- -

Optimal placement of pressure sensors using fuzzy DEMATEL-based sensor influence

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Optimal placement of pressure sensors using fuzzy DEMATEL-based sensor influence

Mostrar el registro completo del ítem

Frances-Chust, J.; Brentan, BM.; Carpitella, S.; Izquierdo Sebastián, J.; Montalvo, I. (2020). Optimal placement of pressure sensors using fuzzy DEMATEL-based sensor influence. Water. 12(2):1-18. https://doi.org/10.3390/w12020493

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162960

Ficheros en el ítem

Metadatos del ítem

Título: Optimal placement of pressure sensors using fuzzy DEMATEL-based sensor influence
Autor: Frances-Chust, Jorge Brentan, Bruno M. Carpitella, Silvia Izquierdo Sebastián, Joaquín Montalvo, Idel
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] Nowadays, optimal sensor placement (OSP) for leakage detection in water distribution networks is a lively field of research, and a challenge for water utilities in terms of network control, management, and maintenance. ...[+]
Palabras clave: Water distribution network , Leakage , Optimal sensor placement , Sensitivity , Uncertainty , Entropy , Multi-criteria decision-making , DEMATEL
Derechos de uso: Reconocimiento (by)
Fuente:
Water. (issn: 2073-4441 )
DOI: 10.3390/w12020493
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/w12020493
Código del Proyecto:
info:eu-repo/grantAgreement/CNPq//156213%2F2018-4/
Agradecimientos:
This research has been partially supported by the CNPq grant with number 156213/2018-4.
Tipo: Artículo

References

Li, J., Wang, C., Qian, Z., & Lu, C. (2019). Optimal sensor placement for leak localization in water distribution networks based on a novel semi-supervised strategy. Journal of Process Control, 82, 13-21. doi:10.1016/j.jprocont.2019.08.001

Pérez, R., Puig, V., Pascual, J., Quevedo, J., Landeros, E., & Peralta, A. (2011). Methodology for leakage isolation using pressure sensitivity analysis in water distribution networks. Control Engineering Practice, 19(10), 1157-1167. doi:10.1016/j.conengprac.2011.06.004

Boatwright, S., Romano, M., Mounce, S., Woodward, K., & Boxall, J. (s. f.). Optimal Sensor Placement and Leak/Burst Localisation in a Water Distribution System Using Spatially-Constrained Inverse-Distance Weighted Interpolation. doi:10.29007/37cp [+]
Li, J., Wang, C., Qian, Z., & Lu, C. (2019). Optimal sensor placement for leak localization in water distribution networks based on a novel semi-supervised strategy. Journal of Process Control, 82, 13-21. doi:10.1016/j.jprocont.2019.08.001

Pérez, R., Puig, V., Pascual, J., Quevedo, J., Landeros, E., & Peralta, A. (2011). Methodology for leakage isolation using pressure sensitivity analysis in water distribution networks. Control Engineering Practice, 19(10), 1157-1167. doi:10.1016/j.conengprac.2011.06.004

Boatwright, S., Romano, M., Mounce, S., Woodward, K., & Boxall, J. (s. f.). Optimal Sensor Placement and Leak/Burst Localisation in a Water Distribution System Using Spatially-Constrained Inverse-Distance Weighted Interpolation. doi:10.29007/37cp

Blesa, J., Nejjari, F., & Sarrate, R. (2015). Robust sensor placement for leak location: analysis and design. Journal of Hydroinformatics, 18(1), 136-148. doi:10.2166/hydro.2015.021

Steffelbauer, D. B., & Fuchs-Hanusch, D. (2016). Efficient Sensor Placement for Leak Localization Considering Uncertainties. Water Resources Management, 30(14), 5517-5533. doi:10.1007/s11269-016-1504-6

Yoo, D., Chang, D., Song, Y., & Lee, J. (2018). Optimal Placement of Pressure Gauges for Water Distribution Networks Using Entropy Theory Based on Pressure Dependent Hydraulic Simulation. Entropy, 20(8), 576. doi:10.3390/e20080576

De Schaetzen, W. B. ., Walters, G. ., & Savic, D. . (2000). Optimal sampling design for model calibration using shortest path, genetic and entropy algorithms. Urban Water, 2(2), 141-152. doi:10.1016/s1462-0758(00)00052-2

Cugueró-Escofet, M. À., Puig, V., & Quevedo, J. (2017). Optimal pressure sensor placement and assessment for leak location using a relaxed isolation index: Application to the Barcelona water network. Control Engineering Practice, 63, 1-12. doi:10.1016/j.conengprac.2017.03.003

Sela Perelman, L., Abbas, W., Koutsoukos, X., & Amin, S. (2016). Sensor placement for fault location identification in water networks: A minimum test cover approach. Automatica, 72, 166-176. doi:10.1016/j.automatica.2016.06.005

Carpitella, S., Carpitella, F., Certa, A., Benítez, J., & Izquierdo, J. (2018). Managing Human Factors to Reduce Organisational Risk in Industry. Mathematical and Computational Applications, 23(4), 67. doi:10.3390/mca23040067

Addae, B. A., Zhang, L., Zhou, P., & Wang, F. (2019). Analyzing barriers of Smart Energy City in Accra with two-step fuzzy DEMATEL. Cities, 89, 218-227. doi:10.1016/j.cities.2019.01.043

Dalvi-Esfahani, M., Niknafs, A., Kuss, D. J., Nilashi, M., & Afrough, S. (2019). Social media addiction: Applying the DEMATEL approach. Telematics and Informatics, 43, 101250. doi:10.1016/j.tele.2019.101250

Quezada, L. E., López-Ospina, H. A., Palominos, P. I., & Oddershede, A. M. (2018). Identifying causal relationships in strategy maps using ANP and DEMATEL. Computers & Industrial Engineering, 118, 170-179. doi:10.1016/j.cie.2018.02.020

Nilashi, M., Samad, S., Manaf, A. A., Ahmadi, H., Rashid, T. A., Munshi, A., … Hassan Ahmed, O. (2019). Factors influencing medical tourism adoption in Malaysia: A DEMATEL-Fuzzy TOPSIS approach. Computers & Industrial Engineering, 137, 106005. doi:10.1016/j.cie.2019.106005

Zhang, L., Sun, X., & Xue, H. (2019). Identifying critical risks in Sponge City PPP projects using DEMATEL method: A case study of China. Journal of Cleaner Production, 226, 949-958. doi:10.1016/j.jclepro.2019.04.067

Du, Y.-W., & Zhou, W. (2019). New improved DEMATEL method based on both subjective experience and objective data. Engineering Applications of Artificial Intelligence, 83, 57-71. doi:10.1016/j.engappai.2019.05.001

Yazdi, M., Nedjati, A., Zarei, E., & Abbassi, R. (2020). A novel extension of DEMATEL approach for probabilistic safety analysis in process systems. Safety Science, 121, 119-136. doi:10.1016/j.ssci.2019.09.006

Chen, Z., Ming, X., Zhang, X., Yin, D., & Sun, Z. (2019). A rough-fuzzy DEMATEL-ANP method for evaluating sustainable value requirement of product service system. Journal of Cleaner Production, 228, 485-508. doi:10.1016/j.jclepro.2019.04.145

Wu, W.-W., & Lee, Y.-T. (2007). Developing global managers’ competencies using the fuzzy DEMATEL method. Expert Systems with Applications, 32(2), 499-507. doi:10.1016/j.eswa.2005.12.005

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. doi:10.1016/s0019-9958(65)90241-x

Mahmoudi, S., Jalali, A., Ahmadi, M., Abasi, P., & Salari, N. (2019). Identifying critical success factors in Heart Failure Self-Care using fuzzy DEMATEL method. Applied Soft Computing, 84, 105729. doi:10.1016/j.asoc.2019.105729

Lin, K.-P., Tseng, M.-L., & Pai, P.-F. (2018). Sustainable supply chain management using approximate fuzzy DEMATEL method. Resources, Conservation and Recycling, 128, 134-142. doi:10.1016/j.resconrec.2016.11.017

Vardopoulos, I. (2019). Critical sustainable development factors in the adaptive reuse of urban industrial buildings. A fuzzy DEMATEL approach. Sustainable Cities and Society, 50, 101684. doi:10.1016/j.scs.2019.101684

Mirmousa, S., & Dehnavi, H. D. (2016). Development of Criteria of Selecting the Supplier by Using the Fuzzy DEMATEL Method. Procedia - Social and Behavioral Sciences, 230, 281-289. doi:10.1016/j.sbspro.2016.09.036

Acuña-Carvajal, F., Pinto-Tarazona, L., López-Ospina, H., Barros-Castro, R., Quezada, L., & Palacio, K. (2019). An integrated method to plan, structure and validate a business strategy using fuzzy DEMATEL and the balanced scorecard. Expert Systems with Applications, 122, 351-368. doi:10.1016/j.eswa.2019.01.030

Chou, J.-S., & Ongkowijoyo, C. S. (2019). Hybrid decision-making method for assessing interdependency and priority of critical infrastructure. International Journal of Disaster Risk Reduction, 39, 101134. doi:10.1016/j.ijdrr.2019.101134

Winter, C. de, Palleti, V. R., Worm, D., & Kooij, R. (2019). Optimal placement of imperfect water quality sensors in water distribution networks. Computers & Chemical Engineering, 121, 200-211. doi:10.1016/j.compchemeng.2018.10.021

Schwaller, J., & van Zyl, J. E. (2015). Modeling the Pressure-Leakage Response of Water Distribution Systems Based on Individual Leak Behavior. Journal of Hydraulic Engineering, 141(5), 04014089. doi:10.1061/(asce)hy.1943-7900.0000984

Giustolisi, O., Savic, D., & Kapelan, Z. (2008). Pressure-Driven Demand and Leakage Simulation for Water Distribution Networks. Journal of Hydraulic Engineering, 134(5), 626-635. doi:10.1061/(asce)0733-9429(2008)134:5(626)

EPANET 2: Users Manualhttps://epanet.es/wp-content/uploads/2012/10/EPANET_User_Guide.pdf

Christodoulou, S. E., Gagatsis, A., Xanthos, S., Kranioti, S., Agathokleous, A., & Fragiadakis, M. (2013). Entropy-Based Sensor Placement Optimization for Waterloss Detection in Water Distribution Networks. Water Resources Management, 27(13), 4443-4468. doi:10.1007/s11269-013-0419-8

Falatoonitoosi, E., Leman, Z., Sorooshian, S., & Salimi, M. (2013). Decision-Making Trial and Evaluation Laboratory. Research Journal of Applied Sciences, Engineering and Technology, 5(13), 3476-3480. doi:10.19026/rjaset.5.4475

OPRICOVIC, S., & TZENG, G.-H. (2003). DEFUZZIFICATION WITHIN A MULTICRITERIA DECISION MODEL. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 11(05), 635-652. doi:10.1142/s0218488503002387

Sara, J., Stikkelman, R. M., & Herder, P. M. (2015). Assessing relative importance and mutual influence of barriers for CCS deployment of the ROAD project using AHP and DEMATEL methods. International Journal of Greenhouse Gas Control, 41, 336-357. doi:10.1016/j.ijggc.2015.07.008

Alperovits, E., & Shamir, U. (1977). Design of optimal water distribution systems. Water Resources Research, 13(6), 885-900. doi:10.1029/wr013i006p00885

Walski, T., Bezts, W., Posluszny, E. T., Weir, M., & Whitman, B. E. (2006). Modeling leakage reduction through pressure control. Journal - American Water Works Association, 98(4), 147-155. doi:10.1002/j.1551-8833.2006.tb07642.x

Zheng, F., Du, J., Diao, K., Zhang, T., Yu, T., & Shao, Y. (2018). Investigating Effectiveness of Sensor Placement Strategies in Contamination Detection within Water Distribution Systems. Journal of Water Resources Planning and Management, 144(4), 06018003. doi:10.1061/(asce)wr.1943-5452.0000919

Montalvo, I., Izquierdo, J., Pérez-García, R., & Herrera, M. (2014). Water Distribution System Computer-Aided Design by Agent Swarm Optimization. Computer-Aided Civil and Infrastructure Engineering, 29(6), 433-448. doi:10.1111/mice.12062

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem