- -

Effect of drying process, encapsulation, and storage on the survival rates and gastrointestinal resistance of L. Salivarius spp. salivarius included into a fruit matrix

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Effect of drying process, encapsulation, and storage on the survival rates and gastrointestinal resistance of L. Salivarius spp. salivarius included into a fruit matrix

Show full item record

Betoret, E.; Betoret Valls, N.; Calabuig-Jiménez, L.; Barrera Puigdollers, C.; Dalla Rosa, M. (2020). Effect of drying process, encapsulation, and storage on the survival rates and gastrointestinal resistance of L. Salivarius spp. salivarius included into a fruit matrix. Microorganisms. 8(5):1-12. https://doi.org/10.3390/microorganisms8050654

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162957

Files in this item

Item Metadata

Title: Effect of drying process, encapsulation, and storage on the survival rates and gastrointestinal resistance of L. Salivarius spp. salivarius included into a fruit matrix
Author: Betoret, Ester Betoret Valls, Noelia Calabuig-Jiménez, Laura Barrera Puigdollers, Cristina Dalla Rosa, Marco
UPV Unit: Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament
Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments
Issued date:
Abstract:
[EN] In a new probiotic food, besides adequate physicochemical properties, it is necessary to ensure a minimum probiotic content after processing, storage, and throughout gastrointestinal (GI) digestion. The aim of this ...[+]
Subjects: Microencapsulation , Hot air drying , Freeze drying , Probiotic , Gastrointestinal simulation
Copyrigths: Reconocimiento (by)
Source:
Microorganisms. (eissn: 2076-2607 )
DOI: 10.3390/microorganisms8050654
Publisher:
MDPI
Publisher version: https://doi.org/10.3390/microorganisms8050654
Project ID:
info:eu-repo/grantAgreement/MINECO//IJCI-2016-29679/
Thanks:
Authors thank the postdoctoral grant Juan de la Cierva Incorporacion (IJCI-2016-29679).
Type: Artículo

References

Brahma, S., Sadiq, M. B., & Ahmad, I. (2019). Probiotics in Functional Foods. Reference Module in Food Science. doi:10.1016/b978-0-08-100596-5.22368-8

Probiotics in Food-Health and Nutritional Properties and Guidelines for Evaluationhttp://www.fao.org/3/a-a0512e.pdf

Batista, A. L. D., Silva, R., Cappato, L. P., Almada, C. N., Garcia, R. K. A., Silva, M. C., … Cruz, A. G. (2015). Quality parameters of probiotic yogurt added to glucose oxidase compared to commercial products through microbiological, physical–chemical and metabolic activity analyses. Food Research International, 77, 627-635. doi:10.1016/j.foodres.2015.08.017 [+]
Brahma, S., Sadiq, M. B., & Ahmad, I. (2019). Probiotics in Functional Foods. Reference Module in Food Science. doi:10.1016/b978-0-08-100596-5.22368-8

Probiotics in Food-Health and Nutritional Properties and Guidelines for Evaluationhttp://www.fao.org/3/a-a0512e.pdf

Batista, A. L. D., Silva, R., Cappato, L. P., Almada, C. N., Garcia, R. K. A., Silva, M. C., … Cruz, A. G. (2015). Quality parameters of probiotic yogurt added to glucose oxidase compared to commercial products through microbiological, physical–chemical and metabolic activity analyses. Food Research International, 77, 627-635. doi:10.1016/j.foodres.2015.08.017

Martinez, R. C. R., Aynaou, A.-E., Albrecht, S., Schols, H. A., De Martinis, E. C. P., Zoetendal, E. G., … Smidt, H. (2011). In vitro evaluation of gastrointestinal survival of Lactobacillus amylovorus DSM 16698 alone and combined with galactooligosaccharides, milk and/or Bifidobacterium animalis subsp. lactis Bb-12. International Journal of Food Microbiology, 149(2), 152-158. doi:10.1016/j.ijfoodmicro.2011.06.010

Ester, B., Noelia, B., Laura, C.-J., Francesca, P., Cristina, B., Rosalba, L., & Marco, D. R. (2019). Probiotic survival and in vitro digestion of L. salivarius spp. salivarius encapsulated by high homogenization pressures and incorporated into a fruit matrix. LWT, 111, 883-888. doi:10.1016/j.lwt.2019.05.088

Burgain, J., Gaiani, C., Linder, M., & Scher, J. (2011). Encapsulation of probiotic living cells: From laboratory scale to industrial applications. Journal of Food Engineering, 104(4), 467-483. doi:10.1016/j.jfoodeng.2010.12.031

Capela, P., Hay, T. K. C., & Shah, N. P. (2006). Effect of cryoprotectants, prebiotics and microencapsulation on survival of probiotic organisms in yoghurt and freeze-dried yoghurt. Food Research International, 39(2), 203-211. doi:10.1016/j.foodres.2005.07.007

Betoret, E., Betoret, N., Arilla, A., Bennár, M., Barrera, C., Codoñer, P., & Fito, P. (2012). No invasive methodology to produce a probiotic low humid apple snack with potential effect against Helicobacter pylori. Journal of Food Engineering, 110(2), 289-293. doi:10.1016/j.jfoodeng.2011.04.027

Patrignani, F., Siroli, L., Serrazanetti, D. I., Braschi, G., Betoret, E., Reinheimer, J. A., & Lanciotti, R. (2017). Microencapsulation of functional strains by high pressure homogenization for a potential use in fermented milk. Food Research International, 97, 250-257. doi:10.1016/j.foodres.2017.04.020

Betoret, E., Betoret, N., Rocculi, P., & Dalla Rosa, M. (2015). Strategies to improve food functionality: Structure–property relationships on high pressures homogenization, vacuum impregnation and drying technologies. Trends in Food Science & Technology, 46(1), 1-12. doi:10.1016/j.tifs.2015.07.006

Betoret, E., Sentandreu, E., Betoret, N., & Fito, P. (2012). Homogenization pressures applied to citrus juice manufacturing. Functional properties and application. Journal of Food Engineering, 111(1), 28-33. doi:10.1016/j.jfoodeng.2012.01.035

Aiba, Y., Suzuki, N., Kabir, A. M. A., Takagi, A., & Koga, Y. (1998). Lactic acid-mediated suppression of Helicobacter pylori by the oral administration of Lactobacillus salivarius as a probiotic in a gnotobiotic murine model. American Journal of Gastroenterology, 93(11), 2097-2101. doi:10.1111/j.1572-0241.1998.00600.x

Ding, W. K., & Shah, N. P. (2009). Effect of Homogenization Techniques on Reducing the Size of Microcapsules and the Survival of Probiotic Bacteria Therein. Journal of Food Science, 74(6), M231-M236. doi:10.1111/j.1750-3841.2009.01195.x

Calabuig-Jiménez, L., Betoret, E., Betoret, N., Patrignani, F., Barrera, C., Seguí, L., … Dalla Rosa, M. (2019). High pressures homogenization (HPH) to microencapsulate L. salivarius spp. salivarius in mandarin juice. Probiotic survival and in vitro digestion. Journal of Food Engineering, 240, 43-48. doi:10.1016/j.jfoodeng.2018.07.012

Maskan, M. (2001). Drying, shrinkage and rehydration characteristics of kiwifruits during hot air and microwave drying. Journal of Food Engineering, 48(2), 177-182. doi:10.1016/s0260-8774(00)00155-2

Lewicki, P. P., & Jakubczyk, E. (2004). Effect of hot air temperature on mechanical properties of dried apples. Journal of Food Engineering, 64(3), 307-314. doi:10.1016/j.jfoodeng.2003.10.014

Chiralt, A., Martı́nez-Navarrete, N., Martı́nez-Monzó, J., Talens, P., Moraga, G., Ayala, A., & Fito, P. (2001). Changes in mechanical properties throughout osmotic processes. Journal of Food Engineering, 49(2-3), 129-135. doi:10.1016/s0260-8774(00)00203-x

Contreras, C., Martín, M. E., Martínez-Navarrete, N., & Chiralt, A. (2005). Effect of vacuum impregnation and microwave application on structural changes which occurred during air-drying of apple. LWT - Food Science and Technology, 38(5), 471-477. doi:10.1016/j.lwt.2004.07.017

Santos, M. G., Carpinteiro, D. A., Thomazini, M., Rocha-Selmi, G. A., da Cruz, A. G., Rodrigues, C. E. C., & Favaro-Trindade, C. S. (2014). Coencapsulation of xylitol and menthol by double emulsion followed by complex coacervation and microcapsule application in chewing gum. Food Research International, 66, 454-462. doi:10.1016/j.foodres.2014.10.010

Qaziyani, S. D., Pourfarzad, A., Gheibi, S., & Nasiraie, L. R. (2019). Effect of encapsulation and wall material on the probiotic survival and physicochemical properties of synbiotic chewing gum: study with univariate and multivariate analyses. Heliyon, 5(7), e02144. doi:10.1016/j.heliyon.2019.e02144

Alonso García, E., Pérez Montoro, B., Benomar, N., Castillo-Gutiérrez, S., Estudillo-Martínez, M. D., Knapp, C. W., & Abriouel, H. (2019). New insights into the molecular effects and probiotic properties of Lactobacillus pentosus pre-adapted to edible oils. LWT, 109, 153-162. doi:10.1016/j.lwt.2019.04.028

Zhang, Y., Lin, J., & Zhong, Q. (2016). Effects of media, heat adaptation, and outlet temperature on the survival of Lactobacillus salivarius NRRL B-30514 after spray drying and subsequent storage. LWT, 74, 441-447. doi:10.1016/j.lwt.2016.08.008

Dianawati, D., & Shah, N. P. (2011). Enzyme Stability of Microencapsulated Bifidobacterium animalis ssp. lactis Bb12 after Freeze Drying and during Storage in Low Water Activity at Room Temperature. Journal of Food Science, 76(6), M463-M471. doi:10.1111/j.1750-3841.2011.02246.x

Anal, A. K., & Singh, H. (2007). Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends in Food Science & Technology, 18(5), 240-251. doi:10.1016/j.tifs.2007.01.004

Soares, M. B., Martinez, R. C. R., Pereira, E. P. R., Balthazar, C. F., Cruz, A. G., Ranadheera, C. S., & Sant’Ana, A. S. (2019). The resistance of Bacillus, Bifidobacterium, and Lactobacillus strains with claimed probiotic properties in different food matrices exposed to simulated gastrointestinal tract conditions. Food Research International, 125, 108542. doi:10.1016/j.foodres.2019.108542

Ribeiro, M. C. E., Chaves, K. S., Gebara, C., Infante, F. N. S., Grosso, C. R. F., & Gigante, M. L. (2014). Effect of microencapsulation of Lactobacillus acidophilus LA-5 on physicochemical, sensory and microbiological characteristics of stirred probiotic yoghurt. Food Research International, 66, 424-431. doi:10.1016/j.foodres.2014.10.019

Yonekura, L., Sun, H., Soukoulis, C., & Fisk, I. (2014). Microencapsulation of Lactobacillus acidophilus NCIMB 701748 in matrices containing soluble fibre by spray drying: Technological characterization, storage stability and survival after in vitro digestion. Journal of Functional Foods, 6, 205-214. doi:10.1016/j.jff.2013.10.008

Valerio, F., De Bellis, P., Lonigro, S. L., Morelli, L., Visconti, A., & Lavermicocca, P. (2006). In Vitro and In Vivo Survival and Transit Tolerance of Potentially Probiotic Strains Carried by Artichokes in the Gastrointestinal Tract. Applied and Environmental Microbiology, 72(4), 3042-3045. doi:10.1128/aem.72.4.3042-3045.2006

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record