- -

Optimal placement of pressure sensors using fuzzy DEMATEL-based sensor influence

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Optimal placement of pressure sensors using fuzzy DEMATEL-based sensor influence

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Frances-Chust, Jorge es_ES
dc.contributor.author Brentan, Bruno M. es_ES
dc.contributor.author Carpitella, Silvia es_ES
dc.contributor.author Izquierdo Sebastián, Joaquín es_ES
dc.contributor.author Montalvo, Idel es_ES
dc.date.accessioned 2021-03-04T04:31:08Z
dc.date.available 2021-03-04T04:31:08Z
dc.date.issued 2020-02 es_ES
dc.identifier.issn 2073-4441 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162960
dc.description.abstract [EN] Nowadays, optimal sensor placement (OSP) for leakage detection in water distribution networks is a lively field of research, and a challenge for water utilities in terms of network control, management, and maintenance. How many sensors to install and where to install them are crucial decisions to make for those utilities to reach a trade-off between efficiency and economy. In this paper, we address the where-to-install-them part of the OSP through the following elements: nodes' sensitivity to leakage, uncertainty of information, and redundancy through conditional entropy maximisation. We evaluate relationships among candidate sensors in a network to get a picture of the mutual influence among the nodes. This analysis is performed within a multi-criteria decision-making approach: specifically, a herein proposed variant of DEMATEL, which uses fuzzy logic and builds comparison matrices derived from information obtained through leakage simulations of the network. We apply the proposal first to a toy example to show how the approach works, and then to a real-world case study. es_ES
dc.description.sponsorship This research has been partially supported by the CNPq grant with number 156213/2018-4. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Water es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Water distribution network es_ES
dc.subject Leakage es_ES
dc.subject Optimal sensor placement es_ES
dc.subject Sensitivity es_ES
dc.subject Uncertainty es_ES
dc.subject Entropy es_ES
dc.subject Multi-criteria decision-making es_ES
dc.subject DEMATEL es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Optimal placement of pressure sensors using fuzzy DEMATEL-based sensor influence es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/w12020493 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CNPq//156213%2F2018-4/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Frances-Chust, J.; Brentan, BM.; Carpitella, S.; Izquierdo Sebastián, J.; Montalvo, I. (2020). Optimal placement of pressure sensors using fuzzy DEMATEL-based sensor influence. Water. 12(2):1-18. https://doi.org/10.3390/w12020493 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/w12020493 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 18 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\402265 es_ES
dc.contributor.funder Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil es_ES
dc.description.references Li, J., Wang, C., Qian, Z., & Lu, C. (2019). Optimal sensor placement for leak localization in water distribution networks based on a novel semi-supervised strategy. Journal of Process Control, 82, 13-21. doi:10.1016/j.jprocont.2019.08.001 es_ES
dc.description.references Pérez, R., Puig, V., Pascual, J., Quevedo, J., Landeros, E., & Peralta, A. (2011). Methodology for leakage isolation using pressure sensitivity analysis in water distribution networks. Control Engineering Practice, 19(10), 1157-1167. doi:10.1016/j.conengprac.2011.06.004 es_ES
dc.description.references Boatwright, S., Romano, M., Mounce, S., Woodward, K., & Boxall, J. (s. f.). Optimal Sensor Placement and Leak/Burst Localisation in a Water Distribution System Using Spatially-Constrained Inverse-Distance Weighted Interpolation. doi:10.29007/37cp es_ES
dc.description.references Blesa, J., Nejjari, F., & Sarrate, R. (2015). Robust sensor placement for leak location: analysis and design. Journal of Hydroinformatics, 18(1), 136-148. doi:10.2166/hydro.2015.021 es_ES
dc.description.references Steffelbauer, D. B., & Fuchs-Hanusch, D. (2016). Efficient Sensor Placement for Leak Localization Considering Uncertainties. Water Resources Management, 30(14), 5517-5533. doi:10.1007/s11269-016-1504-6 es_ES
dc.description.references Yoo, D., Chang, D., Song, Y., & Lee, J. (2018). Optimal Placement of Pressure Gauges for Water Distribution Networks Using Entropy Theory Based on Pressure Dependent Hydraulic Simulation. Entropy, 20(8), 576. doi:10.3390/e20080576 es_ES
dc.description.references De Schaetzen, W. B. ., Walters, G. ., & Savic, D. . (2000). Optimal sampling design for model calibration using shortest path, genetic and entropy algorithms. Urban Water, 2(2), 141-152. doi:10.1016/s1462-0758(00)00052-2 es_ES
dc.description.references Cugueró-Escofet, M. À., Puig, V., & Quevedo, J. (2017). Optimal pressure sensor placement and assessment for leak location using a relaxed isolation index: Application to the Barcelona water network. Control Engineering Practice, 63, 1-12. doi:10.1016/j.conengprac.2017.03.003 es_ES
dc.description.references Sela Perelman, L., Abbas, W., Koutsoukos, X., & Amin, S. (2016). Sensor placement for fault location identification in water networks: A minimum test cover approach. Automatica, 72, 166-176. doi:10.1016/j.automatica.2016.06.005 es_ES
dc.description.references Carpitella, S., Carpitella, F., Certa, A., Benítez, J., & Izquierdo, J. (2018). Managing Human Factors to Reduce Organisational Risk in Industry. Mathematical and Computational Applications, 23(4), 67. doi:10.3390/mca23040067 es_ES
dc.description.references Addae, B. A., Zhang, L., Zhou, P., & Wang, F. (2019). Analyzing barriers of Smart Energy City in Accra with two-step fuzzy DEMATEL. Cities, 89, 218-227. doi:10.1016/j.cities.2019.01.043 es_ES
dc.description.references Dalvi-Esfahani, M., Niknafs, A., Kuss, D. J., Nilashi, M., & Afrough, S. (2019). Social media addiction: Applying the DEMATEL approach. Telematics and Informatics, 43, 101250. doi:10.1016/j.tele.2019.101250 es_ES
dc.description.references Quezada, L. E., López-Ospina, H. A., Palominos, P. I., & Oddershede, A. M. (2018). Identifying causal relationships in strategy maps using ANP and DEMATEL. Computers & Industrial Engineering, 118, 170-179. doi:10.1016/j.cie.2018.02.020 es_ES
dc.description.references Nilashi, M., Samad, S., Manaf, A. A., Ahmadi, H., Rashid, T. A., Munshi, A., … Hassan Ahmed, O. (2019). Factors influencing medical tourism adoption in Malaysia: A DEMATEL-Fuzzy TOPSIS approach. Computers & Industrial Engineering, 137, 106005. doi:10.1016/j.cie.2019.106005 es_ES
dc.description.references Zhang, L., Sun, X., & Xue, H. (2019). Identifying critical risks in Sponge City PPP projects using DEMATEL method: A case study of China. Journal of Cleaner Production, 226, 949-958. doi:10.1016/j.jclepro.2019.04.067 es_ES
dc.description.references Du, Y.-W., & Zhou, W. (2019). New improved DEMATEL method based on both subjective experience and objective data. Engineering Applications of Artificial Intelligence, 83, 57-71. doi:10.1016/j.engappai.2019.05.001 es_ES
dc.description.references Yazdi, M., Nedjati, A., Zarei, E., & Abbassi, R. (2020). A novel extension of DEMATEL approach for probabilistic safety analysis in process systems. Safety Science, 121, 119-136. doi:10.1016/j.ssci.2019.09.006 es_ES
dc.description.references Chen, Z., Ming, X., Zhang, X., Yin, D., & Sun, Z. (2019). A rough-fuzzy DEMATEL-ANP method for evaluating sustainable value requirement of product service system. Journal of Cleaner Production, 228, 485-508. doi:10.1016/j.jclepro.2019.04.145 es_ES
dc.description.references Wu, W.-W., & Lee, Y.-T. (2007). Developing global managers’ competencies using the fuzzy DEMATEL method. Expert Systems with Applications, 32(2), 499-507. doi:10.1016/j.eswa.2005.12.005 es_ES
dc.description.references Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. doi:10.1016/s0019-9958(65)90241-x es_ES
dc.description.references Mahmoudi, S., Jalali, A., Ahmadi, M., Abasi, P., & Salari, N. (2019). Identifying critical success factors in Heart Failure Self-Care using fuzzy DEMATEL method. Applied Soft Computing, 84, 105729. doi:10.1016/j.asoc.2019.105729 es_ES
dc.description.references Lin, K.-P., Tseng, M.-L., & Pai, P.-F. (2018). Sustainable supply chain management using approximate fuzzy DEMATEL method. Resources, Conservation and Recycling, 128, 134-142. doi:10.1016/j.resconrec.2016.11.017 es_ES
dc.description.references Vardopoulos, I. (2019). Critical sustainable development factors in the adaptive reuse of urban industrial buildings. A fuzzy DEMATEL approach. Sustainable Cities and Society, 50, 101684. doi:10.1016/j.scs.2019.101684 es_ES
dc.description.references Mirmousa, S., & Dehnavi, H. D. (2016). Development of Criteria of Selecting the Supplier by Using the Fuzzy DEMATEL Method. Procedia - Social and Behavioral Sciences, 230, 281-289. doi:10.1016/j.sbspro.2016.09.036 es_ES
dc.description.references Acuña-Carvajal, F., Pinto-Tarazona, L., López-Ospina, H., Barros-Castro, R., Quezada, L., & Palacio, K. (2019). An integrated method to plan, structure and validate a business strategy using fuzzy DEMATEL and the balanced scorecard. Expert Systems with Applications, 122, 351-368. doi:10.1016/j.eswa.2019.01.030 es_ES
dc.description.references Chou, J.-S., & Ongkowijoyo, C. S. (2019). Hybrid decision-making method for assessing interdependency and priority of critical infrastructure. International Journal of Disaster Risk Reduction, 39, 101134. doi:10.1016/j.ijdrr.2019.101134 es_ES
dc.description.references Winter, C. de, Palleti, V. R., Worm, D., & Kooij, R. (2019). Optimal placement of imperfect water quality sensors in water distribution networks. Computers & Chemical Engineering, 121, 200-211. doi:10.1016/j.compchemeng.2018.10.021 es_ES
dc.description.references Schwaller, J., & van Zyl, J. E. (2015). Modeling the Pressure-Leakage Response of Water Distribution Systems Based on Individual Leak Behavior. Journal of Hydraulic Engineering, 141(5), 04014089. doi:10.1061/(asce)hy.1943-7900.0000984 es_ES
dc.description.references Giustolisi, O., Savic, D., & Kapelan, Z. (2008). Pressure-Driven Demand and Leakage Simulation for Water Distribution Networks. Journal of Hydraulic Engineering, 134(5), 626-635. doi:10.1061/(asce)0733-9429(2008)134:5(626) es_ES
dc.description.references EPANET 2: Users Manualhttps://epanet.es/wp-content/uploads/2012/10/EPANET_User_Guide.pdf es_ES
dc.description.references Christodoulou, S. E., Gagatsis, A., Xanthos, S., Kranioti, S., Agathokleous, A., & Fragiadakis, M. (2013). Entropy-Based Sensor Placement Optimization for Waterloss Detection in Water Distribution Networks. Water Resources Management, 27(13), 4443-4468. doi:10.1007/s11269-013-0419-8 es_ES
dc.description.references Falatoonitoosi, E., Leman, Z., Sorooshian, S., & Salimi, M. (2013). Decision-Making Trial and Evaluation Laboratory. Research Journal of Applied Sciences, Engineering and Technology, 5(13), 3476-3480. doi:10.19026/rjaset.5.4475 es_ES
dc.description.references OPRICOVIC, S., & TZENG, G.-H. (2003). DEFUZZIFICATION WITHIN A MULTICRITERIA DECISION MODEL. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 11(05), 635-652. doi:10.1142/s0218488503002387 es_ES
dc.description.references Sara, J., Stikkelman, R. M., & Herder, P. M. (2015). Assessing relative importance and mutual influence of barriers for CCS deployment of the ROAD project using AHP and DEMATEL methods. International Journal of Greenhouse Gas Control, 41, 336-357. doi:10.1016/j.ijggc.2015.07.008 es_ES
dc.description.references Alperovits, E., & Shamir, U. (1977). Design of optimal water distribution systems. Water Resources Research, 13(6), 885-900. doi:10.1029/wr013i006p00885 es_ES
dc.description.references Walski, T., Bezts, W., Posluszny, E. T., Weir, M., & Whitman, B. E. (2006). Modeling leakage reduction through pressure control. Journal - American Water Works Association, 98(4), 147-155. doi:10.1002/j.1551-8833.2006.tb07642.x es_ES
dc.description.references Zheng, F., Du, J., Diao, K., Zhang, T., Yu, T., & Shao, Y. (2018). Investigating Effectiveness of Sensor Placement Strategies in Contamination Detection within Water Distribution Systems. Journal of Water Resources Planning and Management, 144(4), 06018003. doi:10.1061/(asce)wr.1943-5452.0000919 es_ES
dc.description.references Montalvo, I., Izquierdo, J., Pérez-García, R., & Herrera, M. (2014). Water Distribution System Computer-Aided Design by Agent Swarm Optimization. Computer-Aided Civil and Infrastructure Engineering, 29(6), 433-448. doi:10.1111/mice.12062 es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem