Mostrar el registro sencillo del ítem
dc.contributor.author | Frances-Chust, Jorge | es_ES |
dc.contributor.author | Brentan, Bruno M. | es_ES |
dc.contributor.author | Carpitella, Silvia | es_ES |
dc.contributor.author | Izquierdo Sebastián, Joaquín | es_ES |
dc.contributor.author | Montalvo, Idel | es_ES |
dc.date.accessioned | 2021-03-04T04:31:08Z | |
dc.date.available | 2021-03-04T04:31:08Z | |
dc.date.issued | 2020-02 | es_ES |
dc.identifier.issn | 2073-4441 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/162960 | |
dc.description.abstract | [EN] Nowadays, optimal sensor placement (OSP) for leakage detection in water distribution networks is a lively field of research, and a challenge for water utilities in terms of network control, management, and maintenance. How many sensors to install and where to install them are crucial decisions to make for those utilities to reach a trade-off between efficiency and economy. In this paper, we address the where-to-install-them part of the OSP through the following elements: nodes' sensitivity to leakage, uncertainty of information, and redundancy through conditional entropy maximisation. We evaluate relationships among candidate sensors in a network to get a picture of the mutual influence among the nodes. This analysis is performed within a multi-criteria decision-making approach: specifically, a herein proposed variant of DEMATEL, which uses fuzzy logic and builds comparison matrices derived from information obtained through leakage simulations of the network. We apply the proposal first to a toy example to show how the approach works, and then to a real-world case study. | es_ES |
dc.description.sponsorship | This research has been partially supported by the CNPq grant with number 156213/2018-4. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Water | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Water distribution network | es_ES |
dc.subject | Leakage | es_ES |
dc.subject | Optimal sensor placement | es_ES |
dc.subject | Sensitivity | es_ES |
dc.subject | Uncertainty | es_ES |
dc.subject | Entropy | es_ES |
dc.subject | Multi-criteria decision-making | es_ES |
dc.subject | DEMATEL | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Optimal placement of pressure sensors using fuzzy DEMATEL-based sensor influence | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/w12020493 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CNPq//156213%2F2018-4/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Frances-Chust, J.; Brentan, BM.; Carpitella, S.; Izquierdo Sebastián, J.; Montalvo, I. (2020). Optimal placement of pressure sensors using fuzzy DEMATEL-based sensor influence. Water. 12(2):1-18. https://doi.org/10.3390/w12020493 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/w12020493 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 18 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.pasarela | S\402265 | es_ES |
dc.contributor.funder | Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil | es_ES |
dc.description.references | Li, J., Wang, C., Qian, Z., & Lu, C. (2019). Optimal sensor placement for leak localization in water distribution networks based on a novel semi-supervised strategy. Journal of Process Control, 82, 13-21. doi:10.1016/j.jprocont.2019.08.001 | es_ES |
dc.description.references | Pérez, R., Puig, V., Pascual, J., Quevedo, J., Landeros, E., & Peralta, A. (2011). Methodology for leakage isolation using pressure sensitivity analysis in water distribution networks. Control Engineering Practice, 19(10), 1157-1167. doi:10.1016/j.conengprac.2011.06.004 | es_ES |
dc.description.references | Boatwright, S., Romano, M., Mounce, S., Woodward, K., & Boxall, J. (s. f.). Optimal Sensor Placement and Leak/Burst Localisation in a Water Distribution System Using Spatially-Constrained Inverse-Distance Weighted Interpolation. doi:10.29007/37cp | es_ES |
dc.description.references | Blesa, J., Nejjari, F., & Sarrate, R. (2015). Robust sensor placement for leak location: analysis and design. Journal of Hydroinformatics, 18(1), 136-148. doi:10.2166/hydro.2015.021 | es_ES |
dc.description.references | Steffelbauer, D. B., & Fuchs-Hanusch, D. (2016). Efficient Sensor Placement for Leak Localization Considering Uncertainties. Water Resources Management, 30(14), 5517-5533. doi:10.1007/s11269-016-1504-6 | es_ES |
dc.description.references | Yoo, D., Chang, D., Song, Y., & Lee, J. (2018). Optimal Placement of Pressure Gauges for Water Distribution Networks Using Entropy Theory Based on Pressure Dependent Hydraulic Simulation. Entropy, 20(8), 576. doi:10.3390/e20080576 | es_ES |
dc.description.references | De Schaetzen, W. B. ., Walters, G. ., & Savic, D. . (2000). Optimal sampling design for model calibration using shortest path, genetic and entropy algorithms. Urban Water, 2(2), 141-152. doi:10.1016/s1462-0758(00)00052-2 | es_ES |
dc.description.references | Cugueró-Escofet, M. À., Puig, V., & Quevedo, J. (2017). Optimal pressure sensor placement and assessment for leak location using a relaxed isolation index: Application to the Barcelona water network. Control Engineering Practice, 63, 1-12. doi:10.1016/j.conengprac.2017.03.003 | es_ES |
dc.description.references | Sela Perelman, L., Abbas, W., Koutsoukos, X., & Amin, S. (2016). Sensor placement for fault location identification in water networks: A minimum test cover approach. Automatica, 72, 166-176. doi:10.1016/j.automatica.2016.06.005 | es_ES |
dc.description.references | Carpitella, S., Carpitella, F., Certa, A., Benítez, J., & Izquierdo, J. (2018). Managing Human Factors to Reduce Organisational Risk in Industry. Mathematical and Computational Applications, 23(4), 67. doi:10.3390/mca23040067 | es_ES |
dc.description.references | Addae, B. A., Zhang, L., Zhou, P., & Wang, F. (2019). Analyzing barriers of Smart Energy City in Accra with two-step fuzzy DEMATEL. Cities, 89, 218-227. doi:10.1016/j.cities.2019.01.043 | es_ES |
dc.description.references | Dalvi-Esfahani, M., Niknafs, A., Kuss, D. J., Nilashi, M., & Afrough, S. (2019). Social media addiction: Applying the DEMATEL approach. Telematics and Informatics, 43, 101250. doi:10.1016/j.tele.2019.101250 | es_ES |
dc.description.references | Quezada, L. E., López-Ospina, H. A., Palominos, P. I., & Oddershede, A. M. (2018). Identifying causal relationships in strategy maps using ANP and DEMATEL. Computers & Industrial Engineering, 118, 170-179. doi:10.1016/j.cie.2018.02.020 | es_ES |
dc.description.references | Nilashi, M., Samad, S., Manaf, A. A., Ahmadi, H., Rashid, T. A., Munshi, A., … Hassan Ahmed, O. (2019). Factors influencing medical tourism adoption in Malaysia: A DEMATEL-Fuzzy TOPSIS approach. Computers & Industrial Engineering, 137, 106005. doi:10.1016/j.cie.2019.106005 | es_ES |
dc.description.references | Zhang, L., Sun, X., & Xue, H. (2019). Identifying critical risks in Sponge City PPP projects using DEMATEL method: A case study of China. Journal of Cleaner Production, 226, 949-958. doi:10.1016/j.jclepro.2019.04.067 | es_ES |
dc.description.references | Du, Y.-W., & Zhou, W. (2019). New improved DEMATEL method based on both subjective experience and objective data. Engineering Applications of Artificial Intelligence, 83, 57-71. doi:10.1016/j.engappai.2019.05.001 | es_ES |
dc.description.references | Yazdi, M., Nedjati, A., Zarei, E., & Abbassi, R. (2020). A novel extension of DEMATEL approach for probabilistic safety analysis in process systems. Safety Science, 121, 119-136. doi:10.1016/j.ssci.2019.09.006 | es_ES |
dc.description.references | Chen, Z., Ming, X., Zhang, X., Yin, D., & Sun, Z. (2019). A rough-fuzzy DEMATEL-ANP method for evaluating sustainable value requirement of product service system. Journal of Cleaner Production, 228, 485-508. doi:10.1016/j.jclepro.2019.04.145 | es_ES |
dc.description.references | Wu, W.-W., & Lee, Y.-T. (2007). Developing global managers’ competencies using the fuzzy DEMATEL method. Expert Systems with Applications, 32(2), 499-507. doi:10.1016/j.eswa.2005.12.005 | es_ES |
dc.description.references | Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. doi:10.1016/s0019-9958(65)90241-x | es_ES |
dc.description.references | Mahmoudi, S., Jalali, A., Ahmadi, M., Abasi, P., & Salari, N. (2019). Identifying critical success factors in Heart Failure Self-Care using fuzzy DEMATEL method. Applied Soft Computing, 84, 105729. doi:10.1016/j.asoc.2019.105729 | es_ES |
dc.description.references | Lin, K.-P., Tseng, M.-L., & Pai, P.-F. (2018). Sustainable supply chain management using approximate fuzzy DEMATEL method. Resources, Conservation and Recycling, 128, 134-142. doi:10.1016/j.resconrec.2016.11.017 | es_ES |
dc.description.references | Vardopoulos, I. (2019). Critical sustainable development factors in the adaptive reuse of urban industrial buildings. A fuzzy DEMATEL approach. Sustainable Cities and Society, 50, 101684. doi:10.1016/j.scs.2019.101684 | es_ES |
dc.description.references | Mirmousa, S., & Dehnavi, H. D. (2016). Development of Criteria of Selecting the Supplier by Using the Fuzzy DEMATEL Method. Procedia - Social and Behavioral Sciences, 230, 281-289. doi:10.1016/j.sbspro.2016.09.036 | es_ES |
dc.description.references | Acuña-Carvajal, F., Pinto-Tarazona, L., López-Ospina, H., Barros-Castro, R., Quezada, L., & Palacio, K. (2019). An integrated method to plan, structure and validate a business strategy using fuzzy DEMATEL and the balanced scorecard. Expert Systems with Applications, 122, 351-368. doi:10.1016/j.eswa.2019.01.030 | es_ES |
dc.description.references | Chou, J.-S., & Ongkowijoyo, C. S. (2019). Hybrid decision-making method for assessing interdependency and priority of critical infrastructure. International Journal of Disaster Risk Reduction, 39, 101134. doi:10.1016/j.ijdrr.2019.101134 | es_ES |
dc.description.references | Winter, C. de, Palleti, V. R., Worm, D., & Kooij, R. (2019). Optimal placement of imperfect water quality sensors in water distribution networks. Computers & Chemical Engineering, 121, 200-211. doi:10.1016/j.compchemeng.2018.10.021 | es_ES |
dc.description.references | Schwaller, J., & van Zyl, J. E. (2015). Modeling the Pressure-Leakage Response of Water Distribution Systems Based on Individual Leak Behavior. Journal of Hydraulic Engineering, 141(5), 04014089. doi:10.1061/(asce)hy.1943-7900.0000984 | es_ES |
dc.description.references | Giustolisi, O., Savic, D., & Kapelan, Z. (2008). Pressure-Driven Demand and Leakage Simulation for Water Distribution Networks. Journal of Hydraulic Engineering, 134(5), 626-635. doi:10.1061/(asce)0733-9429(2008)134:5(626) | es_ES |
dc.description.references | EPANET 2: Users Manualhttps://epanet.es/wp-content/uploads/2012/10/EPANET_User_Guide.pdf | es_ES |
dc.description.references | Christodoulou, S. E., Gagatsis, A., Xanthos, S., Kranioti, S., Agathokleous, A., & Fragiadakis, M. (2013). Entropy-Based Sensor Placement Optimization for Waterloss Detection in Water Distribution Networks. Water Resources Management, 27(13), 4443-4468. doi:10.1007/s11269-013-0419-8 | es_ES |
dc.description.references | Falatoonitoosi, E., Leman, Z., Sorooshian, S., & Salimi, M. (2013). Decision-Making Trial and Evaluation Laboratory. Research Journal of Applied Sciences, Engineering and Technology, 5(13), 3476-3480. doi:10.19026/rjaset.5.4475 | es_ES |
dc.description.references | OPRICOVIC, S., & TZENG, G.-H. (2003). DEFUZZIFICATION WITHIN A MULTICRITERIA DECISION MODEL. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 11(05), 635-652. doi:10.1142/s0218488503002387 | es_ES |
dc.description.references | Sara, J., Stikkelman, R. M., & Herder, P. M. (2015). Assessing relative importance and mutual influence of barriers for CCS deployment of the ROAD project using AHP and DEMATEL methods. International Journal of Greenhouse Gas Control, 41, 336-357. doi:10.1016/j.ijggc.2015.07.008 | es_ES |
dc.description.references | Alperovits, E., & Shamir, U. (1977). Design of optimal water distribution systems. Water Resources Research, 13(6), 885-900. doi:10.1029/wr013i006p00885 | es_ES |
dc.description.references | Walski, T., Bezts, W., Posluszny, E. T., Weir, M., & Whitman, B. E. (2006). Modeling leakage reduction through pressure control. Journal - American Water Works Association, 98(4), 147-155. doi:10.1002/j.1551-8833.2006.tb07642.x | es_ES |
dc.description.references | Zheng, F., Du, J., Diao, K., Zhang, T., Yu, T., & Shao, Y. (2018). Investigating Effectiveness of Sensor Placement Strategies in Contamination Detection within Water Distribution Systems. Journal of Water Resources Planning and Management, 144(4), 06018003. doi:10.1061/(asce)wr.1943-5452.0000919 | es_ES |
dc.description.references | Montalvo, I., Izquierdo, J., Pérez-García, R., & Herrera, M. (2014). Water Distribution System Computer-Aided Design by Agent Swarm Optimization. Computer-Aided Civil and Infrastructure Engineering, 29(6), 433-448. doi:10.1111/mice.12062 | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |