org/10.1007/s10620-011-1693-z (2011). es_ES
dc.description.references Klein, A., Gizbar, M., Bourke, M. J. & Ahlenstiel, G. Validated computed cleansing score for video capsule endoscopy. Dig. Endosc. 28, 564–569. https://doi.org/10.1111/den.12599 (2016). es_ES
dc.description.references Vilarino, F., Spyridonos, P., Pujol, O., Vitria, J. & Radeva, P. Automatic detection of intestinal juices in wireless capsule video endoscopy. In 18th International Conference on Pattern Recognition (ICPR’06), Vol. 4, 719–722, https://doi.org/10.1109/ICPR.2006.296 (2006). es_ES
dc.description.references Wang, Q. et al. Reduction of bubble-like frames using a rss filter in wireless capsule endoscopy video. Opt. Laser Technol. 110, 152–157. https://doi.org/10.1016/j.optlastec.2018.08.051 (2019). es_ES
dc.description.references Mewes, P. W. et al. Automatic region-of-interest segmentation and pathology detection in magnetically guided capsule endoscopy. In International Conference on Medical Image Computing and Computer-Assisted Intervention 141–148, https://doi.org/10.1007/978-3-642-23626-6_18 (Springer 2011). es_ES
dc.description.references Bashar, M. K., Mori, K., Suenaga, Y., Kitasaka, T. & Mekada, Y. Detecting informative frames from wireless capsule endoscopic video using color and texture features. In Medical Image Computing and Computer-Assisted Intervention (MICCAI 2008), 603–610, https://doi.org/10.1007/978-3-540-85990-1_72 (Springer, Berlin, 2008). es_ES
dc.description.references Sun, Z., Li, B., Zhou, R., Zheng, H. & Meng, M. Q. H. Removal of non-informative frames for wireless capsule endoscopy video segmentation. In 2012 IEEE International Conference on Automation and Logistics, 294–299, https://doi.org/10.1109/ICAL.2012.6308214 (2012). es_ES
dc.description.references Khun, P. C., Zhuo, Z., Yang, L. Z., Liyuan, L. & Jiang, L. Feature selection and classification for wireless capsule endoscopic frames. In 2009 International Conference on Biomedical and Pharmaceutical Engineering, 1–6, https://doi.org/10.1109/ICBPE.2009.5384106 (2009). es_ES
dc.description.references Segui, S. et al. Categorization and segmentation of intestinal content frames for wireless capsule endoscopy. IEEE Trans. Inf Technol. Biomed. 16, 1341–1352. https://doi.org/10.1109/TITB.2012.2221472 (2012). es_ES
dc.description.references Maghsoudi, O. H., Talebpour, A., Soltanian-Zadeh, H., Alizadeh, M. & Soleimani, H. A. Informative and uninformative regions detection in wce frames. J. Adv. Comput. 3, 12–34. https://doi.org/10.7726/jac.2014.1002a (2014). es_ES
dc.description.references Noorda, R., Nevarez, A., Colomer, A., Naranjo, V. & Pons, V. Automatic detection of intestinal content to evaluate visibility in capsule endoscopy. In $$13^{th}$$International Symposium on Medical Information and Communication Technology (ISMICT 2019) (Oslo, Norway, 2019). es_ES
dc.description.references Andrearczyk, V. & Whelan, P. F. Deep learning in texture analysis and its application to tissue image classification. In Biomedical Texture Analysis (eds Depeursinge, A. et al.) 95–129 (Elsevier, Amsterdam, 2017). https://doi.org/10.1016/B978-0-12-812133-7.00004-1. es_ES
dc.description.references Werbos, P. J. et al. Backpropagation through time: what it does and how to do it. Proc. IEEE 78, 1550–1560. https://doi.org/10.1109/5.58337 (1990). es_ES
dc.description.references Jia, X. & Meng, M. Q.-H. A deep convolutional neural network for bleeding detection in wireless capsule endoscopy images. In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 639–642, https://doi.org/10.1109/EMBC.2016.7590783 (IEEE, 2016). es_ES
dc.description.references Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. https://doi.org/10.1109/ACPR.2015.7486599(2014). es_ES
dc.description.references Springenberg, J. T., Dosovitskiy, A., Brox, T. & Riedmiller, M. Striving for simplicity: the all convolutional net. arXiv preprint arXiv:1412.6806 (2014). es_ES
dc.description.references Chollet, F. et al. Keras (2015). Software available from keras.io. es_ES
dc.description.references Abadi, M. et al. TensorFlow: large-scale machine learning on heterogeneous systems (2015). Software available from tensorflow.org. es_ES
dc.description.references Beltrán, V. P., Carretero, C., Gonzalez-Suárez, B., Fernández-Urien, I. & Muñoz-Navas, M. Intestinal preparation prior to capsule endoscopy administration. World J. Gastroenterol. 14, 5773. https://doi.org/10.3748/wjg.14.5773 (2008). es_ES
dc.description.references Koo, T. K. & Li, M. Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 15, 155–163. https://doi.org/10.1016/j.jcm.2016.02.012 (2016). es_ES
dc.description.references Cohen, J. Weighted kappa: nominal scale agreement provision for scaled disagreement or partial credit. Psychol. Bull. 70, 213. https://doi.org/10.1037/h0026256 (1968). es_ES
dc.description.references Warrens, M. J. Conditional inequalities between Cohens kappa and weighted kappas. Stat. Methodol. 10, 14–22. https://doi.org/10.1016/j.stamet.2012.05.004 (2013). es_ES
dc.description.references Sim, J. & Wright, C. C. The kappa statistic in reliability studies: use, interpretation, and sample size requirements. Phys. Ther. 85, 257–268. https://doi.org/10.1093/ptj/85.3.257 (2005). es_ES
dc.description.references Cardillo, G. Cohen’s kappa. https://www.github.com/dnafinder/Cohen (2020). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem